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PREFACE 

The continuing demand for and growth of statistical analyses in Army experimentation and applications of 
all kinds has resulted in a large number of special analytical techniques that are now widely used. The theory of 
many of the statistical techniques of special interest has been investigated systematically during the last 40 yr 
or so. Some of the statistical analyses of original Army interest have found their way into the broad statistical 
literature and, recently, into some of the university curricula. Naturally, courses in statistics taught in the 
universities form a strong basis for direct applications to many Army research and development efforts. As is 
widely recognized, the field of general statistics is indeed now an interdisciplinary science, affecting even our 
daily lives, and it devolves quite naturally that some special statistical procedures and experimentation 
guidelines would play a central role in a number of Army analytical endeavors. The need, therefore, to record 
and illustrate many of the well-developed statistical techniques has led to the desirability of publishing a 
number of engineering type handbooks on the subject of experimental statistics. 

In 1962 and 1963, the US Army published five Engineering Handbooks (AMCP 706-110, -111,-112, -113, 
and -114) on experimental statistics, which haye found extensive use and also are widely referenced in both 
Government and industrial activities. Our Chapter 1 gives the titles of these five volumes, along with an 
introductory description of the present handbook. In the intervening 20 yr or more since the publication of the 
AMCP 706-110 through 114 series of handbooks, much additional research in mathematical statistics has 
been accomplished, and some unique applications to Army problems have been found to be highly useful. 
Accordingly, a considerable amount of upgrading of the original material, along with some rather extensive 
efforts to round out and record most of the recent statistical attainments, was necessary. It is for such reasons 
that the present handbook has been developed. 

We have endeavored to cover in considerable detail some of the topics in such fields of interest as precision 
and accuracy of measurement procedures, outlier detection, least squares and regression, order statistics, 
sample size determination and sensitivity analysis, while also including more or less supplementary coverage 
of techniques that have been thoroughly investigated in theory and practice or recorded in reputable current 
references. Topics were selected for the handbook to address the various inquires received over the past 30 yr 
relative to statistical problems. Hopefully, we have attained some balance in this undertaking and provided a 
useful compendium of some specially selected analytical procedures. It is realized that many statistical 
techniques not fully covered herein will no doubt find their way into future Army practice; a specific cutoff 
date for a handbook dictates the particular selection of topics that can be included. Nevertheless, the 
techniques we have included should be of general use for many years to come. In fact, it is visualized that some 
of our selected subjects will come into prominence not only in Army applications but also in industrial, 
engineering, and research pursuits as well. In any event, it is hoped that we have provided a sound basis for 
future applications and have indicated some areas for further research. It is believed that the reader will find 
many references in this volume which should prove of value in his Army statistical endeavors. 

The development of this book is almost wholly the work of Dr. Frank E. Grubbs, formerly Chief 
Operations Research Analyst of the US Army Ballistic Research Laboratories. Dr. Grubbs was in fact 
engaged in much of the Army's statistical programs during the years 1941 to 1981. Indeed much of his research 
in mathematical statistics, which has been found extensively applicable in Army and industrial problems, is 
recorded in this handbook. We are much indebted to the US Army Materiel Systems Analysis Activity 
(AMSAA) and the US Army BaUistic Research Laboratory (BRL) for providing support during the 
preparation of this handbook. 

The US Army DARCOM policy is to release these Engineering Design Handbooks in accordance with 
DOD Directive 7230.7, 18 September 1973. Procedures for acquiring Handbooks follow: 

a. All Department of Army (DA) activities that have a need for Handbooks should submit their request 
on an official requisition form (DA Form 17, 17 January 1970) directly to: 

Commander 
Letterkenny Army Depot 
ATTN: SDSLE-SAAD 
Chambersburg, PA 17201. 

xiii 
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"Need to know" justification must accompany requests for classified Handbooks. DA activities will not 
requisition Handbooks for further free distribution. 

b. DOD, Navy, Air Force, Marine Corps, nonmilitary Government agencies, contractors, private 
industry, individuals, and others—who are registered with the Defense Technical Information Center (DTIC) 
and have a National Technical Information Service (NTIS) deposit account—may obtain Handbooks from: 

Defense Technical Information Center 
Cameron Station 
Alexandria, VA 22314. 

c. Requestors, not part of DA nor registered with the DTIC, may purchase unclassified Handbooks 
from: 

National Technical Information Service 
Department of Commerce 
Springfield, VA 22161. 

Comments and suggestions on this Handbook are welcome and should be addressed to: 
Commander 
US Army Materiel Development and Readiness Command ' 
Alexandria, VA 22333. 

(DA Form 2028, Recommended Changes to Publications, which is available through normal publication 
channels, may be used for comments/suggestions.) 
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AMSAA ■- = US Army Materiel Systems Analysis 
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logit 

ANOVA -■ = analysis of variance MCS 
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= up 
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CHAPTER 1 

INTRODUCTION TO CONTENTS OF THE HANDBOOK 

A brief but somewhat comprehensive and explanatory vievt> of the topics and general subject matter oj the 
handbook is highlighted in this chapter. 

1-1    INTRODUCTION 

During the 1960's a series of Engineering Design Handb/ooks on the general subject of experimental sta- 
tistics was published by the US Army. These Engineering Design Handbooks have the following pam- 
phlet numbers and titles: 
AMCP706- Title 

110 Experimental Statistics, Section 1, Basic Concept:! and Analysis of Measurement Data 
111 Experimental Statistics, Section 2, Analysis of Ermmerative and Classijicatory Data 
112 Experimental Statistics, Section 3, Planning and Analysis of Comparative Experiments 
113 Experimental Statistics, Section 4, Special Topics 
114 Experimental Statistics, Section 5, Tables. 

This valuable set of handbooks on experimental! istatistics and related subjects has served the Army 
analysts quite well as an authoritative reference of useful methodology and examples. In the intervening 
years, however, the field of experimental statistics has moved forward at a very rapid pace, and in fact, 
many new and useful techniques in experimental statistics have become available. Our primary objectives 
in the preparation of this handbook, therefore, ha\'e been to select some of the more useful statistical 
techniques we believed Army analysts would require and to assemble them in a single, comprehensive vol- 
ume. As would no doubt be expected, we were not able to devote the space to cover the multitude of 
many other desirable statistical methods—for example, extensive multivariate distribution theory (or even 
bivariate or trivariate weapon delivery error distributions), the estimation of (residual) dispersion from 
mean square successive or higher order differenf;es, or nonparametric statistics to the extent desired. 
Moreover, it seemed too early to cover the u?,e and applications of "robust" statistical estimation 
methods, even though some special interest has bieen evident in this area. Neverthek;ss, we consider that 
the topics we have covered in this handbook will represent a valuable addition to the Experimental Statis- 
tics series of handbooks—AMCP 706-110 through -114—and will either provide this analyst with useful 
reference material or perhaps help him with the current methodology of some of the more up-to-date ad- 
vances. ' ' ' 

1-2    OVERVIEW OF THE HANDBOOK 

We have presented the topics in this handbcjok in a certain order to draw proper attention to applica- 
tion areas that are now considered mandatory for the successful, practicing experimental statistician. Thus 
we have not approached the general subject of Army experimental statistics in what some might regard as 
a logical order of elementary statistical concepts in a college- or university-type curriculum. In fact, we 
have long observed that the more usual colle;ge statistical courses do not even approach the need to han- 
dle or deal effectively with the formidable problems in practice—another reason for preparing this hand- 
book. As a case in point, consider the problem of errors in measurement, precision, and accuracy of 
measurement. It is certainly of considerable interest to know in much detail just how well, errors of mea- 
surement are controlled; otherwise the observations taken in an experiment could lead to entirely wrong 
conclusions and inferences. Hence perhaps t:he prime objective in experimental work is the assurance that 
the measurements taken will be of proper quality. It is for this reason that we devote attention first in 
Chapter 2 to the statistical treatment of errors of measurement, precision, and accuracy problems. We at- 
tempt to define, provide methods of estimation, and illustrate by actual example these very elusive con- 
cepts in Chapter 2. Moreover, coverage in Chapter 2 includes the known, key statistic al tests of signifi- 
cance, which are useful in comparing population parameters of the precision and accuiracy measures. In 
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dealing with these problems of precision an d accuracy of measurement, it is necessary to discuss the hier- 
archy of calibration echelons to the top, or the National Bureau of Standards, and the probable accumu- 
lation of error through such channels. Finally, the use of interlaboratory studies of measurement pro- 
cedures and test methods, or "round-robin" \tests must be considered. Thus we have given an introduction 
to these practices and procedures in Chapter 2 also. With suitable knowledge of the precision and ac- 
curacy of our measurement procedures, we a re ready to discuss the next logical topic in statistical prac- 
tice, namely, the analysis and treatment of o utliers. 

Chapter 3 gives an account of the statistical tests that are rather widely used in current applications to 
identify and to isolate outlying observations in samples. The so-called "outliers" that often appear in ex- 
perimental work could be due to errors of measurement, recording errors, or just plain mistakes, but they 
also could reflect the true characteristics of the population one is actually sampling. Thus the basic prob- 
lem is to develop the more useful statistical tests that will lead almost unerringly to the separation of true 
outliers from the actual characteristics of the population sampled, i.e., the physical environment. For a 
systematic and comprehensive treatment of the outlier detection problem in Chapter 3, we give the more 
efficient statistical procedures for isolating eitheir a single high or single low anomalous observation, or 
either the two highest or the two lowest sample values, and also some rules for judgment of the lowest and 
the highest observations simultaneously. For smai'l samples these particular cases are met very frequently 
in many practical situations. We then proceed to discuss in some detail the detection of many outliers 
(more than two) or, that is, the likelihood of much unacceptable heterogeneity in the sample of observa- 
tions. Several multiple outlier detection procedures are given, and pertinent practical examples are illus- 
trated. Since our interest lies in the realm of making sound conclusions and inferences based on the statis- 
tical analysis, the methods of Chapters 2 and 3 become of fundamental importance in helping to assign 
the likely causes of questionable variations. 

Hence Chapters 2 and 3 have been placed first to call close attention to and also to provide the Army 
statistical analyst >vith a solid background for handling and assessing errors of measurement and the pos- 
sible effect of outliiers in important practical applications. We believe that this approach to modern day 
statistical analyses leads us with much assurance to the proper handling of the many special or selected 
techniques discussed herein, which currently are required in many applied Army investigations. 

There is a variety of special statistical topics, that h ave come to light over the years, and, as a matter of 
fact, have been foLind to be of much particular interest to the practicing statistician. Moreover, it seemed 
very highly desirable to bring these topics together in ,a single chapter, which we have done in Chapter 4. 
Such topics include., for example, some elementary account of basic estimation techniques—particularly 
approximate unbiassed estimation of the population standard deviation for samples from a normal popu- 
lation, the concepts of efficiency and mean square error, some updating of the common statistical tests of 
significance, and some points on the choice of significance levels for multiple tests. In recent years there 
have been some advances in the development of approximate statistical procedures for some of the signifi- 
cance tests, and for many or most practical applications such techniques may just as well be used. In the 
Student type t tests for comparing normal population means, the use of (« - 3) instead of (« - 1) degrees 
of freedom (dQ as a, divisor of the sum of squares leads to a t statistic that is very nearly normally dis- 
tributed. Hence the table of standardized normal deviates—instead of the usual / table- may be used in 
practice, and in fact, only a normal percentage point must be remembered! Moreover, this development 
extends rather well to both the two-sample t test and the Behrens-Fisher problem for comparing two 
normal population means for which the variances are not eciual. Clearly, such suitable, approximate tech- 
niques could well promote wider practical applications because the rigorous handling of only the exact 
tests has been intractable. Along with the common statistical tests of significance et al., there seemed to be 
some value in recording the principles of establishing confide-nce bounds on the unknown normal popula- 
tion sigma or standard deviation, including a discussion of Neyman's shortest unbiased confidence 
bounds. These topics are covered in Chapter 4. 

Since the applied statistician often must compare the relative size of more than two normal population 
sigmas, up-to-date coverage of significance tests for the equality of several population variances must be 
approached. Heince homoscedasticity tests, such as that of Bartlett, Cochran, Hartley, Cadwell, and Bart- 
lett and Kendall, are highlighted in Chapter 4. 

1-2 
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The design and analysis of planned experiments using statistical experience now extend over such a 
wide area that we cannot go into such developments and accomplishments in this handbook. Also many 
excellent textbooks on the general subject are now widely available. Nevertheless, we considered it desir- 
able to discuss a rather frequently appearing problem of comparing subjective type judgments in much 
Army work. Our analysis of variance technique used here concerns the rating and ranking of research and 
development proposals by a panel of "experts"; many similar appHcations could be made elsewhere. As 
the final subject of Chapter 4, we discuss the choice of significance levels for multiple type tests. There are 
often cases that involve a series of significance tests, and in the end one desires to guarantee a given or 
prestated level of significance. 

As would be expected, many Army statistical applications involve the comparison of two unknown bi- 
nomial population parameters or some analyses of count or cross-classified categorical data. One of the 
most frequent and classical problems concerns the analysis of 2 x 2 comparative trials, or two-way con- 
tingency tables, especially the 2 x 2 table of count data. In Chapter 5 we have tried to give some of the 
more relevant background concerning the analysis of 2 X 2 contingency tables by using the classical 
normal approximations and the chi-square analysis equivalent test. As has been recognized since the 
1940's, one has to consider both the possibilities of fixed and variable marginal totals with the classical 
comparison of two binomial populaUon parameters imbedded in such treatments. We follow the basic 
work of Barnard and Pearson in this endeavor and attempt to give much assurance to the fact that the 
normal approximation is normally quite satisfactory. Since there has been much confusion in the past 
concerning both the interpretation and the statistical analysis of contingency tables, we have tried to de- 
velop and present the material in an order and fashion the Army analyst can follow and remember. This 
means that for the frequently used 2x2 table the comparison of two binomial population parameters or 
proportions appears to be of some central importance. This case, therefore, is treated rather extensively, 
and some Army type applications are given. 

During the past 20 yr or so, there have been some developments toward "different" approaches to the 
analysis of contingency tables, including the information theory approach and the loglinear model. 
Consequently, we have included some discussion of both of these approaches, even though somewhat 
limited in scope, while adhering to the belief that analyses should treat the original, observed count data 
without any transformation of scale. We must note, however, that the use of the loglinear model leads to 
linearization of the data and hence likens this approach to the well-known analysis of variance (ANOVA) 
of stadstically designed experiments, such as two-way classifications or layouts of randomized blocks. 

Due to the demand for staUstical analyses arising from diverse applications, readers should be aware 
that least squares, regression, and the fitting of functional relations represent some of the most important 
topics to be covered in any handbook of this kind. Moreover, practical applications now require more 
than just a "routine fit" as is sometimes presented in statistical textbooks. In fact, in line with the princi- 
ples of Chapter 2, present-day analysts should have profound appreciation for the existence and size of er- 
rors of measurement and whether or not the dependent variable is sufficiently "free of error" or otherwise 
deserves some special treatment. Consequently, Chapter 6 has been written with such problems in mind 
for attacking least squares. Also for these reasons the very first problem or example illustrated is ap- 
-proached from the standpoint of whether the assumptions and the fitted linear model are valid. In this 
way one can perform least squares in such a manner as to have great assurance and confidence for his 
analytical judgments. 

Although statisticians, using the fitted equation statistics, have long determined confidence intervals for 
specific values, an important result of Henry Scheffe that covers multiple confidence statements about and 
for the whole least squares line has too long been overlooked. Therefore, Scheffe's theory for the regres- 
sion line and its practical benefits are stressed. Also the important result of Berkson, which points out 
that when the experimenter presets and aims for "controlled" values of the independent variable, the ordi- 
nary least squares line involving r on v may be fitted in the normal manner as for v free of error. We go 
to some effort in Chapter 6, therefore, to select and exhibit those regression topics that may be of most 
importance in practice. 

Although physical scientists have always faced the least squares case involving "errors" in both vari- 
ables, i.e., the dependent and the independent variables, it is only in recent years that the statistician has 

1-3 
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developed an appropriate treatment of this problem. Hence the "errors in both variables" case is dis- 
cussed very thoroughly, and modern approaches for use are presented. Also we stress in Chapter 6 the 
comparison between the fitting of an appropriate physical model on one hand and that of a polynomial on 
the other. The value of the physical model is demonstrated by using a problem in penetration mechanics. 

The fitting of a dependent variable on several independent variables is presented in a rather simple 
computational manner. The use of orthogonal polynomials for equally spaced values of the abscissa is 
stressed in connection with the analysis of variance (ANOVA) table, which uses a Snedecor-Fisher F test 
for a stopping rule. A very unique example, applying Chapter 2 principles, is also given. 

The need for analyses of the ordered observations in a sample, as contrasted to observations in the 
order taken, has deserved much special attention in recent years. This is due to the fields of life testing 
and reliability, where the lifetimes of articles occur naturally in increasing order and such tests may be 
stopped before all articles fail; or the existence of outliers in samples; or some rounds fired at a target that 
miss it, etc.; and for which unbiased estimation of population parameters is required. Indeed, the rather 
incontrovertible results arising from estimation through the use of sample order statistics make their ap- 
plications very attractive for their efficiency is surprisingly high. Thus Chapter 7 attempts to present an 
mtroductory account of some of the principles involved in the analysis of sample order statistics for pur- 
poses of inference. Our interest in order statistics concentrates on distributions of largest and smallest 
values in the sample, the sample range or largest minus smallest values, the quasi-ranges, expected values 
of the sample order statistics and their moments, efficient Hnear estimation of population parameters, the 
statisUcs of extremes and Gumbel's extreme value distribution, some relationships between order statistics 
and outliers, the radial order statistics as applied to target analyses, the analysis of truncated samples 
from firmgs at rectangular targets, and parameter estimation for truncated Poisson samples with missing 
zero occurrences. The last-named application applies, for example, to the analysis of combat records 
about tank engagements for which the number of misses is naturally never known but the number of 
tanks having one hit, two hits, or more is identifiable. 

In terms of order statistics, several distributions come into importance in applications. These mclude 
the normal, the exponential, and the Weibull distributions. In Chapter 7 we illustrate the use of order sta- 
tisfic theory by a number of examples that illustrate the versatility of this analytical tool. 

Perhaps the most ubiquitous requirement of a statistical character among physical scientists and others 
concerns that of selecting the right sample size. In fact, the almost universal question is invariably, "What 
sample size do I need?". This question is certainly a very simple one but often like others requires some 
quahficadon, to say the least! The determination of sample size is not only or strictly a stafistical prob- 
lem, but it may be a physical or engineering one as well or even an economical one since as so often one 
"gets only what he pays for". In some cases the sample size is limited by just what is actually available for 
test, in which case the design of the test might well come into play. On the other hand, the statistical de- 
termination of sample size represents an important activity because there must be some control of the 
risks of erroneous judgments. That is to say, for example, that we would like to keep the "Type I" error 
of rejecdng a "good product" and the "Type 11" error of accepting a "bad product" both down to a mini- 
mum. Perhaps it is easy to see then that the determination of sample size is very dependent on the vari- 
ability of the population to be sampled, or, that is, the population standard deviation. If this sigma is 
small, the sample size will ordinarily be smaller than if the sigma were large. Also the choice of sample 
size will depend very much on just how close we desire to be near the population parameter—i.e., mean, 
standard deviation, etc. Clearly, if we desire that the sample mean be the same as the population mean' 
the sample size and the population size must be equal, or very nearly so. What we are also saying in effect 
is that sample size determination will depend on the particular difference we would like to be able to de- 
tect and the width of the confidence interval within which we would like the population parameter to lie. 
Hence there are a number of ways of framing quesdons concerning sample size determinadon, and the ap- 
proach must be selected with some care. Moreover, once the appropriate approach has been selected, the 
sample size must not be so large as to be impracticable—a final requirement. 

It might be said that we more or less focus on two approaches having some practical value for the de- 
termination of sample size. The first of these revolves around either estabHshing a difference of practical 
importance or a deviation from the populadon parameter we would like to detect and then finding the 
1-4 
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sample size for the significance test that will show statistical significance for the probability level also 
selected. This particular approach is often used because it is not difficult for the practicing engineer or 
physical scientist to formulate and to apply. The second, and perhaps more difficult, approach for the 
practitioner is to formulate the problem in terms of just what is acceptable or desirable and what level of 
quality, etc., is not, then to determine the risks one might be willing to take in these two judgments, and 
finally to obtain the sample size that guarantees these attainments. In this way we are controlling the risks 
of erroneous judgments. In Chapter 8 we discuss both approaches in an appropriately detailed manner for 
thetnore common statistical tests of significance, and we illustrate the principles by a number of practical 
examples. 

The determination of sample size(s) is recorded for sampling a single binomial population or comparing 
two binomial populations (or Poisson distributions); the testing for high reliability; the estimation and 
comparison of normal population variances; the estimation and comparison of normal population means, 
and the normal populations; contingency tables and curve fitting; and a brief account of sample sizes for 
analysis of variance type problems. Every effort is made to keep the sample size equations as simple as 
possible, and particular attention is given to the use of the normal approximations by showing their ac- 
curacy. Thus the practicing statistician should find much use for Chapter 8. 

Long before statistical techniques were applied in depth to industrial- and engineering-type problems, 
there existed a need to use probabilistic methodology in bioassay problems or "dosage response" 
analyses. This perhaps was especially the case since the data were of a "quantal response" type nature or 
an "all or nothing" response. Thus the analyst appeared to be face-to-face with an application involving a 
continuous scale, or "variables", treatment, but the response data were simply of an "attribute" nature, 
or "yes" or "no" character. For the Army the pressing need for quantal response analyses came to the 
forefront in connection with analyses- of armor penetration studies and the mammoth effort directed 
toward acceptance testing of armor plate from many producers during World War II. The analytical 
problem is clearly seen for defeat of armor studies since, in firing projectiles at armor of a given thickness, 
there exists some "lower" striking velocity for which no penetrations of the plate occur, but as the striking 
velocity is increased, there are 10%, 20%, . . ., 50%, . . ., 90%, . . ., and finally perhaps even 100% penetra- 
tions at some "higher" velocity. Hence basically one must estimate a cumulative distribution curve, which 
is most often unknown, for the case where the firing of a single round results in either a nonperforation or 
a perforation. Moreover, it is starkly clear that firings near the levels of 0% or 100% perforations give lit- 
tle or no useful information! Therefore, one must also adopt an efficient strategy for conducting armor 
penetration tests if he is to obtain the characteristics of the "zone of mixed results". For industrial and en- 
gineering applications, this particular type of statistical problem was most often branded as a "sensitivity 
analysis" as contrasted to the specific bioassay procedure. Chapter 9 discusses some of the more up-to- 
date methods for sensitivity analyses of quantal response type data. 

Since the problem in experimental testing for sensitivity analyses is that of locating the zone of mixed 
results and exploring it in a fashion to estimate parameters of the assumed or guessed-at distribution, the 
strategy of conducting the test and the related statistical analysis must go hand-in-hand. Hence, if one has 
to determine a low percentage point, say 1%, or a high percentage point, say 99%, then the strategy of 
testing should be so aimed. On the other hand, if one is primarily interested in the median, or 50%, 
probability level and some idea concerning the width or standard deviation of the zone of mixed results, 
he should avoid the end points and simply assume that the distribution is normal. For the zone of mixed 
results, the distributions covered in Chapter 10 include the normal, the logistic, and the Weibull models. 
The discussion, therefore, involves a variety of distributional shapes. Testing strategies include the com- 
plete rundown test, the "up and down" strategy of Dixon and Mood, the Langlie one-shot test strategy, 
the Robbins-Monro stochastic approximation method, the one-shot transformed response test strategy 
(OSTR), and more general transformed response strategies for extreme percentage points of the assumed 
distributions. The primary technique for the estimation of population parameters is Fisher's method of 
maximum likelihood, and some discussion of the iterative procedures is given as required. Also a number 
of very informative examples and computational aids add to the usefulness of Chapter 9 for Army appli- 
cations. 
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Chapter 10 has been selected and prepared with a special purpose in mind. Our objective is to outline a 
rather difficult problem that can be used to indicate the contrast between the statistical approach to 
model development as compared to that of the physical approach and just how they might support each 
other. In fact, the statistician would often fare better by trying to fit the available physical models to the 
data before attempting to improve their applicability statistically. As it turns out, the applied or consult- 
ing statistician will be called upon to use his expertise in any number of diverse areas of emphasis, and it 
is unlikely that he will have immediately at hand the detailed knowledge required in each and every field 
or problem. Likewise, as so often happens, the physical scientist will not be sufficiently trained in statisti- 
cal methodology; therefore, the best approach must be teamwork involving both viewpoints. Communica- 
tion barriers have been disappearing in recent years, and proper coordination should no longer be a 
stumbling block since the multidisciplinary approach represents a common practice in science, tech- 
nology, and engineering. We believe that such practices will be a continuing necessity. 

For purposes of a convincing illustration, we have chosen the so-called "limit velocity" or "critical 
velocity" problem in penetration mechanics studies. The limit velocity of a target armor plate may be de- 
fined as the greatest striking velocity for which the chance of penetration is zero in statistical terms, or in 
physical terms it is the striking velocity for which the residual velocity is zero. Even though the reader 
may be aware of some similarity between Chapter 10 and the statistical sensitivity analyses of Chapter 9, 
there is a sharp and important difference that must be recognized. In fact. Chapter 9 is concerned with 
only the statistical approach or analysis of quantile response data, whereas Chapter 10 involves measure- 
ments on both a continuous and attributive scale along with the problem of determining a physical law 
that will give the limit velocity in terms of the armor thickness and hardness, the projectile diameter, the 
projectile mass, the striking velocity, the angle of striking obliquity, and other physical parameters. In 
other words we take up the problem of describing the role of the statistician as a team member in the 
activity of scientific model building or development. The requirement for coordinating the roles of the 
statistician and the physical scientist is discussed and amplified. 

The final chapter. Chapter 11, focuses on an introduction to some selected topics in multivariate statis- 
tical analysis and theory since a number of key problems arise in connection with many Army applica- 
tions of statistical methodology. For example, some weapons have circular patterns of shots, i.e., equal 
sigmas in the different directions, and it becomes desirable to test for "circularity". Statistical problems of 
this nature may be handled by using Wilks' likelihood ratio tests for determining the equality of 
variances, the equality of covariances, and the equality of mean values also. Usually, one is dealing with a 
single bivariate or multivariate sample for the problems of this type, and we give an illustration for the 
M16 rifle in rapid fire to indicate the nature of the application. 

Chapter 11 also includes bivariate and multivariate statistical theory for comparing the results of two 
samples with each item of the sample having multiple characteristics. Here one often needs to compare 
the true covariance matrices of two bivariate or multivariate normal populations and uses the Hotelling 
generalized T^ statistic, or he needs to compare the corresponding true characteristic means of two hy- 
pothesized multivariate normal populations, in which case the application of Hotelling's multivariate Stu- 
dentized t statistic is required. Finally, a Hotelling generalized T^ statistic can be used to test whether two 
multivariate normal samples can be considered to originate from a single multivariate normal population. 
These Hotelling T^ statistics are thoroughly illustrated with an example that compares a newly designed 
and a standard artillery projectile. 

Since many users of this handbook may have applications that will require the simultaneous use of sta- 
tistical methods from several of the chapters, we have selected a comprehensive and rather extensive prob- 
lem related to a study of the precision and accuracy of instrumentation for determining the stratospheric 
ozone concentration in the atmosphere. This statistical analysis requires the application of the principles 
of Chapter 2, which requires redundancy of instrumentation to estimate the imprecision of measurement 
of each measuring device, and along with it the application of orthogonal least squares procedures 
covered in Chapter 6 to model the trends in instrumental bias differences. As a result, one can develop 
precision and accuracy statements for the capabilities of the instruments and hence settle any error of 
measurement questions. This study is presented in the Appendix of Chapter 6. 
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CHAPTER! 

ERRORS OF MEASUREMENT, PRECISION, ACCURACY AND THE STATISTICAL 
COMPARISON OF MEASURING INSTRUMENTS 

Precision and accuracy of measurement represent widely misunderstood terms or concepts with the 
result that many controversies arise in science, technology, and industrial practice. We therefore attempt to 
define and quantify errors of measurement, precision, and accuracy in accordance with the principles of 
statistics that apply so aptly to these concepts. By means of a systematic approach to the problem, preci- 
sion and accuracy {or imprecision and inaccuracy) are described in an analytical manner, and the statisti- 
cal techniques of estimating these parameters are given. It is found that at least two measuring instru- 
ments, taking common or the same measurements, are required to provide the needed estimates and to 
obtain some idea concerning the reliability of the estimates. Moreover, these principles are extended to any 
number of measuring instruments or laboratories engaged in measurement operations. 

Many pertinent statistical tests of significance concerning the precision and accuracy {large sample or 
population) parameters are presented for the analyst, and procedures for establishing confidence bounds 
on the unknown parameters of measurement are also covered in considerable detail These results are 
discussed especially for either two or three instruments, and indications of usage are given for any general 
number of measuring instruments. 

The practice of interlaboratory testing is covered in some analytical detail, and techniques for estimating 
the components of variance {or the repeatability and reproducibility sigmas) are illustrated numerically. 

Finally, we give an account of the hierarchy of calibration echelons or channels and present an analysis 
of the accumulation of error in such procedures. Many practical examples are given to illustrate the 
theory. 

2-0 LIST OF SYMBOLS 

A=  rl, - P 

Arr= n^n - (S/-,y = convenient notation for n times the sum of squares about the 

sample mean. (Applies also to any other letter subscripts.) 

a =  optimum value determined by minimizing total costs of calibration laboratory 
hierarchy 

flo = constant or exponent (see Eq.  2-137) 
ai =  constant or exponent (see Eq.  2-138) 

B=  2[{rl. - P) + {\  - P)Su.lSl] 
bo= constant or coefficient (see Eq.  2-138) 
bi =  constant or coefficient (see Eq. 2-138) 

C= rl - P + {I - P) [{Sl/Sl) + 2Su./Sl] 

c=  Oi^i/o, = a^loi = constant precision ratio at each and every calibration echelon /" 
DL= lower confidence limit (see Eq. 2-90) 
Du= upper confidence limit (see Eq. 2-91) 

E= error committed at a laboratory 

E{        ) = expected value or large sample average of (        ), the quantity within parentheses 
e = random error of measurement whose mean or expected value is zero 
e=   t Ci/n = sample average of the random e, for n items 

e'= total error of measurement or instrumental error, including bias and random error 

^'^ ,?i^'/" ^ sample average error of measurement for n items 
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ei —  random error of measurement for /th item 

e,j = random error of measurement for the /th reading of the/th instrument, where/ =1, 
2,  etc. en is the /th random error of measurement for I, concerning the /th item. The 
etj are assumed to be normally distributed with the zero mean and variance alj. 

F=  Ss - Srs for use in Shukla's technique (see Eq.  2-86) 
F^ =  observed value of F 

F(n - 1, n - 1) = refers to Snedecor-Fisher F distribution with (n - 1) and {n - 1) degrees of freedom 
G=  Sr — Srs for use in Shukla's technique (see Eq.  2-87) 
gi= Si + k^n for Shukla's technique 

H= tl (Slsl - S]s)l{n - 2) (see Eq. 2-88) 
Ho =  null hypothesis to be tested . 
Ha = alternative hypothesis 
hi= Ui + {8 +  l)v, ... 

I; = ./th measuring instrument; / =  I, 2,. .  . 

K= constant or factor for Thompson's confidence bounds in Eqs. 2-83 through 2-85 and 
Table 2-6 

K— [(Sr — Ss)   — 4(5'; — Srs) {Ss — Srs)^^^ = couvcnient parameter in Eq.  2-32 
k =  constant or multiplier 

k =  number of participating laboratories in an interlaboratory test 
A-=  ratio of imprecisions Oe^/oe-^, e.g., in Eq.  2-68 

/ = factor or constant for a lower confidence bound of Hanumara and Thompson (see 
Eqs.  2-95 and  2-96) 

M= constant or factor for Thompson's confidence bounds in Eqs. 2-83 through 2-85 and 
Table 2-6 

m =  number of calibration echelons 
A?7,=  number of laboratories at echelon / 

N= total number of instruments, observations, runs 

/V(0,1)= denotes a random variable that is normally distributed with zero mean and unit 
standard deviation or variance 

n =  number of measurements or sample size 
nj= number of observations in /th column 
P= tU/itU + n - 2) 
p,= r, + Si = ^1 + /?2 + 2x, + en + en = sum of readings of instruments T and h for /th 

item 

Qj= particular variance of residuals, defined in Eq. 2-141, which is equivalent to the 
variance of errors of measurement of the /th instrument 

<?=  u, + (5 +  l)v, 

R=   ^   = number of "runs" made with all instruments 
RHS= right-hand side of 

r=ii + e'=iJi + P+e 

r=  observed value of a measurement for the first instrument h 
r,=  Oxiae^ = precision ratio 

/-,= Xi + 13 + e, = observed value (measurement) for the /th reading or measurement 
with instrument  Ii 

/*,= /th measurement or reading of Ii 
nj= /th reading of the/th instrument 
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ru = used to denote the element or cell value in the /th row and /th column of a two-way 
classification in the analysis of variance table (see Eq. 2-140) 

rik=  ak +PkXi + eik = observed value or readings on /th item for "run" k 
rik= /th reading of the A:th instrument 

ry=  number of "runs" made with instrument I; 
rT=  yc   —  1  = total precision ratio 

rxe=  SxeliSxSe) = Sample correlation coefficient of the true values x and the errors of 
measurement e  (Applies also to any other different letter subscripts, e.g., r„, ruv, 
etc.) ^        ■.    .,   uv, 

7,. = average of a row, i.e., averaged over the columns 
7.. = grand average of the two-way analysis of variance table 
7,=  sample mean of the readings of instrument / 

J.j= average of a column, i.e., averaged over the rows 
7.^ = sample mean^ of the readings of instrument k 

Se = [l/(n -  l)]i;^ {e, - ey = sample variance of the errors of measurement 
Se^e-,   = sample covariance of errors of measurement of Ii and  h 

^T'k   ^ sample variance of the differences in readings of instruments  I^ and  I* 
Sj  = special symbol (see Eq. 2-139) used to denote the residual variance when row and 

column effects have been eliminated 

Sjj   - Sj = sample variance of the readings of instrument I^ 

Sjk   = generally a sample covariance term for instrument readings of \j and U (see Eq. 2-94) 

Sr  = 5x+f, =  S^ (r, -Jflin - 1) = Arrl{n{n - 1)] = sample variance for instrument I, 
based on (« - 1) degrees of freedom. (Applies also to any other letter subscripts 
e.g., si Sl, si etc.) ' 

Srs   = Sx*e^, X+.2 = covariance of the readings of the first and second instruments I, and I2 
Sr-s   = S (r- s) = Su = Sl^-e^ = sample variance of difference in readings of instruments Ii 

and  I2 

Sr+s   = sample variance of the sum of readings of instruments I, and  I2 

5'5+.+,   = sample variance of the sum of the three instrument readings for each item measured 

Shn   = sample variance of the average of the three instrument readings for each item mea- 
sured 

Ss    = sample variance of instrument  I2 based on (« -  1) degrees of freedom 
Ss,   = covariance of the readings of instruments I2 and  I3 

sl  = sample variance of the difference in readings of instruments I, and  I2 
sl  = sample variance of the difference in readings of instruments I2 and I3 
S^   = sample variance of the difference in readings of instruments I3 and  I, 

&    = [l/(« - 1)] 2^(x, - xf = sample variance of the true unknown values of the 

characteristic or item measured 

Si+e^   = sample variance of readings of the /th instrument  I, 

Sle^   =  S] = sample variance of the readings of the  1st instrument, for example 

Sxe  =   Xix, - x) {ei ~e)/in- \) = Axe/[n{n - 1)] = sample covariance of the true values 

X and the errors of measurement e. (Applies also to any other letter subscripts, e.g., 
Ouv,   *Jx_i',   GtC.) 

Sxe^   = covariance of true values and errors of measurement of I, 
Sxe^   = covariance of true values and errors of measurement of I2 
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Sx+cj. x+ei^ = sample covariance of the sum of readings of instruments ly and I* 
Sx*e^, x+ej^ = Sx+e^. x*e^ = Srs = if./ =  \, k = 2, for examplc 

Si =/th measurement or reading of I2 
to = observed value of / 

/!-„ = upper a significance level of Student's /, with a = 0.01, 0.05, etc., but < 0.5 
t{n - 2, A = B) - Student's t statistic with {n - 2) degrees of freedom for testing hypothesis that 

A= B 

t(n - 2, Ox/oe^)  = Student's t for (n - 2) degrees of freedom and a hypothesized value of Ox/oe . 
(Applies also to other degrees of freedom and parameters.) 

t{n - 2, ox/oe^ = 5)  = Student's t test based on {n - 2) degrees of freedom of the hypothesis that Ox/Oe = 5 
ti  = /th measurement or reading of I3 

?„   = upper a probability level of Student's / 

u   =r — s = difference in readings of instruments Ii and I2 

u  = factor or constant for the upper confidence bound of Hanumara and Thompson 
(see Eqs. 2-95 and 2-96) 

u  = mean of the difference in readings between instruments Ii and h 

"'  = '■' ~ -5' = ^1 — ^2 + en — en = difference in readings of instruments Ii and I2 for /th 
item 

Var (        )  =  a (        ) = population (large sample) variance of the quantity within parentheses 
V = s — t = difference in readings of instruments I2 and I3 

v, = Si — ti = ^2 — ^3 + en — e/3 = difference in readings of instruments I2 and I3 for the /th 
item 

w = t — r = difference in readings of instruments I3 and Ii 

Wi = ti - ri = /33 - ^1 + en — en = difference in readings of instruments I3 and Ii for /th 
item 

X = true unknown value of a random variable measured with error 
X =   2 Xi/n — sample average of the jc, for n items 

/ = 1 

Xi = true value of the /th item or characteristic measured 

Xij = element or observation in the /th row and /th column of an experimental design 
z = mean of the readings of instrument I3 minus the mean of the readings of instruments 

Ii  plus I3 

a = probability of rejecting the null hypothesis when it is true 

ak = constant in Jaech's model (see Eq.  2-118) 
)8 = true unknown bias or systematic error of a measurement 

^j = constant bias or systematic error of measurement for the /th instrument I; 
^k — constant in Jaech's model (see Eq. 2-118) 

5 =   l//:^ where k = Oejoe 
8L = lower (1  — a) confidence bound on 3 
8v = upper (1  — a) confidence bound on 8 

d = (0^2 + CTe3)/(a(.j + Of^) = particular ratio of population imprecisions of measurement 
for three instruments (see Eqs. 2-72 and 2-73) 

A — Wilks' likelihood ratio 

A = likelihood ratio statistic used to test Ho 
\ — a probability level of the likehhood ratio A 

fj. — true unknown (population) value of an item or characteristic measured with error 
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p - [ol^ + (a?| + ol^)j4]l{ol^ + a]^ = parameter in the / test as in Eq.  2-78 
Pe^e^ = population correlation coefficient of the errors of Ij and I2. (Applies also to any 

other pair of letters, e.g., rs, xe, uv, etc.) 

o{        )  =  population standard deviation of quantity in parentheses 
Oe = imprecision standard deviation used when ae=ac^=Oe 
Oe =  population standard deviation of the errors of measurement 

'   . CT?7 =  large sample or population variance of errors of measurement for instrument I,, a] 
being that for  Ii, etc. 

CT<.,,2 = pa,|CTf2= large sample or population covariance of the errors of measurement of h 
and  I2 if it is nonzero 

estCTfj  = estimate of the population variance of the errors of measurement for instrument Ii 
esta^^ ~ estimate of the population variance of the errors of measurement for instrument I2 
estcTf^ = estimate of the population variance of the errors of measurement for instrument I3 

Oe. = standard deviation of error of calibration at the /th echelon in the hierarchy of 
calibrations (used in par. 2-11) 

at = standard deviation among true laboratory means or levels, or external sigma 
Om+i/om =  ojom = prccision or "accuracy" ratio in a calibration hierarchy at the last or mth 

stage 

OR^ = reproducibility sigma =    yjol + al/n for n observations at a laboratory 
Or = repeatability sigma or standard deviation within laboratories 
Ox = population standard deviation of the true product variability 

Oxe = large sample or population covariance of x and e. Indeed, Oxe is the population 
covariance of the errors of measurement with the level of true values measured and 
could be estimated by Sxe, if isolable. 

Ox/oe = product-measurement precision ratio, often misnamed the "accuracy ratio" 
estCT^ = Ox = estimate of the unknown population variance ol 

X^{        )  =  chi-square statistic of (        ), the number of degrees of freedom 

= estimate of quantity under the " 

2-1    PRELIMINARY BACKGROUND STATEMENT 

A very important and yet widely misunderstood concept or problem in science and technology is that of 
the precision and accuracy of measurement. It therefore becomes necessary to define errors of measure- 
ment and the terms precision and accuracy (or imprecision and inaccuracy) very clearly and then express 
them in an analytical way. Also we need to present efficient methods of estimating precision and accuracy 
numerically, and we need to establish or develop appropriate statistical tests of significance for the mea- 
sures, especially since a relatively small number of measurements usually will be made or taken in most 
experimental investigations. 

In this chapter we will attempt to approach this important problem in a systematic manner and refer- 
ence some of the key pertinent literature on the subject. In particular, we will (1) give an account of the 
procedures for estimating the variances in errors of measurement, or the "imprecisions" of measurement, 
showing that at least two instruments are needed to estimate instrumental imprecisions, and (2) proceed to 
present techniques for comparing precision of measurement as well as making some useful statements 
about accuracy and what might be done about it. We beUeve that most readers will acquire competence in 
applying the needed techniques if we present illustrative examples as necessary; accordingly, this will be 
our approach. 

The subject matter of this chapter is covered first in the handbook because the statistician analyzes 
observational data, and the capability of the measurement process should be assessed beforehand 

/ 

2-5 



DARCOM-P 706-103 

2-2    INTRODUCTION AND CONCEPT FORMULATION 

Each and every measurement or observation can be considered to consist of two "inseparable" compo- 
nents: one is the true value of the item or characteristic being measured, and the other is an error of 
measurement (instrumental error). The error of measurement of a quantity is widely known as the differ- 
ence between the observed measurement and the true value of the magnitude of this quantity. The error of 
measurement is taken to be positive or negative accordingly as the measurement is more or less than the 
true value. We say "inseparable" because for a single measurement, or a series of measurements from a 
single measuring instrument, it is not possible to distinguish exactly the size of the true value(s) of the 
item(s) gaged and the associated error(s) of measurement that is (are) certain to be made. However, as 
simply as we have stated this premise, we readily encounter some rather important problems or concepts 
that require clearing up in our description of the two components of the (total) measurement as defined 
here. First, there is the "true" value of the item or characteristic, which is part of the measurement taken; 
the "true" value is of primary interest to the user. This "true" value is something that is rarely attained, 
except perhaps accidentally, for it deals with the concept of "absolute accuracy", so to speak, and may 
involve many, many measurements or observations to average out the errors committed in the measuring 
process. 

Measurements are an essential part of our daily life, and it is through them that we communicate and 
make progress in specifying just what is desired, needed, or will be accepted. Thus there must be some 
basic agreements on just how "accurate" or "true" values will be obtained or sought out, whether they 
relate to weight or mass, length, time, area, volume, or whatever characteristic is of interest. In any event, 
the true or "absolute" values of measured items must be made relative to agreed upon standards and 
methods of measurement. The method of measurement selected should consist of a set of instructions 
specifying the apparatus and auxiliary equipment to be used to take the observations, the operations to be 
performed, the sequence in which they are to be carried out, and the conditions under which they are to 
be respectively taken (Ref. 1, pp. 21-165). Indeed, this is why we have a National Bureau of Standards, 
which must establish approved methods for measuring and even rule authoritatively on measurements, 
especially in the event of disagreements. Moreover, and as we shall see, the "perfectly acceptable" mea- 
surements will also have to be "precise". But this brings up another important term—accuracy. In this 
very limited account we have immediately run into two, so far vague, terms that need clarification; 
namely, "precision" and "accuracy". Accordingly, we must define them, perhaps best in analytical terms, 
as we proceed and indicate just how they may be quantified and estimated. We return briefly to the 
concept of true value before proceeding further. 

If there were no errors of measurement committed, we would determine the true value of the item being 
measured each time a measurement is taken. However, in the presence of errors of measurement, which is 
practically always the case, we have to hypothesize and deal with the more practical situation as described 
previously. Therefore, it might be helpful if we now consider the concept of a "limiting value". If repeated 
measurements of a quantity or characteristic are taken and each time the mean of them is calculated, we 
find that as the number of measurements increases without bound, our calculated means will approach a 
limiting value. Hence if we were to continue taking such measurements indefinitely and calculating the 
average of them, we would eventually arrive at a mean value, to some specified or preset number of 
decimal places, which would not change. The "ultimate" mean value, attained as the number of measure- 
ments increases beyond bounds, may be referred to as a limiting value. Unfortunately, this limiting value 
may not equal exactly the true value of the item measured because on the average there may be some 
"bias" in the instrument used for measuring or, put otherwise, our measuring instrument has a "systematic 
error" since the mean of the readings does not approach the true (yet most often unknown) value. Some 
further quantification of these statements is necessary. 

Let us fix the ideas just expressed a little more concretely through the use of a simple, yet appropriate, 
analytical model. Thus we might well express a single measurement taken with an instrument as 

r = n + e' (2-1) 
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where 
r = value of the measurement or the observation itself 
H = true but unknown value of the item measured 
e' = error of measurement or the instrumental error. 
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As an example, one might find that the observed or measured muzzle velocity (MV) of a round fired 
from a gun or cannon is 659.5 m/s. However, he does not know the true MV fx of the projectile nor does 
he know the size of the error of measurement e' because only the sum of the two components is observed. 

As some further introduction, note that in Eq. 2-1 we have used the Greek letter /x for the true unknown 
or "population" value and the letter e' as the random error of measurement. Had the true value been a 
random variable, we would have specified it by using the letter x, for example, in the place of ju,. The 
measurement then would have been given as 

r = x + e' (2-2) 
where . 

X = true but unknown random value measured with error. 

There is no evidence of any bias or systematic error in either Eq. 2-1 or 2-2 unless the average of a series 
of measurements is such that the average error of measurement e' 

e'=Xeiln.    , (2-3) 
where ' • 

n  = number of measurements or sample size, 
does not approach zero as the number of measurements increases without limit. (The limiting value of the 
average error would not approach zero.) Thus the large sample average of the errors, or the limiting value, 
must approach some quantity fi 9^ 0 for there to be a bias or systematic error of size /3. In this case, we 
may as well hypothesize that generally the observed measurement should be described as 

r = 11 + p + e . ■ (2-4) 

where 
;S = instrumental bias or systematic error    "- 
e  = random error of measurement whose mean or expected value is zero 

and the true mean /x (or x) has not changed. We now perceive that for an appropriate general formulation 
of the measurement problem, we need to hypothesize that any measured value or observation may consist 
of three inseparable components—first, the true value desired; second, an instrumental bias; and third, a 
random error of measurement. The total error of measurement consists of the bias error plus the random 
measurement error, i.e., the sum (yS + e). 

Perhaps the bias ^ may not normally vary during a series of measurements although by definition we 
do expect the accidental errors e to be randomly distributed and average out to zero. It is the variation in 
e that will be used to define and describe the precision—or the imprecision—of measurement, and the 
total error (/8 + e) committed will be used to define and describe the accuracy of measurement. 

With even this brief formulation of principles, it may be easy for the reader to understand why there is 
so much confusion about the terms precision and accuracy. The problem becomes very involved because 
the three components—ix, fi, and e—are confounded or inseparable. Indeed, this alone is enough to 
substantiate that even very intelligent discussions on precision and accuracy may be difficult or somewhat 
incomprehensible; therefore, we need to proceed cautiously. We will accomplish this by discussing, in 
appropriate detail, the case of measurements with a single instrument so that our concepts and ideas will 
be further illuminated. Also we urge the interested reader to study the compendium of papers in Ref. 1 for 
further background and to read the references and bibliography for further enlightenment. 
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2-3    MEASUREMENTS WITH A SINGLE INSTRUMENT* 

As discussed in par. 2-2, if we were to measure repeatedly the same item or characteristic, the average of 
a large number of instrumental readings would, according to the model of Eq. 2-4, approach the true 
value fx plus the inseparable bias /3 of the measuring instrument if it exists since, under the assumptions 
used, the average of the errors e would be zero. Hence if this were the applicable model, then for a 
perfectly calibrated measuring instrument we would not have any great problem with imprecision of 
measurement for a large number of instrument readings—for example, the determination of the single 
value of a fundamental physical constant, such as the velocity of light. On the other hand, we must 
perceive also of the prevalent case, or hypothesize, that the true values may vary from one measurement 
to another in either a systematic or a random manner. Therefore, a somewhat more appropriate model is 
of the form x + P + e, where both x and e are variables, and only the quantity fi may be constant over 
some series of measurements. As an example, consider the series of powder train fuze burning times listed 
in Table 2-1. These 30 individual burning times are fairly random and illustrate the points we bring out. 

TABLE 2-1 

BURNING TIMES OF 30 POWDER TRAIN FUZES, s 

0.10 9.62 9.50 
9.98 10.24 9.56 
9.89 9.84 9.54 
9.79 9.62 9.89 
9.67 9.60 9.53 
9.89 9.74 9.52 
9.82 10.32 9.44 
9.59 9.86 9.67 
9.76 10.01 9.77 
9.93 9.65 9.86 

The average r of these « = 30 sample values or observations is 

7=2 r,jn (2-5) 
/ = i 

30 
= 2 r,/30 = 9.7733 s 

where 
r, = /th reading or measurement. 

Under the hypothesis that 
r, = x, + l3 + e, (2-6) 

where        i 
Xi = true value of ith fuze burning time 
)8 = constant instrumental bias if it exists 
et = random error of measurement for the /th reading 

we see that 

7= illn)ix, + l3 + i\ln)iei = x + p+l = 9.1133s (2-7) 

*For our purposes, the terms instrument and measurement process may be used interchangeably here. 
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where 
X = l,Xi/n = sample average of the Xi for n measurements 
e = Xeijn = sample average of the e, for n measurement error.s. 

However, there is absolutely no way to break down the average or 9.7733 s into the three inseparable 
components of true average fuze burning time x, the instrumental bi.as 13, and the average error of mea- 
surement e. Thus we are "stuck", as it were, with measurements from a single instrument although we 
could and should have had our measuring instrument, iri this case an e lectrical clock, calibrated properly 
before the burning times were taken. 

Let us next calculate the sample variance of the 30 fu5:e times based on (« — 1) = 29 degrees of freedom 
(di). In this connection we define 

Arr = nir] -(inf (2-8) 

and see that the sample variance Si for the data of Table 2-1 is 

S'= ,2 (r, -7)V (n- l)= Arrl[n{n - I)] = 0.04714 (2-9) 

and the sample standard deviation is ^r = 0.2171 s. 
If Eq. 2-6 is substituted into Eq. 2-9, we have symbolically 

where 
S] = Sl-V 2S,e + Sl (2-10) 

=     sample variance of the true fuze times 

^•=(„-:^),l,<^'-^)' ■ (2-12) 
=    sample variance of the errors of measurement 

S.e=( \i{x,-x){e,-^) ■ (2-13) 
\n — ly'   ' 

=   sample covariance of the tnae values and the errors of measureme nt. 

Nevertheless, there is no way to decompose properly the variance S^^ = 0.04714 into the product true 
variability or sample variance Sl of true fuze times, the variance in errors of measurement or "impreci- 
sion" Se, and the covariance between fuze times and err ors of measurement S« since they an; confocmded. 
The reader may observe, however, that S^, or its square root S^, is a measure of the true vari ability in fuze 
times; Se, or S<., is a measure of the dispersion in errors of measurement for the electric clock and the 
person who operated it, and Sxe is a measurement of the; "dependence" between the true fuze times and the 
errors of measurement. 

The sample correlation coefficient rxe between true fuze times and errors of measurennent would be 
given by 

rxe = Sxel  {SxSe) (2-14) 
if it could be calculated! 

Summarizing, we find that the average x of the true v.alues, the bias or system^xtic error p, and the 
average 'e of the random errors of measurement are confotrnded as are the individual values as shown in 
Eq. 2-6. Also we see that, with proper calibration of the instrument against an authoritative tUandard, we 
might be able to reduce the bias of the instrument to near zero or even to zero. Moreover it can be seen 
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from Eq. 2-7 that once the bias is eUmina ted, and' for a large number of measurements and the assumption 
that the errors of measurement e, are ra'ndomly distributed with zero mean, it is clearly possible to obtain 
accurately the average x of the true values. In addition, if we are concerned with the determination of a 
single true value fx, for example, the vf .-locity of light, then from Eq. 2-4 we may approach that value quite 
closely for an ever increasing number of measurements with a properly caHbrated instrument that would 
not have a systematic error or bias. fSo much for tiverage values, we must now turn to descriptions of the 
dispersion or variation in errors of n-ieasurement and of the true values themselves. 

Taking a close look at the variance Sl of the observations or the measurements as in Eq. 2-10, we see 
that it also consists of three confou^nded componemts. The first or Sxis an efficient measure of the product 
variability or the variation in the true values of the; items measured. Hence Sx is the "product variance", 
and the square root of it Sx is the standard deviation of the product variability—obviously, a very impor- 
tant component of interest to estimate. Further, thie quantity Sl is the sample variance of the errors of 
measurement and is an excellent representation of the "precision" or the "imprecision" of measurement. 
Thus if si is small, the measurements are considere;d to be precise; if it is large, the measurements are 
imprecise. Therefore, we will use tltiis variance Sl of the errors of measurement, or the square root of it Se, 
which is the standard error o^/ measurement, to describe the imprecision of measurement. Moreover, the 
reader may see rather easily t hat thie size of Se relative to that of Sx would be of considerable importance in 
the efficiency of most measvirement analyses. One notes, incidentally, that if Se were near zero, or perhaps 
actually equal to zero, the measurements would be v(;ry precise indeed, and, to assure accuracy, he would 
only have to be concerned with the bias of the instrument—generally, a rather desirable situation. (The 
reader should note that t,he constant bias or systematic error P does not appear at all in the calculation of 
any of the variances, i.e., Eqs. 2-9 through 2-12, since it "cancels out" in the differences of the 
calculations.) 

Finally, the samp le covariance term or Sxe gives a measure of the "dependence" or "correlation" 
between the sizes of the true values x, and the errors of measurement e, if they happen to be so related. In 
spite of the well-k.nown fact that large measuremenits often tend to have large errors of measurement, 
there exist a larg^e number of situations for which no such correlation or dependence is present, and we 
may indeed hyp othesize that Sxe tends to zero—a very plausible assumption for many applications. 

The large sa.mple or "expected" value of Se will ap proach the true unknown or population value of the 
standard erro,r of measurement, and we will refer to t his limiting value as Oe. Similarly, the large sample or 
expected va'iue of Sx will tend toward the true product variability, which we will designate as ax—another 
"population" value, so to speak. We see, therefore, that in approaching the problem of precision and 
accuracy rpropierly we will need to separate out the sample quantity Se as the measure of precision (or 
imprecision), which in turn is an estimator of Oe. In a Hke manner, we will need to determine and use Sx as 
the estimate of true product variabiUty Ox. We obser ve that the concept of precision of measurement is not 
so difficuU to imderstand because an estimate of th(; standard error of measurement Oe gives a quantified 
value chat can be used to describe precision or imprecision. On the other hand, the proper concept of 
accuracy is much more difficuU to grasp with profound appreciation because it involves both the instru- 
mental bias )8 a nd the random error of measurement e. An accurate measurement is obtained only when 
the sum (P + e} is small, and this is complicated by the fact that the random error of measurement e as 
described may vary "too much" and perhaps "hide" the bias (3. Indeed, to determine the size of the 
instrumental bias ,8 or to calibrate an instrument properly, the precision of measurement should be 
"good", i.e., a<; should be suitably small, or the average of a large number of measurements must be 
obtained so that Oehs/nis small. We also see that (1) precise measurements may not be accurate because 

_ of the possibk; existence of too large a bias and (2) an unbiased measurement may not be very accurate, 
except accidentally, if the precision of measure ment is poor, i.e., Oe is large. The best approach to guaran- 
tee the accuracy of measurement, therefore, s(;ems to be that of attaining sufficiently good precision and 
then determining the bias and correcting for it, or eliminating the bias through proper calibration. Unfor- 
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tunately, the bias may vary from one occasion to another, so an additional component of variance or 
instrumental error may have to be considered and assessed. It may be found that different instruments will 
have different systematic errors or biases; the same may be true of the different laboratories performing 
measurements. Different systematic errors or biases between instruments or laboratories will introduce 
some additional components of variability, which need quantification in many appHcations. 

We see from the discussion that the separation of product variability and the standard error of mea- 
surement, or imprecision, cannot be accomplished with a single measuring instrument. It is for this reason 
that we must examine the cases in which two or more measuring instruments are used to take the same 
(series of) measurements or to measure simultaneously the same series of characteristics or items of 
interest. 

2-4    THE SEPARATION OF PRODUCT VARIABILITY AND IMPRECISION OF 
MEASUREMENT WITH TWO INSTRUMENTS 

2-4.1    BASIC OUTLINE AND APPROACH 

We will now consider the case for which two instruments, L and L, are used to take simultaneous or the 
same measurements on a series of n items or characteristics that exhibit product variability. Our aim is to 
find a means of separating the product variability Sx from the imprecision of measurement Se, i.e., the 
standard error of measurement. Thus in this case the observed values or the measurements may be repre- 
sented symbolically as follows: 

Measurements by L Measurements by I2 

ri = xi + )8i + en 

r2=   X2 + /81  + £'21 

5i = Xi + J32 + en 

Sl—   X2 + )82 + ^22 

r,- = X,- + /81 + en Si = X, + )8i + en 

Tn x„ + Px-\- e„\ x« + ^82 + eni 

where 
r, = ;th measurement of the first instrument \\ 
Si = /th measurement of the second instrument I2 
X, = true (unknown) value of /th item 
)8i = bias or systematic error committed by \\ 
Pi = bias or systematic error committed by I2 
en = random error of measurement of 11 on the /th item 
e,2 = random error of measurement of I2 on the /th item. 
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Note that the difference in readings of Ii and I2 for the /th item is 

n - Si = Pi- 132 + en -ei2 (2-16) 

and does not include the true value x, at all. 
With reference to these definitive formulations, the sample mean or average value for the measurements 

of instrument Ii is from Table 2-1 (the first column in Table 2-2 is a repeat of Table 2-1). 

T = X + I3i +~ei 
= 9 7733 s 

and that of instrument I2 is 

= 9.7414 s ^^'^^^ 

5^ = IJAT   1    Z^xe^    1    Ofj 

S's = iJx ~r Z^xe2    '    ^62 

Srs = i^x   1    Oxfj ~l    iJxe2   '    "^^1^2 

9^     = 0 rs Ocj        Z^e^e2   '    ^e2 

using the 29 observations—since one was lost—of the second column of Table 2-2. The difference between 
the mean measurements of Ii and I2 is therefore 

7-5 = y3,-^82 + ^1-?2 (2-19) 

and, under the assumption that the random errors have zero means or expected values, Eq. 2-19 gives a 
more precise estimate of the difference in biases fii and Pi than Eq. 2-16. 

Continuing, we see from the definitions of variances and covariances and from Eq. 2-15 that we may 
calculate three variances and one covariance for the two instruments li and I2 and have symboHcally that 

(2-20) 

(2-21) 

(2-22) 

(2-23) 
where 

Sxe. — covariance of true values and errors of measurement of li 
Sxe2 ~ covariance of true values and errors of measurement of I2 

SfjCj — sample covariance of errors of measurement of Ii and I2 
Si = sample variance of instrument I2 based on {n — 1) df 
Srs = covariance of the readings of the first and second instruments li and I2 

S'^r-s = sample variance of the difference in readings of instruments li and I2. 

However, concerning the four equations or calculations, Eqs. 2-20 through 2-23, we may add Eqs. 2-20 
and 2-21 and then subtract Eq. 2-22 twice; the result is identically equal to Eq. 2-23. Hence the four 
equations are linearly dependent. Consequently, for the two-instrument case we really have only three 
useful equations but six unknown "inseparable" components to estimate. Our primary interest centers 
around the estimation of product variabihty and the imprecisions of measurement of the two instruments 
—i.e., Sx, Sl, and Sl^. Hence by assuming that the true values measured and the instrumental errors are 
mutually or statistically independent of each other, the expected values of the three covariances will 
vanish, or approach zero, thereby rendering a feasible solution. In fact, as pointed out by Grubbs (Ref. 2), 
the covariance Srs between the two instrument readings will then approach the product variance, so that 
for purposes of estimation we have 
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estai= Srs (2-24) 

= {Sis - sis)/4    (Ref. 2). 

Furthermore, from Ref. 2 

and 

eStae, =   S^r- Srs (2-25) 

=   {S'r-S's + Sls)l2 

estae^ = Sl - Srs (2-26) 

^   iS's-S'r+Sls)l2 
where 

^J+i = sample variance of the sum of readings of instruments Ii and I2 
estai = estimate of unknown population variance Ox 

estol = estimate of population variance of the errors of measurement for instrument Ii 
estai = estimate of population variance of the errors of measurement for instrument I2. 

The sample or estimated product variance and the variances in errors of measurement of the two 
instruments are expected to be positive although we see from Eqs. 2-25 and 2-26 that this requires Srs to 
be smaller than Sl and Ss. Often this is not the case as we will see even for respectable sample sizes. 

It is also of some interest to note that if the product variance is zero, i.e., Sx and Ox = 0, or the same 
item is measured n times by li and I2, one might expect that Sxe^ and Sxe2 would vanish. Thus he would 
have to contend only with the estimation of Oe^, Oe^, and Oe^e2, the covariance of errors of Ii and I2, if it 
exists. In this connection, moreover, a solution using Eqs. 2-20, 2-21, and either 2-22 or 2-23 is clearly 
obtainable to estimate Oe^, Oe^, and ^cjcj- 

If there were no errors of measurement, then it is seen that Sl, Sl, and Srs all give the correct estimate 
of product variance Ox. 

Example 2-1: 
We will illustrate the estimation of product variability and imprecision of measurement for the case of 

two instruments by referring to the data of Table 2-2. The data given there refer to an old, widely analyzed 
example that appeared in 1948. Nevertheless, it is very useful for our exposition of the apphcations and 
problems encountered in the area of estimation of precision of measurement. In Table 2-2 the individual 
burning times of powder train fuzes are listed as measured by each of three observers on 30 rounds of 
artillery ammunition fired from a gun. The fuzes were all set for a burning time of 10 s. The "burning 
time" was defined as the elapsed interval of time from the instant the projectile departed the gun muzzle to 
the instant of fuze functioning as noted by the flash of the detonating high explosive (at night). The times 
listed were measured by three electric clocks, each of which was started by a gun muzzle switch, and each 
clock was stopped independently by an observer as he noticed the flash. We have chosen this particular 
example because it represents a respectable sample size; nevertheless, it presents some problems relative to 
the often discouraging occurrence of negative estimates of variance or dispersion, at least for two instru- 
ments. For a two-instrument example we will use the measured values r and s of instruments Ii and I2, the 
first two columns, and the differences (4th column). We calculate 

Sl = 0.04714023 based on all 30 readings of Ii 

Sl = 0.04675448 based on 29 readings of Ii, excluding 10.01, for which h lost the round 

5'5 = 0.045112315forn = 29byEq. 2-12, 5„ = 0.045581897 for « = 29 by Eq. 2-13. 
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TABLE 2-2 

FUZE BURNING TIMES AND DIFFERENCES IN SECONDS 

Observer Ii Observer h Observer I3 Differences 
r s t r — s i - / r — t 

10.10 10.07 10.07 0.03 0.00 0.03 
9.98 9.90 9.90 0.08 0.00 0.08 
9.89 9.85 9.86 0.04 -0.01 0.03 
9.79 9.71 9.70 0.08 0.01 0.09 
9.67 9.65 9.65 0.02 0.00 0.02 
9.89 9.83 9.83 0.06 0.00 0.06 
9.82 9.75 9.79 0.07 -0.04 0.03 
9.59 9.56 9.59 0.03 -0.03 0.00 
9.76 9.68 9.72 0.08 -0.04 0.04 
9.93 9.89 9.92 0.04 -0.03 0.01 
9.62 9.61 9.64 0.01 -0.03 -0.02 

10.24 10.23 10.24 0.01 -0.01 0.00 
9.84 9.83 9.86 0.01 -0.03 -0.02 
9.62 9.58 9.63 0.04 -0.05 -0.01 
9.60 9.60 9.65 0.00 -0.05 -0.05 
9.74 9.73 9.74 0.01 -0.01 0.00 

10.32 10.32 10.34 0.00 -0.02 -0.02 
9.86 9.86 9.86 0.00 0.00 0.00 

10.01 lost 10.03 - — -0.02 
9.65 9.64 9.65 0.01 -0.01 0.00 
9.50 9.49 9.50 0.01 -0.01 0.00 
9.56 9.56 9.55 0.00 0.01 0.01 
9.54 9.53 9.54 0.01 -0.01 0.00. 
9.89 9.89 9.88 0.00 0.01 0.01 
9.53 9.52 9.51 0.01 0.01 0.02 
9.52 9.52 9.53 0.00 -0.01 -0.01 
9.44 9.43 9.45 0.01 -0.02 -0.01 
9.67 9.67 9.67 0.00 0.00 0.00 
9.77 9.76 9.78 0.01 -0.02 -0.01 
9.86 9.84 9.86 0.02 -0.02 0.00 

Consequently, we estimate 

e^iol =5„ = 0.04558 

estCT;^   = 0.2135 s 

esta.^j = Sr-^„ = 0.001558 

esta., = 0.03947 (n = 30) 

esta.j = 0.03424 {n = 29) 

esta^2 = S]— Srs = —0.0004696 < 0, a slightly negative variance. 

Thus even for this large a sample for the two-instrument case, we get a negative variance; therefore, we 
must take Oe^ = 0. Negative variances may occur because of random sampling fluctuations (or small 
sample size, which hardly seems plausible here) or because of a violation of the assumptions, such as the 
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existence of correlations, or perhaps one or more "outliers". (We cover the analysis of outHers in Chapter 
3.) Referring to the data of Table 2-2 and especially the columns of differences, we see that Ii generally 
lags I2 (4th column) except toward the latter rounds and that Ii is somewhat "ragged". In fact, the mean 
value of the differences in the fourth column is 0.02379, and the standard error of these differences is 
0.02651, as we will see later. Approximate 95% confidence limits on an individual difference may be 
estimated from 0.02379 ± 1.96 (0.02651), which gives an interval from about -0.03 to 0.08, so that there 
are three values (of 0.08) on the upper limit that give the suspicion of poor or ragged times or a lack of 
good control for Ii. 

2-4.2    TREATMENT OF NEGATIVE OBSERVED VARIANCES 

There has been much study of the problem of negative estimates of components of variance. This work 
is beyond the scope of this handbook, and it seems unnecessary to delve into the subject extensively here. 
However, it is of some interest to point out that Thompson (Ref. 3), working with a method of modified 
maximum Hkelihood estimation, has suggested treating negative variance estimates in accordance with the 
rules given in Table 2-3. 

TABLE 2-3 

NONNEGATIVE VARIANCE ESTIMATES 
THE TWO-INSTRUMENT CASE (Ref. 3)* 

If Take esta^ = Take cstol^ = Take estoj.^ = 

S'r>Srs 

S's >Srs>0 

Sr. Or        ^rs ^s        Jrs 

Sl>Srs>S' S'. Or    1    iJi         ^i^rs 0 

Sl>Srs>S'r S'r 0 s; + sj - 2Srs 

Srs<0 0 Sj S's 

Reprinted with permission. Copyright© by American Statistical Association. 

For our application, therefore, we would, according to Thompson (Ref. 3), take 

estox = Sl = 0.04511        (the smallest variance) 

esta.j = Sr + Ss - 2Srs = 0.001089        (n = 30) 

estol^ = 0. 

This decreases esta^i from 0.03947 to 0.03299, whereas esta^ changes from 0.2135 to 0.2124, and esta^^ has 
to be taken as zero anyway. 

In addition to Thompson's modified ML method of treatment and the possibihty that small sample size 
or the existence of outliers might cause negative estimates of variance, we should also consider the possi- 
bility that some of the covariances are real—i.e., that perhaps the errors of measurement are correlated 

' In Ref. 4, Hanumara proposes some*nonnegative estimates of imprecisions of measurement for the three-instrument case. In 
par. 2-5 we give in some detail the maximum likelihood (ML) estimates which are ordinarily recommended for use in 
applications. 
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with each other or are possibly correlated with the level of true values measured. Of course, there is "quite 
a game" concerning just what the best or true hypothesis might be in the absence of appropriate informa- 
tion, and one might well have to examine his particular set of data closely to make a valid judgment. If 
the variation of true values is not over a wide interval, it could be hypothesized that the errors of mea- 
surement are correlated. This particular problem has recently been studied by Yang (Ref. 5). Yang's 
treatment assumes that Si is the largest variance and estimates ai + al^ and that Ss estimates ai + ol^ as 
before, but that due to correlated errors, Srs would estimate the population values given by 

E(Srs) = Ox + Oe^e^ = ol -{- pOe^Oe^ (2-27) 

where 
p = true unknown population correlation coefficient of Ii and I2 errors 

Oe^e^ — large sample or population covariance of the errors of li and I2 if it is nonzero. 

This approach therefore brings forth the need to treat and estimate another unknown p, if it exists, for the 
data under study. In this connection, one also notes that the large sample or expected values of Eqs. 2-25 
and 2-26 then become 

E(S^r — Srs) = ol^ — pOe^Oe^ (2-28) 

and 
EiSl- Srs) = 0^e^- pOe^Oe^ (2-29) 

E{Sl — Srs) = expected value of the estimate of the population variance of errors of measure- 
ment for instrument Ii if the covariance of errors is zero 

E{Sl — Srs) — expected value of the estimate of the population variance of errors of measure- 
ment for instrument I2 if the covariance of errors is zero. 

Yang (Ref. 5) suggests that the lower bound of the unknown p may be estimated from 

l>p'>- 4iSl - Srs) (Sl - Srs)liS'r " S^)^ (2-30) 

where we have also indicated that the upper bound of p^ has to be unity, of course. Ref. 5 also suggests 
the use of the lower bound given by Eq. 2-30 if |5r — Sl\/iS^r — Srs) is "close to unity"; if not, the midpoint 
of the extreme values of Eq. 2-30 should be used, i.e., take 

p'«^(l/2)(l+ RHSofEq. 2-30) (2-31) 

where 
RHS = "right-hand side of. 

This means that putting 

K = [{S'r - S!)' - 4{S' - Srs) (Sl - Srs)V'\ (2-32) 

Then a^j and Oe^ are to be estimated from 

estal^ = (S'r-Sl){3S'r-2Srs-Sl±K)l[2{Sl-2Srs + Sl)] (2-33) 

-*-' - (Sl - S^r) i3S's - 2Srs - 5? T K)I[2{S' - 2Srs + S^s)]. (2-34) 
"2 

-2 o2  I  ;/o2 The upper signs before K—i.e., + in Eq. 2-33 and — in Eq. 2-34—are to be used if \Sr~ Ss \/{Sr ~ Srs) 
is very close to unity (Ref. 5), and the lower signs before K, i.e., — and +, otherwise. 
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The estimate of product variance Ox is then found to be 

esta Sl - esta' = Sl - esta' (2-35) '2- 

where esto^, and esta^, are calculated, using Eqs. 2-33 and 2-34, respectively. ^ 
Using the data of Example 2-1, we find from Eq. 2-30 that Yang's estimated lower bound for p is 

p'>0.7118 

and , 
15' - SrslliS^r - Srs) = 0.3013 (assumcs n = 30 for Si) 

is not close to unity; accordingly, the lower signs before K in Eqs. 2-33 and 2-34 should be used. By doing 
so, we obtain 

estaej'^ 0.04817 
estae^"^ 0.01710* 

and from Eq. 2-35 

esta;c «^ (0.04714 - 0.002320)'^'= 0.2117 

as contrasted to 0.2135 determined before. 
In summary, we see that Yang's estimators have the desirable property of being both nonnegative and 

nonzero; however, we will see that his imprecision estimates are high as judged by the more precise case 
where all three instruments are used (par. 2-5). Moreover, we accompUsh an additional advantage by 
simultaneously using three measuring instruments as in par. 2-5—as indicated by Ii, I2, and I3 in Table 
2-2—this case being formulated to use only the differences in instrumental errors of measurement, com- 
pletely free of product true values. 

With these attempts, and even for the respectable sample size of 29 or 30, we see that the two- 
instrument case may lead to somewhat disappointing results although the negative estimates of variance 
need not bother us too much. Indeed, for any very important experiment of measurement, it may be well 
to employ three or more instruments, or laboratories, or alternatively we can always use a very satisfying 
statistical test of significance for the two-instrument case; this test is discussed next. 

2-4.3    A SIGNIFICANCE TEST ON IMPRECISION BASED ON TWO INSTRUMENTS 

Fortunately, we need not be too concerned by occasional, or even frequent, negative estimates of vari- 
ance for instrument imprecision. This is because a significance test is available concerning a hypothesized 
ratio of the product standard deviation to the standard error of measurement. This statistical test of 
significance was developed by Thompson (Ref. 3), who based it on a result of Roy and Bose's (Ref. 6). 
The procedure consists of specifying the ratio o./oe** (or o,l Oe^) as a measure of relative precision in 
which one might be primarily interested and then making a Student's t test to see whether the test would 
reject the null hypothesis concerning that ratio. In other words, if O;^/ Oe^ = 5 is acceptable, which indicates 
that the standard error of measurement is only one-fifth that of product variability or true value standard 
deviation, the precision of measurement is quite satisfactory. On the other hand, if for example the ratio 
were as small as OxI Oe = 1 or even 2, the relative precision of measurement would be so poor that a more 
precise measuring instrument would be required. The Student's / test suggested by Thompson (Ref. 3) is, 
using (n — 2) df, 

tin - 2, oxloe,) = y/^i'^^iSViSls's - Si)]''' [(SrslSl) - all {ol + alj\. (2-36) 

♦Some recent results have been obtained. See Ref. 5. 
**This ratio is often referred to as the "accuracy ratio" although the term product/precision of measurement ratio or simply 

precision ratio would be much better. 
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By taking ?,-„ equal to the upper a probability level or percentage point of the Student's / distribution, Eq. 
2-36 is less than ti-„ if and only if 

Ox/oe^>    ": 'J2 'J!.    . (2-37) 
S'-Srs + ti-. [{Slsl -Sl)/in- 2)] '^' 

A very similar test for a^/ Oe^ relative to the second instrument is readily obtained by replacing the first Sl 
in the denominator of Eq. 2-37 with Ss, or similarly Sthy St, and Srs/Slhy Srs/Slin Eq. 2-36. 

Example 2-2: 
Referring to Example 2-1, we are not concerned about the imprecision of measurement for h because of 

the near zero standard error of measurement, but let us test the hypothesis that Ox/ Oe = 5 at the upper 5% 
level. 

By using Eq. 2-36, we calculate for n =29 readings for Ii 

/(27, a./ o.^ =^ 5) = V27 [- (0.04675)^ 
L(o.( .04675) (0.045II) - (0.04558)' 

'70-Q4558_25\= 0.533 

\0.04675      26/ 

whereas ?o.95(27) - 1.703. Hence we accept the null hypothesis that o^/Oe^ > 5 for our measurement 
process. We note in passing that if we stated a./oe^ = 3.82, this hypothesis would be just barely rejectable 
at Pr = 0.95. 

Actually, an estimate of Oe = 0.03 or 0.04 for either measuring instrument may not be very good for 
estimating the true value of burning time for a single round although for the average of 30 rounds, the 
value of Oe/ V^O^ = 0.04/ ^30 = 0.007 may not be considered too poor. Finally, concerning true product 
variability, we see that 

V5T = V0.04714 = 0.2171 s    (« = 30) 
and 

\fs^ = estox = 0.2135 s    (n = 29) 

which perhaps shows a small or negligible difference for the effect of Oe^ on the true variability of the 
product. 

2-4.4    VARIANCES OF ESTIMATORS OF IMPRECISION OF Ii AND I2 

For many applications it is often proper to assume that the product values x, and the errors of measure- 
ment e are normally distributed or approximately so. For this case and the use of two instruments, 
Grubbs (Ref. 2) derived variances of the estimators—Eqs. 2-24, 2-25, and 2-26—in 1948 to obtain some 
idea of the reUability or precision and stability of results. As given in Ref. 2, the population variance of 
the estimate of a^ is 

Var(esta,^,) = £'(est(ae,) - olf 

= (—~)^'i + (—TTV'"''! '^ ^'''^'2 + "^'^e^)- (2-38) 

Likewise, the population variance of the estimate of CTL is given by 

*For an upper bound, the signs of the ti-aS are reversed. 
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2 \   _   i-^„„*    2 1 x2 Var(estCT<. ) = ^(estae^ — Oe^ 

=(—4-)<+{—^yA+"'<+«^ (2-^^^ 
and the population variance of the estimate of product variability is given by 

Var(estai = £'(estai — al) 

2 
al + (-—-\alo\ + aid, + a.>.\). (2-40) 

1/ \n 

It is noted that the Var(esta?,) depends on (1) al, the variance in the characteristic measured; (2) CT?,, the 
variance of the errors of measurement of instrument I,; (3) a\, the variance of the errors of measurement 
of instrument h; and (4) n, the number of observations or the sample size. Therefore, to obtain a precise 
estimate of a]  when using only two instruments, the variation in the characteristic measured, i.e., a^,, 
should be held to a reasonable minimum to study imprecision, or the sample size n should be sufficiently 

large for two instruments. 
If the variation in the characteristic measured is zero (or if we measure the same item repeatedly), i.e., if 

ol = 0, one could compute 

2   _/__\^..   _7:^2 esta'. =    )l{ea--eyf (2-41) 

directly with the variance of the al^ equal to 

Var(esta?,)=(—VV (2-42) 

Apparently, when employing two instruments, there are only two straightforward computational proce- 
dures of interest for separating the variability in the product from the variance in the errors of measure- 
ment, and both methods give the same estimate. In using either method, however, it is possible to estimate 
a] , a] , and ol and thus determine from the relative order of magnitude of these quantities whether the 
instruments are sufficiently precise for use in taking the required measurements. 

For the two-instrument case the experimentalist may employ very similar or the same kind of instru- 
ments. Let us suppose that this is the case, so that 

2    _      2    _      2 
CTe,  — Oe^ — O 

Then Eq. 2-38 becomes 

-    Var(esta'.;) or Var(esta',2) = i^r) "' ^ \~^ ^"' ^ ^'^''^'^ ^^'^^^ 

which also involves product variability Ox. 
Although it seems not entirely satisfactory to calculate the reduced Eq. 2-38 or Eq. 2-43 when our 

estimate of Oe is zero, we may get some rough idea of the variance of the estimate of a,., in Example 2-1. It 
"2 

is 
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Var(esta',) «= (2/29) (0.001558)' + (1/29) [(0.001558)' 

+ 2(0.04558) (0.001558)] = 0.000005148. ^^""^^^ 

Thus the standard error of the estCT^j = 0.002269, which is larger than the estimate itself! 
One is bound to feel somewhat uncomfortable about obtaining the estimate of imprecision of the first 

instrument Ii as esta^j = 0.001558 and then finding that the expected standard error of that estimate is 
even larger. This may be due partly to the fact that the estimated al of 0.04558 is 29 times the estimated al^ 
= 0.001558. Expressed another way, the second term of Eq. 2-44 is about 30 times the first, which is free of 
the product variability Ox. Hence using three instruments may definitely be of considerable interest and 
value. 

2-5    THE SEPARATION OF PRODUCT VARIABILITY AND INSTRUMENT 
IMPRECISION WITH THREE INSTRUMENTS 

By using three instruments to measure either simultaneously or the same series of items or characteris- 
tics and by working with the three sets of differences in readings, the product values cancel out and only 
the differences in instrument biases and random errors remain. Thus if the errors of measurement are 
relatively small or if the biases are constant and the variance of random errors is a rather low fraction of 
product variance, then it would be expected that more precise estimates of the imprecision of measurement 
would be obtained from three instruments as compared to two. 

Let us represent the zth reading of the third instrument 13 symboUcally by 

t, = Xi + Pi + et^. (2-45) 

We then have the three differences in instrument readings given by 

Ui = n — Si = )8i - /82 + e,j - et^ (2-46) 

V, = Si - /, = p2- 133 + Ci^ - e,3 (2-47) 

'   '         Wi = ti-n = Pi- pi+ Ci^ - a. ■                               (2-48) 

where 
u 
V, 

w 

= difference in readings of instruments L and I2 for the /th item 
= difference in readings of instruments I2 and I3 for the /th item 
= difference in readings of instruments I3 and L for the rth item. 

Eqs. 2-46, 2-47, and 2-48 are completely free of any product or true values and involve only differences 
in the constant biases and differences in random errors of measurement of the three pairs of instruments. 
Hence it is easily seen that if the instrumental errors are uncorrelated or are statistically independent, the 
three instrumental imprecisions may be easily and efficiently estimated. In fact, as shown by Grubbs (Ref. 
2), the appropriate estimates of imprecision are 

Q^ia\ = {Sl- Sl+ Sl)l2 (2-49) 

Or Ors ^rt    1    ^st 

Q%io\ = {Sl+ Sl- Sl)l2 (2-50) 

Q%ia\ = {-Sl+Sl+Sl)l2 \ (2-51) 

— o r   I   Ors       »Jrt       »J5r 
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where 
Su = sample variance of the difference in readings of instruments h and I2 
si — sample variance of the difference in readings of instruments I2 and I3 
Sw = sample variance of the difference in readings of instruments I3 and Ii 
Sri = covariance of the readings of instruments li and I3 
Ssi — covariance of the readings of instruments I2 and I3 
S'rs = covariance of the readings of instruments 11 and I2. 

Even though the variance and covariance terms of each second-listed RHS involve product true values, 
the estimates of imprecision for the three-instrument case are entirely free of product level. For example, 
the second-Hsted RHS of Eq. 2-49 is symboHcally 

CStCTe,  — Ocj ^1^2 1^3 2^3' K^'^'^) 

It contains no x's. 
For independent and normally distributed errors of measurement, the variances of the three estimates 

of instrument imprecision are (Ref. 2) 

Var(estae,) =  r^i)"^( ) (^^i^^2 "*" o'^i<^^3 + ^^2^^3) (2-53) 

Var(esta^,) =  ;- (CT^J+I ) {oi^oi^ + oi^oi^ + oi^oi^) (2-54) 

VarCesta'.j) = ^-- (ot^+1 ^J {a J, a?^ + ^' i ^'3 + ^'2^'3)- (2-55) 

Note also that the variances of the estimated variances of errors of measurement are free of product 
variance al and, correspondingly, should be smaller. 

The estimate of product variability or the variance of true values is simply the average of all three 
covariances of the readings of the three instruments. Thus 

eStol     ={Srs + Sr, + Ssdl^ 

= i[Sls..-^iS'u + Sl+S^)] (2-56) 

—   Or+s+7 Ts ( I    -Jv    I    Sw) 

where 
Si+s+i = sample variance of the sum of the three instrument readings for each item measured 
ST+S+7 = sample variance of the average of the three instrument readings for each item 

measured. 

The variance of Eq. 2-56 is 

Var(estax) =    f jot+ [^{ol ol^ + ol al^ +ol al^) (2-57) 

.1/2        2i2        2|2        2-.n 
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Example 2-3: 
Given: The data of Table 2-2 for three simuUaneous instrument readings on fuze burning times for the 

30 time fuzes. 
Find: The best estimates of instrument imprecisions, the round-to-round true dispersion, and determine 

the variances and standard errors of the estimates. 
! Using the last three columns or differences in readings of pairs of instruments on each fuze time, we 

calculate 

Su = Sls= 0.0007030 s^ 

Sv = Slt= 0.0008878 s^ 

Sl=S'-r^ 0.0003108 s'. 

Then from Eqs. 2-49, 2-50, 2-51, and 2-56 we obtain 

estol^  = (0.0007030 - 0.0008878 + 0.0003108)/2 
= 0.0000630* 

esta.j   = 0.00794 s 

esta\  = (0.0007030 + 0.0008878 - 0.0003108)/2 
= 0.000640* 

esta.2   = 0.0253 s 

estCT,3  = (-0.0007030 + 0.0008878 + 0.0003108)/2 
= 0.0002478* 

esta.,   = 0.015 s 
^^3 

2 
estol    = 0.046087 - (1/18) (0.0007030 + 0.0008878 + 0.0003108) 

= 0.04598* 
estox   = 0.2144 s. 

We note that all three estimates of instrumental imprecision are always positive; that they are straight- 
forwardly estimated from the difference in errors of measurement without questionable boundary condi- 
tions; that instrument Ii is the more precise one, and that I2 is the worst of the three. Thus the addition of 
the third instrument to the case of only the first two, where negative variance estimates were obtained, 
certainly seems quite worthwhile, or even sorely needed. We do not actually know whether these instru- 
mental errors are correlated or whether the covariance terms otherwise really have nonzero expectation 
although the estimates of imprecision based on the Yang (Ref. 5) approach for Ii and I2 are rather high as 
we now see. 

Using Eqs. 2-53, 2-54, and 2-55 next and the previously determined estimates, we calculate the variances 
and standard errors of the estimators: 

Var(esta?;) = 0.00000000767 

a(estae,) = 0.0000876 

* For readers interested in a Bayesianapproacli to the estimation of precision of measurement, see Draper and Guttman(Ret. 7). They 
obtain est(o;;|, al) = 0.010675, est(a;i, „ a',) = 0.001060, and cst{al i al) = 0.004109, whereas our equivalent estimates of these ratios are 
0.00137, 0.0139, and 0.00539, respectively. 
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Var(estCT^,2) = 0.00000003565 
CT(esta') = 0.000189 

Var(estae,) = 0.0000000116 

o{estol.) = 0.000108 

where 
o{        ) = population standard deviation of quantity in parentheses. 

These values are much smaller than corresponding values for the two-instrument case as would be 
expected since they are free of product variation. Therefore, the three-instrument estimates are quite 
worthy of adoption since they are entirely satisfactory and conclusive in nature. 

For the product variability we have from Eq. 2-57 

Var(esta^) = 0.000165 

a(estCT^) = 0.0128 

which is 0.0128/0.0000876 - 146 times a(estCT?,)! 

With this example and the informative numerical values or estimates obtained, we begin to see the 
advantage of employing three or more instruments to study precision and accuracy of measurement. 
Indeed, the use of three measuring instruments should be considered neither an extravagance nor a lux- 
ury, especially since it may take three or more instruments to reduce the variances of the estimates of 
imprecision to suitable values for precise understanding of instrument capability. In fact, the use of several 
instruments in any important measurement study leads to the idea of "interlaboratory testing", which has 
long been practiced by the chemical and other industries for the purpose of quantifying precision and 
accuracy. Moreover, it has been wide practice to measure standard material at even ten or more laborato- 
ries in a "round-robin" procedure—as such studies indicate which laboratories are imprecise and inaccu- 
rate as well—so that the offenders may be "brought into line". The standard error of measurement at a 
single laboratory is often referred to as the "repeatability" sigma, whereas that among the laboratories 
—which includes the standard error of an average value for a single laboratory—is called the "reproduci- 
bility" sigma. 

Having given a somewhat extensive account of the estimation problem for two and three instruments, 
we will now give several important statistical tests of significance concerning precision and accuracy^ 
which supply the most desirable type of information. 

2-6    SIGNIFICANCE TESTS FOR PRECISION AND ACCURACY OF TWO 
INSTRUMENTS 

2-6.1    PRELIMINARY COMMENTS ON SIGNIFICANCE TESTS FOR TWO 
INSTRUMENTS 

While the estimation of precision and accuracy of measurement parameters is important, comparisons 
of the relative values of the unknown parameters are also very essential and may be used as a basis for 
action. For example, consider the two-instrument case for measurements. Here we would like to compare 
the unknown precision or imprecision of instrument 1 with that of instrument 2 on the basis of, "Does Ii 
have a larger or smaller standard error of measurement than I2?". If the instruments are of the same type. 
It would be expected that they would have equal standard errors of measurement although one might be 
poorer than the other if it is not used properly, has been damaged, etc. Once the question of relative 
precision of measurement has been answered, it becomes quite important to determine whether there is a 
difference in constant bias of the two instruments. If a test of significance indicates there is a significant 
difference in biases or systematic errors, the instruments should be calibrated to read properly. 
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The test of precision is a test of whether CT,, is equal to, greater than, or less than a,^. Should it be true 
that one or both of the instruments has too large a standard error of measurement, there may be quite a 
fundamental problem in correcting the difficulty. On the other hand, it could be satisfactory that an 
increase in the number of measurements will lead to suitable precision, perhaps especially for the average 
measured value. Fortunately, from this test one also may settle the problem concerning whether the 
standard error of measurement of one of the instruments is some specified multiple of that of the other. 
This will be illustrated in the sequel. 

Regardless of whether or not it is possible or economical to reduce standard errors of measurement of 
the two instruments to suitable values if they are much too large, it is nevertheless of great importance to 
determine whether calibration is called for or at least to make a correction in the readings of one or even 
both instruments. The statistical test of significance used in this connection determines whether we can say 
that the bias P\ of the first instrument equals the bias Pi of the second instrument or whether one is 
larger than the other. 

2-6.2    TEST OF WHETHER a., = a.^ (PRECISION COMPARISON) 
The test on relative precision of measurement involves taking the sum p, and the differences w, of the 

readings of the two instruments, i.e., Ii and I2, for example, which are 

p. = n + Si = )8i + )82 + Ixi + en + e,2 (2-58) 

ui = n - s, = yS, - y32 + en - eij. (2-59) 

On the assumption of statistically uncorrelated errors of measurement and true values, it is easy to see that 
the population or expected correlation coefficient ppu of p and w is 

2 _2 

  (2-60) 
CTe, ~ CTe^ 

and hence that the test of whether a,, = Oe^ is precisely a test of whether the population correlation 
Ppu = 0. This is easily accomplished on the basis of the Pitman-Morgan test (Refs. 8 and 9) as developed 
for the purpose by Maloney and Rastogi (Ref. 10). In this connection, one simply calculates the sample 
correlation coefficient rpu and refers it to a table of percentage points of the correlation coefficient of the 
bivariate normal distribution or uses the ordinary Student's t test given by Eq. 2-62. First, the sample 
correlation coefficient is given by 

rpu = {S'r - Sl)l[{S'r + si + 2Srs) {S'r + Sl " 2Srs)] 

also 

1/2 

fpu 
Jpu (2-61) 

Then the Student's t test based on (n - 2) df is 

tin - 2, oe, = oe,) = rpu (n - 2)'^'/(l - rlu)"^ 

_\_{S]lSl)-\-\{n-2)"' 

{A{\-rl)S]lSlf^ 
(2-62) 
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We will illustrate this test with an example (Example 2-4) of O'Bryon (Ref. 11) concerning the precision 
and accuracy of velocity chronographs. Also we thought it desirable to illustrate calculations for a smaller 
sample size, and hence less stable results, than for the data of Table 2-2. This problem arose from a NATO 
study on velocity chronographs submitted for acceptance or standardization. It was apparently d-sirable 
to use two reference or "standard" chronographs, since two are better than one reference instrument, to 
judge a third chronograph submitted for acceptance. Perhaps it was considered that such a procedure 
would resuh in more confidence and provide some checks on the test results. The choice of the two 
standards for initial tests is somewhat arbitrary indeed although pair wise comparisons of the three 
instruments can be made simply by permuting the instrument designations—i.e., the r„ si, and ;,—as 
desired. We examine Ii and I2 only at this point. 

Example 2-4: 
Three velocity-measuring chronographs, the "Fotobalk", the "Counter", and the "Terma" instruments, 

were used simultaneously to determine velocities of each of twelve successive rounds fired from a 155-mm 
howitzer*. The velocities were recorded in meters per second (m/s), and the individual velocity measure- 
ments are given in Table 2-4. Also recorded in Table 2-4 are the sample variances, the estimated impreci- 
sions of measurement, the estimated differences in biases or systematic errors, and estimated true product 
variability. We assume here that no past data are available on precision of measurement for the "stan- 
dard" instruments, the Fotobalk and the Counter, and our purpose ultimately is to check out the precision 
and accuracy of measurement for the Terma, or "test", instrument. Eqs. 2-49 through 2-51 are used to 
estimate the standard deviations in errors of measurement for each of the three instruments; the computa- 
tions are shown in Table 2-4. The estimated standard error of measurement (0.468 m/s) for the Terma 
chronograph seems larger than that for the other two chronographs. We will check this value later after 
checking out the two "standards", the Fotobalk and Counter—designated Ii and h—for relative precision 
and agreement in level of measurement or for bias. 

First, we find the sums p, = r, + s, and differences w, = r, - 5, of the velocities for the Fotobalk and 
Counter instruments and compute Sp = 7.508, Su = 0.0590, Spu = 0.1748, so that from Eq. 2-61 rpu = 
0.2626, and from Eq. 2-62 we find 

t{n - 2, oe^ = oe^) = rp„ V" - 2/[l - r^uV" = 0.861** 

for Student's ; to compare a,, and o,^, whereas /o.9o(10) = 1.372 and /o.95(IO) = 1.812. We therefore 
conclude that the Fotobalk and Counter chronographs have equal precision of measurement, even though 
for 12 rounds CT,, =0.081 m/s and CT,^ = 0.229 m/s as indicated in Table 2-4. Had we'used a much larger 
sample size, we possibly could have established that Ii is much more precise than h although we were not 
able to detect any difference in precision of measurement for the two instruments for only « = 12 
observations. 

2-6.3    TEST OF WHETHER ^3, = ySj (ACCURACY TEST) 

Next we check the agreement in the true unknown levels of measurement for the Fotobalk and Counter. 
This step is clearly and easily accomplished by using the differences in readings of Ii and 12, or u, = r, - s, 
and computing Student's t from 

to{n- I, I3i = li2) = uy/n/Su '• (2-63) 

-  =-0.608 \/r2/(0.2429) =-8.67 

♦Velocity firings generally destroy the projectiles. 
**The t value of 0.861 for 10 df actually corresponds to a probability of about 0.79. 
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TABLE 2-4 

ESTIMATES OF PRECISION OF MEASUREMENT ON THREE SIMULTANEOUS VELOCITY 
MEASUREMENTS OF THE FOTOBALK, COUNTER, AND TERMA CHRONOGRAPHS (Ref. 12) 

Round No. Foto Counter Terma Mean r — s i — / t — r 

Ii h h Velocity, = u = V ==W 

r s t m/s 

20 793.8 794.6 793.2 793.87 -0.8 + 1.4 -0.6 

21 793.1 793.9 793.3 793.43 -0.8 +0.6 +0.2 

22 792.4 793.2 792.6 792.73 -0.8 +0.6 +0.2 

23 794.0 794.0 793.8 793.93 0.0 +0.2 -0.2 

24 791.4 792.2 791.6 791.73 -0.8 +0.6 +0.2 

25 792.4 793.1 791.6 792.37 -0.7 + 1.5 -0.8 

26 791.7 792.4 791.6 791.90 -0.7 +0.8 -0.1 

27 792.3 792.8 792.4 792.50 -0.5 +0.4 +0.1 

28 789.6 790.2 788.5 789.43 -0.6 + 1.7 -1.1 

29 794.4 795.0 794.7 794.70 -0.6 +0.3 +0.3 

30 790.9 791.6 791.3 791.27 -0.7 +0.3 +0.4 

31 793.5 793.8 793.5 793.60 -0.3 +0.3 0^ 

Sl =S]-s = Q.Q590 w = ;3,-Z^^+^i-^2 = -0.608 

Sl = Sl, = 0.2711 V = )82 - )33 + ?2 - ^3 = +0.725 

Sl= S]-r = 0.2252 w = /33 - )8, +?3 -?, = +0.117 

esta'i = 0.5 (0.0590 + 0.2252 - 0.2711) = 0.0065    (Eq. 2-49) 
esta^, = 0.081 m/s 

(Foto) 
■^i 

esta'2 = 0.5 (0.0590 - 0.2252 + 0.2711) = 0.0525    (Eq. 2-50) 
esta^j = 0.229 m/s 

(Counter) 

esta'3 = 0.5 (-0.0590+ 0.2252+ 0.2711) = 0.2186    (Eq. 2-51) 
esta<?3 = 0.468 m/s 

(Terma) 

esta^ = 1.42 m/s = estimated standard deviation of the true 
velocities of the rounds (Eq. 2-56). 

Reprinted with permission. Copyright© by American Statistical Association. 

which for {n - 1) = 1 1 df is very highly significant {to is the observed value of t). Thus we would look for 
the cause of this disagreement, i.e., run a retest of the two "standards" or calibrate them since the Foto- 
balk reads 0.61 m/s lower than the Counter. In this case, however, the sample variance of the differences 
in errors of measurement is very small, i.e., Sl = 0.0590 (or Su = 0.2429), and our t test is sensitive enough 
to pick up easily a difference of 0.61 m/s in velocity levels. It could happen, for example, that the Foto- 
balk might be found, through more testing, to be more precise than the Counter and hence could be easier 
to calibrate. Also, in the absence of any further data, we might recognize and correct for the apparent 
difference of 0.61 m/s. (The correct direction is unknown!) 
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2-6.4    LARGE SAMPLE TEST OF WHETHER a<., or a,^ EQUALS ZERO 

Maloney and Rastogi (Ref. 10) point out that for large sample size n Wilks' (Ref. 13) likelihood ratio 
test may be used to detect whether Oe^ or Oe^ can be considered to be zero. To test the hypothesis that Oe^ 
= 0, for example, they point out that the likelihood ratio A is 

X = {{SlSl - si) I [S]{S] + 5",' - 2Srs)\] "'^ (2-64) 

and according to Wilks (Ref. 13), then 

-21nX = X^(l). (2-65) 

That is, —21nX follows the chi-square distribution with 1 df. If we desire to test whether Oe^ = 0, the single 
factor S^r before the brackets in the denominator of Eq. 2-64 would be replaced by Sl. 

Example 2-5: 
Return to the data of Table 2-2, where for the two-instrument case it seemed necessary to take Oe^ = 0. 

Is there any evidence from the Maloney-Rastogi test to conclude that actually Oe^ = 0? 
To answer this question, we have n = 29, Si = 0.0467544, S^s = 0.0451123, and 5'„ = 0.0455819. (We 

omitted the 10.01 of L for which I2 lost a round.) Hence from Eqs. 2-64 and 2-65 

-21nX = -2 In [(0.000031489)/(0.000031709)]"^ = 0.2019. 

The observed value of —21nX = 0.2019. Referring this value to a table of probability levels of x^(l)) we 
find P =» 0.35. Thus we must accept the null hypothesis that Oe^ = 0 and conclude this is possible. We 
could not reject the null hypothesis that Oe^ = 0 unless the value of Sl, substituted for the single Si in Eq. 
2-64, would give a value calculated by Eq. 2-64 exceeding the upper 5% level of x^O- 

2-6.5    TEST FOR WHETHER Oe^ = koe^ AND SHUKLA's TEST 

We return to the significance test of Eq. 2-62 for the two-instrument case where we test whether ae^ — Oe^ 
or whether the true population correlation coefficient of Eq. 2-60 is p = 0. Our procedure is actually to 
assume p = 0; to calculate the observed or sample correlation coefficient /-p„ in Eq. 2-61; and then refer this 
value to a table of the null distribution of rpu, or use Eq. 2-62, to determine whether it is significant. 
Similarly, we may assume or hypothesize any value of p for — l<p<l, p 9^ 0; calculate the sample rpu, and 
then refer the latter calculated value to the proper table of r = rpu for the assumed value of p 9^ 0. This 
means that the hypothesized value of p is calculated from Eq. 2-60 with, for example, Oe. and Ox as 
specified multiples of Oe^, etc. 

An alternative, approximate procedure is to calculate 

Vn-3 
{ln[(l+r)/(l-r)]-ln[(l + p)/(l-p)]}-A^(0,l) (2-66) 

which for large sample size n has been shown by R. A. Fisher to be approximately normally distributed 
with zero mean and unit standard deviation. 

We may obtain a "numerical calibration" of the value of Eq. 2-66 for small n by making a calculation 
relative to Example 2-4 and the data of Table 2-4 for L and 12. We found that the observed rpu = 0.2626, 
and for n = 12 with the assumption p = 0, the left-hand side (LHS) of Eq. 2-66 is 

^^ ^[ln(l + 0.2626)/(l - 0.2626)] = 0.81 
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which, when referred to a normal probability table, gives a chance of 0.7§* for a one-sided test or 0.58 for 
the two-sided test, a very accurate value for n = 12! By examining Eq. 2-60, it is seen that if the product 
variability Ox = 0, the population correlation coefficient p becomes 

Ppu = (a?j — ol^)/{ol^ + a\^. (2-67) 

In this case the significance test based on the observed sample correlation coefficient r = Vpu would be very 
sensitive to unequal (or equal) Oe^ and Oe^. Otherwise, as Ox approaches larger and larger values relative to 
Oe and Oe^, the product variability dominates Eqs. 2-60 and 2-61, so that the ratio Oe^joe^ = k becomes 
obscured and the test becomes insensitive. 

Example 2-6: ' 
With reference to Example 2-4 and the data of Table 2-4, is it reasonable to conclude that we could 

have a highly distorted ratio such as CT^, = 9oe^ when we take the product variability to be a^ = 1.42 m/s 
and hence show test insensitivity? 

We could estimate that Ox/oe^ ^ 1.42/0.229 = 6.20 or Ox = 55.80<.j, which is large indeed, and substitut- 
ing this value and the assumption Oe^ = 9oe^ into Eq. 2-60, we calculate estp = ppu =^ —0.0789, a near zero 
value. 

The sample correlation coefficient in Example 2-4 was calculated to be 

r = rnu = 0.2626. 

Hence from Eq. 2-66 

N/T2" + 0.2626\     ,   /l - 0.0789 \ n 
0.2626/        Vl+ 0.0789/ 

.04 

which, when referred to a table of the standardized normal probability integral, gives an insignificant 
probabihty P of P =« 0.85 (one-sided). Consequently, we do not reject the null hypothesis that perhaps the 
ratio Oe^ = 9ae^ could be true! 

Shukla (Ref. 14) has proposed a very clever test concerning whether o]^ = k^al^ and has thus general- 
ized the Maloney-Rastogi (Ref. 10) test. Shukla (Ref. 14) puts 

M, = r, — i,, as we do in Eq. 2-47, 
but 

gi = Si + k\i (2-68) 

where we call our instrument I2 Shukla's 1. For this formulation the population correlation coefficient p 
of Eq. 2-60 is changed to 

2,22 
Oe^ — k Oe. 

p = '- '-  (2-69) 
{{ol^ + o\) io\ + k'al^ + al{\+ ef]]'" 

and the observed sample correlation coefficient r = rug** between the random variable? u and g in terms of the 
original instrument readings r, and Si is 

Sug        — iJi        k O r   \    (k l)Ors ,_ _„. 
r-rug-       • (2-70) 

^fs[sl [{S] + si - 2Srs) {Sl + k's] + leSrs)]"^ 
* For a two-sided test, the chance would be 0.58, which would usually be more appropriate. 

**Although r, is used in this chapter as an instrumental reading, the notation "r" is widely used as a correlation coefficient. 
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Hence to test the null hypothesis that a,^ = koe^, we also use the Student's t test as did Maloney and 
Rastogi (Ref. 10), or the first form on which our Eq. 2-62 is based, i.e., • • 

t{n - 2, oe, = koe) ^ '"' ^^ _1 . (2-71) 

When ^ = 1, the Shukla test (Ref. 14) is precisely that of Maloney and Rastogi (Ref. 10). Putting A: = 0 
tests whether a,^ = 0. (We note also thats;when k = 1, Eq. 2-69 becomes the negative of Eq. 2-60. This 
change in sign is due to our switching instruments in Shukla's notation to test our Oe = koe .) 

We will use Shukla's test to judge whether CT,^ = 9CT.J, or, that is, solve Example^2 a different way. We 

Sl= 1.9790,       5",'= 1.8042,       5„= 1.8621. 

Then with ^ = 9 we find from Eq. 2-70 that 

and from Eq. 2-71, 
r = -0.340 

/ = -1.14 

which is not significant at the 0.05 level since to.os = -1.812. Thus we cannot reject the stated hypothesis 
Oe^ = 9oe^ with Shukla's test either! (This again demonstrates test insensitivity!) 

So far for the two-instrument case, we have accepted the null hypothesis that Oe^ = CT, and that CT, T^ 0; 
now we have also accepted the hypothesis that CT,^ = 9a.,! This certainly amounts to'some unpleasant 
contradictions, but perhaps it also possibly indicates the relative insensitivity of significance tests to the 
components of variance studied here, especially for small n and esta,, near zero. More will be said about 
this problem for the three-instrument case, for which we will demonstrate also that perhaps much larger 
sample sizes may be required. 

2-7    SIGNIFICANCE TESTS FOR THREE INSTRUMENTS* 
2-7.1    INTRODUCTORY REMARKS 

Having seen some problems with estimation and significance tests of precision and accuracy for only 
two instruments, especially since the product variability might mask desired comparisons, we now examine 
some appropriate statistical tests of hypotheses for measurements with three instruments—I,, I2, and I3. 
For the three-instrument case we saw that the estimation of precision and accuracy parameters turned out 
to be very favorable indeed and no doubt worthwhile. 

For the three-instrument case several statistical tests of significance are available that appear to be very 
useful indeed. We should, however, pause to refiect on just which statistical tests would be the more 
desirable ones. In view of the masking problem caused by product variation for two instruments, it 
certainly seems desirable to use three instruments for determining whether CT,, = Oe^ for the first two 
"designated" instruments without regard to the imprecision o,^ for the third instrument. Also there is the 
problem of being able to determine just which of the three instruments is the "best" or the "worst", so to 
speak. Therefore, it becomes desirable to make comparisons of one instrument versus the other two. This 
leads to using or establishing two of the instruments as "reference" or "standard" instruments to test the 
"worth" of the third instrument. In fact, this may become especially desirable whenever we are dealing 
with small sample sizes or until we can actually obtain enough valid information on precision and accu- 
racy to depend on two of the instruments as good reference or standard ones. Finally, there will be some 
need occasionally to test composite hypotheses concerning all three instruments and their precision and 
accuracy capabilities. We will start with a test of whether a,j = CT,^ using data for all three instruments. 

* For a recent development in testing the equality of three instrumental imprecisions, please see par   2-12   "Additional 
Discussion". 
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2-7.2    THREE-INSTRUMENT TEST OF WHETHER a., = a.j 

For this case and tlK astui^ption of normally distributed uncorrelated errors of measurement, Grubbs 
(Ref. 12) has shown thtt UM «ppropriate test based on Student's /is 

'^"'^•"■'-""^-mi-rLxs'.i&r-' <2-'2' 
where 

6 = ratio of the expected values of the variances of v = ^ — / and w = t — r 

and hence is clearly 

§ = ial^ + o]^)l{ol^ + ol^). (2-73) 

Hence a test of whether «r», " v,^ or whether Ii and I2 are equally precise is also the test of whether 6 = 1 
in Eq. 2-73. 

Example 2-7: 
Referring to Example 2-4 and the data of Table 2-4, where only the Fotobalk and the Counter were 

used to determine whether CT,| «= o,y we now use available data for all three velocity chronographs (includ- 
ing the Terma) to teit whether a,, = o,j. 

By substituting in Eq. 2-72 we calculate 

ft.     -> ^   -„ 1- [(0.2710/(0.2252)- 1]V 10 

{4{1 - (0.8847)'] (0.2711)/(0.2252)}'^' 

= 0.63 (/o.95= 1.812) 

which is not a sifnificant valiw of t for 10 df. We conclude, therefore, that for the more precise test of the 
three-instrument ca&e and for ■ = 12 rounds, we do not reject the hypothesis that Oe^ = Oe^ or that the 
Fotobalk and Counter posceti equivalent precision of measurement. This result seems to substantiate the 
need for a larger sample lize. 

2-7.3    THREE-INSTRUMENT TEST OF WHETHER Oe^ = koe^ (SHUKLA's TEST) 

Shukla (Ref. 15) has developed an apparently powerful test of whether Oe^ = koe^ when three instru- 
ments are used. This Shukia test (Ref. 15) uses 

Ui ~ r, — 5,, as in Eq. 2-47 

V, ac j, — ti, as in Eq. 2-47 

and then takes 

where 
|y «=«, + («-f 1) V, (2-74) 

Then the sample corrclttiQa COftfiSVtni between the random variables u and h is for 5= \/k^ 
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r = r,>, = Su>,KSuSH)'^' (2-75) 

= [S'u + (« + l)5„v] {S'u [S'u + 2(6 4- l)5uv + (a + Ifs'. ]}''''.    . (2-76) 

Again this leads to use of the Student's t test, or 

tin - 2, oe, = koe,) =    '"^^-^^'^ ■ (2-77) 
il-rW 

Example 2-8: 
In Example 2-6 we carried out some two-instrument tests of whether Ot^ = 9a,| and concluded for 

« = 12 rounds that we could not reject this hypothesis nor could we reject Oe^ — Oc^. In view of Shukla's 
more precise or powerful three-instrument test, apply it to determine whether we may conclude that a^  = 

We have 

5i = 0.05902,       5v = 0.27114,       S«v =-0.0525 

6= 1/9'= 1/81 =0.01235 

and from Eq. 2-76 wc find 

and the Student's t of Eq. 2-77 is 

r~r^M = 0.00068499 

/(10,a,2 = 9a<,) = 0.00217. 

Again this is not a significant value of /, so wc must conclude from the more sensitive Shukla's three- 
instrument test that wc cannot reject the hypothesis that Oe^ — 9a, \ 

The result of this test, using data for all three instruments, actually confirms our findings for the use of 
only two instruments. Accordingly, we probably should have more confidence or assurance that the two- 
instrument test of Shukla's in par. 2-6.5 is really not too insensitive for departures from the assumptions or 
hypothesized values about the ratio of large sample or population imprecisions Oe^ and a<. . 

In summary, for both the two- and three-instrument cases, wc have insufficient information to reject 
that Oe^ = ae2—ic-, that Ii and I2 are equally precise—and moreover, we have insufficient evidence to reject 
that possibly Oe^ — 9o,,! Thus such questions probably could be settled by increasing the sample size or 
perhaps by use of a much more precise third instrument than the Terma. For example, better precision 
might result in the test of Eq. 2-72 if 0,3 in Eq. 2-73 were much smaller or even for the Shukla test of Eq. 
2-77 if we had a very precise third or standard instrument. Finally, the reader may appreciate that we have 
selected an example that shows some possible difficulties one should expect for certain precision and 
accuracy tests along with the probable requirement to perform sufficiently extensive calibration. 

We have some reservations about the Fotobalk and Counter being compatible as reference or standard 
instruments because we found a significant difference in instrumental biases, and there also is some sample 
estimation evidence that perhaps Oe^ may be as large as about 90,,; this perhaps is obscured by a, . We 
should, though, continue to accumulate precision and accuracy data. However, this need not be a concern 
in what follows, for as it turns out we may compare the precision of measurement of the Terma with the 
average precision of the Fotobalk and Counter and the bias of the Terma with the average bias of the 
Fotobalk and Counter—a desirable procedure. 
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2-7.4    JUDGMENT PROCEDURES FOR TESTING A THIRD INSTRUMENT 

We will proceed to indicate the applicable significance test procedures to determine whether or not a 
third or "test" instrument should be "accepted". In particular, we will consider the Fotobalk and the 
Counter as standard or reference instruments—until we get better ones or have more experience—and will 
proceed to determine the usefulness of the Terma chronograph. The suitability of the Terma instrument 
will be assessed by studying whether it is as precise and as accurate as the Fotobalk and Counter chrono- 
graphs. The procedures discussed are covered thoroughly in Ref. 12, and the reader should examine the 
computations in Table 2-5, where the sums (less a convenient origin, such as 1580) and differences of the 
two reference instrument observations are given along with the differences in readings between the Terma 
or "test" instrument and the average of the two standard instrument readings. Also certain correlation 
coefficients are calculated for use as described in the significance tests that follow on precision and accu- 
racy of the Terma versus the "average" of the Fotobalk and Counter. 

To ascertain whether the variance in errors of measurement of the Terma chronograph is equal to that 
of the average of the Fotobalk and Counter instruments, we use Ref. 12 and put 

V = [a?3 + {a\ + a\)IA-\l{a\ + a\) = 3/4 

in the statistic 

{S'./Su-i^)\/n-2    * 
to[n -2, ol^ = (ol^ + a\^)l 2] =  (2-78) 

[(0.2334)/(0.0590) - 0.75] ^TlO 

{3[1 - (0.1959)'] (0.2334)/(0.0590)}' 

= 3.00. 

We therefore conclude that the Terma chronograph is not as precise as the ("average" of the) Fotobalk 
and Counter instruments since ?o.95 (10) = 1.812. 

We note from Table 2-4 that the standard deviation in errors of measurement for the Terma chrono- 
graph is estimated as 0.468 m/s, and this instrument is measuring an estimated standard deviation in true 
velocity of 1.42 m/s, so that it is of questionable precision for the measurements taken here. Nevertheless, 
we may want to check on the speed measured by the Terma chronograph, which may be determined by 
using the 1st column of Table 2-5 and calculating 

r[«-I,j83 = (y3,+ /32)/2]=zV«/'^z (2-79) 

=-0.421 ^^/0.483 = -3.02. 

Since ?o.95(n) = 1.796, we conclude that the Terma chronograph reads low by 0.421 m/s as compared to 
the average of the Fotobalk and Counter. (Note that the bias of 0.61 m/s between the two "standards" is 
even a bit larger.) 

The variance in errors of measurement of the Terma or third chronograph may be estimated also from 

e^iol^ = Sl- SllA (2-80) 

= 0.2334 - 0.0590/4 = 0.2187 m/s, 

♦See Eq. 2-92 for the general value of v. 
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TABLE 2-5 
SIMULTANEOUS VELOCITIES OF THE FOTOBALK, COUNTER, AND TERMA 

CHRONOGRAPHS WITH TEST VS STANDARD COMPARATIVE DATA ON EACH 
OF TWELVE SUCCESSIVE ROUNDS, m/s (Ref. 12) 

Round No. Foto Counter Terma (r + i) - r — s / - (r + i) / 2 
r s t 1580 =;' = u = z 
I. I2 I3 

20 793.8 794.6 793.2 8.4 -0.8 -1.00 
21 793.1 793.9 793.3 7.0 -0.8 -0.20 
22 792.4 793.2 792.6 5.6 -0.8 -0.20 
23 794.0 794.0 793.8 8.0 0.0 -0.20 
24 79L4 792.2 791.6 3.6 -0.8 -0.20 
25 792.4 793.1 791.6 5.5 -0.7 -1.15 
26 79L7 792.4 791.6 4.1 -0.7 -0.45 
27 792.3 792.8 792.4 5.1 -0.5 -0.15 
28 789.6 790.2 788.5 -0.2 -0.6 -1.40 
29 794.4 795.0 794.7 9.4 -0.6 0.00 
3Q 790.9 791.6 791.3 2.5 -0.7 +0.05 
31 793.5 793.8 793.5 7.3 -0.3 -0.15 

S] = [nXy] - iXyd']l[n{n - 1)] = [12(448.89) - (66.3)']/132 = 7.508 

Su = [12(5.09) - (-7.3)']/132 = 0.0590 

5z = [12(4.6925) - (-5.05)']/132 = 0.2334 

S(z) = 0.483 

Syu = [nXyM - (Xyd (2«,)]/["(« - 0] = [12(-38.41) - (66.3) (-7.3)]/132 
= 0.1748 

5„z = [12(3.325) - (5.05) (7.3)]/132 = 0.0230 

t'yu Oyu/ yiju'^y) 

Tyu = (0.1748)/ V (7.508) (0.0590) = 0.2626 

/■„, = (0.0230)/V (0.2334) (0.0590) = 0.1959 

Mean (r — 5) = u =—0.608 m/s 
z =-0.421 m/s 

Reprinted with permission. Copyright© by American Statistical Association. 

which agrees with the value of 0.2186 computed by the equivalent equation in Table 2-4  Hence esta,  = 
0.468. ' 

The standard deviation of the mean velocities listed in the fifth column of Table 2-4—i.e., from the 
model X, + (/3i + /?2 + fiijl'i + {en + e,2 + £-,3)/3—is found to be 1.43 m/s as compared to the estimated 
true value of 1.42 m/s. Therefore, we conclude that the variance in errors of each measuring instrument is 
appreciably smaller than the (population) variance of the velocities of the rounds. Nevertheless, some 
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calibration of instruments may be highly desirable or even required. In addition, appropriate information 
should continue to be acquired to designate finally standard or reference (very dependable) instruments for 
cahbrations and other purposes. 

The theory of Ref. 12 should be generalized to provide a significant ranking of any number of measur- 
ing instruments with regard to both precision and accuracy. This would amount to a very important and 
highly practical accomplishment indeed. It is highly desirable that the significance tests developed should 
point out the particular instruments that are relatively imprecise or inaccurate, as was attempted here. 

2-8    CONFIDENCE BOUNDS ON THE UNKNOWN PRECISION AND ACCURACY 
PARAMETERS, AND ALLIED ACCOMPLISHMENTS 

Since we have developed several appropriate statistical significance tests concerning the unknown preci- 
sion and accuracy parameters for two and three instruments, it becomes readily apparent to the reader that 
confidence bounds on certain of the parameters or functions of them may be easily established although 
the establishment of some others may be rather difficult. 

2-8.1     CONFIDENCE BOUNDS ON (^3, - ^Sz) FOR TWO INSTRUMENTS 

To begin with, it is easy to establish confidence bounds on the differences in biases between the pairs of 
instruments. In fact, for instruments Ii and F and the assumptions of normality and independence, we 
have that u —1 —Tis normally distributed with mean (/?i — fii) and variance equal to {o] + ol^)/n, which 
involves the imprecisions and sample size n. Thus using Student's / distribution with (n — 1) df or Eq. 2- 
63, the (1 — 2a) confidence bounds on the true unknown difference (/3i — /Sz) in biases of F and F are 
found from 

Pr[u- \fnti-./Su<l3i- Ii2<u + ^ti-,/Su\= l-2a. (2-81) 

Also either a lower or an upper one-sided (1 — a) confidence bound on (Pi — ^82) is clearly obtainable 
from the end points of Eq. 2-81. 

2-8.2    CONFIDENCE BOUNDS ON [^Sj - ()3, + ^82)/2] FOR THREE INSTRUMENTS 

In a manner very similar to that of par. 2-8.1, it can be seen—using z = t — (r + s)/2, i.e., the last 
column of Table 2-5—that the (1 — 2a) confidence bounds on the difference [/Ss — (jSi + (ii)/!] between 
the bias of the third instrument and the average bias of the first two instruments are found from 

Pr[z-^n ti-./S, <P3- (i8, + ^2)/2 < z + y/n fi-./SJ = 1 - 2a. (2-82) 

or alternafively an upper or a lower (I — a) confidence bound. Student's / with {n — 1) df is used. 

2-8.3    PRELIMINARY COMMENTS ON CONFIDENCE BOUNDS FOR PRECISION 
PARAMETERS 

Whereas confidence bounds are easily established on the true differences in instrumental biases or sys- 
tematic errors, the theory is more complicated for the unknown precision parameters. To begin with, the 
functional forms of the precision parameters are much more complex, and some nuisance parameters are 
present, which make the problem analytically troublesome. In some cases, therefore, some calculations 
may be carried out only when absolutely necessary or perhaps as a last resort. However, we will at least 
indicate some of the problems involved and show how confidence bounds may be obtained for several 
important cases. These statements apply primarily to confidence bounds on the desired ratios, such as 
Oe^/oey Fortunately, as a result of rather intensive research in recent years, simuhaneous confidence 
bounds or regions for all of the parameters jointly can be found by the methods of multivariate statistical 
analysis. We will give a brief account of useful results and will refer to the appropriate literature on the 
subject. 
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2-8.4    CONFIDENCE BOUNDS ON PRECISION PARAMETERS FOR TWO INSTRUMENTS 

A lower (1 - a) confidence bound on the relative precision of measurement, or ratio Ox|ae^, is readily 
available from Eq. 2-37. An upper (1 - a) bound is found by changing signs of the ;i-„'s in Eq. 2-37. This 
upper bound is taken as infinity if the denominator is negative or zero. (The same is true for Oxloe^.) 

Confidence bounds on the population correlation coefficient of Eq. 2-60 may be found by using an 
appropriate Student's t statistic or even the normal approximation of Eq. 2-66. However, we note in Eq. 
2-60 that there is the nuisance parameter O:, and that confidence bounds on the desired ratio, say OeJoe^, 
must be found by the Shukla method that follows. If Ii and I2 measure the same item n times, thereby 
making a^ = 0, then suitable confidence bounds for the ratio of imprecisions could be established through 
the use of Eq. 2-67. In comparing only measuring instruments such a procedure may often be desired or 
even  necessary  as  a  simple,  practical  approach  to  studying  precision  of measurement  (instrument 
capabiHty). 

For joint or simultaneous confidence bounds or regions on all parameters for the two-instrument case, 
including product variation, the results of Thompson (Refs. 3 and 16) are especially important and note- 
worthy. Indeed, using multivariate statistical methods Thompson shows, for the two-instrument case, that 
the probability is at least (1 - 2a) that the following three relations hold simultaneously: 

\o'. -{n- \)SrsK\ < Min - 1) (Sl SlY'' (2-83) 

|a?, -(n-l) {S'r - Srs) K\ < M{n - 1) [5? {S] + S] - 2Srs)f^ (2-84) 

\a]^ -(«-]) {Si - Srs) K\ < M{n - I) {Sl {Sl + S] - 2Srs)f^ (2-85) 

where the factors K and M are found in Table 2-6 (Table 2 of Ref. 3) for 2a = 0.01 and 2a = 0.05. 

Example 2-9: 
Return to the data of Table 2-2 for the fuze burning times, and use all 30 readings of the first and third 

instruments (Ii and I3) to obtain simultaneous 95% confidence bounds on the standard deviations of 
product variability and the two imprecisions of measurement, i.e., a^, Oe^, and Oey 
We calculate 

5"' = 0.04714       5? =0.04561        S« = 0 .04593 

and note that esta, = \/0.04593 = 0.214, esta., = VO.04714 - 0.04593 = 0.0347, but esta.3 < 0, and hence 
we must take esta^., = 0 here also. 

By substituting the calculated variances, the covariance, and the K and M of Table 2-6 for 2a = 0.05 
into Eqs. 2-82, 2-83, and 2-84, we obtain with 95% confidence that simuUaneously 

0.16<a;. <0.32 
0.00 < a., < 0.09 
0.00 < oe. < 0.07. 

(All negative lower bounds must be replaced by zero.) 
Finally, for the two-instrument case, confidence bounds on the ratio Of^/a,, are obtainable as a result of 

the work by Shukla (Ref. 14). In fact, as shown by Shukla (Ref. 14), confidence bounds on the unknown 
ratio Oe loe = k of population imprecisions may be found with the aid of Eqs. 2-70 and 2-71. Thus from 
Eq. 2-71 and for given upper and lower a probability levels for Student's t, corresponding bounds for r^g 
may be determined. Then by using Eq. 2-70, the solution of a quadratic equation will give (1 — 2a) 
confidence bounds for k^, from which the confidence bounds for k = Oejoe^ may be obtained by taking 
square roots, as indicated by Eqs. 2-90 and 2-91. 
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TABLE 2-6 

VALUES OF A: AND Af WHICH YIELD 
(1 - 2a) CONFIDENCE REGIONS WHEN USED IN 

CONJUNCTION WITH EQUATIONS 2-83 THROUGH 2-85 (Ref. 3) 

n- 1 
2a = = 0.01 2a = 0.05 

K M K M 

3 99.78 99.72 19.79 19.71 
4 12.38 12.33 4.146 4.077 
5 3.980 3.931 1.726 1.665 
6 1.903 1.858 0.9636 0.9083 
7 1.120 1.078 0.6290 0.5786 
8 0.7459 0.7076 0.4516 0.4052 
9 0.5389 0.5031 0.3453 0.3022 
10 0.4120 0.3782 0.2761 0.2357 
11 0.3282 0.2963 0.2280 0.1901 
12 0.2698 0.2395 0.1932 0.1573 
13 0.2272 0.1983 0.1668 0.1328 
14 0.1951 0.1675 0.1464 0.1140 
15 0.1702 0.1438 0.1301 0.09925 
16 0.1505 0.1251 0.1169 0.08738 
17 0.1344 0.1100 0.1060 0.07767 
18 0.1213 0.09772 0.09682 0.06962 
19 0.1103 0.08752 0.08904 0.06287 
20 0.1009 0.07896 0.08237 0.05713 
22 0.08610 0.06546 0.07152 0.04795 
24 0.07484 0.05538 0.06311 0.04098 
26 0.06605 0.04763 0.05641 0.03554 
28 0.05901 'f-     0.04152 0.05096 0.03121 
30 0.05328 0.03660 0.04644 0.02768 
35 0.04272 0.02778 0.03796 0.02127 
40 0.03556 0.02200 0.03205 0.01700 
45 0.03040 0.01797 0.02771 0.01398 
50 0.02652 0.01503 0.02440 0.01176 
60 0.02109 0.01110 0.01967 0.00875 
70 0.01748 0.00862 0.01646 0.00684 
80 0.01492 0.00694 0.01415 0.00553 
90 0.01300 0.00575 0.01241 0.00460 
100 0.01152 0.00486 0.01104 0.00390 

If we let 

Reprinted with permission. Copyright© by American Statistical Association. 

where 

H=t^{SWs- Sl)l{n-2) 

ta — upper a probability level of Student's t 

(2-86) 

(2-87) 

(2-88) 
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then Shukla (Ref. 14) has shown that the (1 - 2a) confidence bounds on Oejoe^ are 

Pr{DL < oejoe, < Dj;] = 1 - 2a (2-89) 
where 

DL = [iG-^)/{F+yfH)y" (2-90) 

Du = [{G + ^fH^/[F-^)f^\ (2-91) 

Due to the possible existence of a negative F or G, especially for small sample sizes, the lower bound may 
have to be taken as zero, and the upper bound considered not calculable unless F> \fH. 

2-8.5    CONFIDENCE BOUNDS ON PRECISION PARAMETERS FOR THREE 
INSTRUMENTS 

2-8.5.1    Confidence Bounds on a?3/[(CT?,-F a.\)/2] 

When dealing with the data from three instruments, we can expect to obtain somewhat narrower confi- 
dence bounds on the unknown precision parameters than we can for only two instruments. In addition, it 
seems highly desirable in practice to compare one of the instruments to the other two. In fact, it will be 
most desirable, or even sometimes mandatory, to have access to at least two reference or standard instru- 
ments. We may then compare, as in par. 2-7.4, or place confidence bounds on the ratio of the precision of 
measurement of the "test" instrument with the average of the other two (reference) instruments. By refer- 
ring to Eq. 2-78, for which we may select an upper and/or lower probability level for t, and with the 
sample data substituted therein, it can be seen that we may solve a quadratic equation in terms of the 
unknown parameter s/virom which upper and/or lower confidence bounds on v are determined. Finally, 
since 

V = dial = [ol^ + (a?, + a'e,)l4]l {a'e, + a.\) (2-92) 
or 

olj[{oi^ + a4)/2] = 2P- >/2 (2-93) 

confidence bounds may be obtained for the LHS of Eq. 2-93, which is our goal. This will usually be done 
numerically as required on the part of the user. 

2-8.5.2    Simultaneous Confidence Bounds On All Unknown Precision Parameters 

Simultaneous confidence bounds on all of the precision parameters a^,, Oe^, Oe^ and Ox for the three- 
instrument case are available from multivariate statistical theory, as was the case in par. 2-8.4 for only two 
measuring instruments. In fact, the subject confidence bounds depend on percentage points (probability 
levels) of the extreme roots of a Wishart (multivariate) matrix as developed and calculated by Hanumara 
and Thompson (Ref. 17). As indicated by Hanumara and Thompson (Ref. 17), some of their work was 
stimulated by the original, practical problems of estimation of precision developed in Ref. 2. Fortunately, 
percentage points of the extreme roots of the pertinent Wishart matrix for cases involving 2, 3, 4, 5, 6, 7, 8, 
9, and 10 instruments have been calculated by Hanumara and Thompson and are available in their Table 1 
of Ref. 17. The sample sizes covered for three instruments are 

n = 3(1)10(5)30(10)100 

and the upper (w) and lower (l) percentage points include probabiUty levels of 0.005, O.OIO, 0.025, and 
0.050. 

To indicate how computations of confidence bounds will be carried out, we need to express convenient 
multivariate notation. For any general number A'^ > 3 of instruments, define the covariance of the n 
readings of any instruments 7 and k as 
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where ' ^ 
nj = ith reading of instrument / = 1,2, . . . , N 
rtk = /th reading of instrument k—\,2,...,N 
y.j = sample mean of the readings of instrument^' 
T.k = sample mean of the readings of instrument k. 

(We note with this notation that the sample variance of readings of theyth instrumcm is S,) Using the 
preceding notation Hanumara and Thompson (Ref. 17) show that for ^> 2 instruments the probability 
IS at least (1 - 2a) that the following confidence bounds obtain: 

~ ;^^; [(n - 1) Sjk (i- + U-) -in-I) (i- - U-) iS,Sk,f'] 

<a^< 

j ^^^ [{n - 1) Sj, (/-' + u-') + (n - 1) (/-' - «-') iSAY''] ,      (2-95) 

and 

-Lmax 
YJ^] K^ - 1) ('^n - S,) (/-' - «-') -(„-!) (/-' - «-) [Su iSu + 5^ - 25,)]'/^} 

< ai^ < 

^ min {(„ - ,) (5„ - 5,^.) (/-. _ ^-.) _^ („ _ ,) (^- _ ^-,^ ^^^^ ^^_^ ^ ^ _ 2^^^^^,:^    ^2-96) 

plus similar inequalities for ajj, CT^j, ..., aj . "  '       ■ 
. ^^''*' « r. ' ^' ^^^ '^^'^ °^ ''^^^'^^ ^"^ ^'"' '^^''^^ 2-^^' ^"'^ approximately interpolated lower (/) and upper 
(u) a = 0.025% points from Table 1 of Ref. 17, i.e., ^ 

1^2.01 and u** 31.5, 

the simultaneous 95% confidence bounds on the parameters are found to be 

0.77<a, <3.57m/s 0.00 <CT,< 1.22 m/s 
0.00 < a,, < 0.92 0.00 < a.; < 1.98. 

Note how seemingly wide the 95% confidence bounds on the imprecisions of measurement appear to be 
for/j=12 rounds only. 

2-8.5.3    Duplicate Measurements With One of Two Instruments and Allied Results 

A very interesting and special case occurs if the readings or measurements of I2, say are replaced by 
duplicate determinations with instrument I,. In other words, there are only two instruments really, with 

2-38     / 
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one of them taking duplicate measurements. This is the case studied by ftahn atid Nelson (Ref. 18), and it 
is readily seen that Oe^ = Oe^ = Oe. Moreover, the quantity 

Sl/Su = F{n- \,n- 1, Oe^ = a,) (2-97) 

follows the Snedecor-Fisher /"distribution with (« — 1) and (n — 1) df ai indicated in Ref. 12. In addition, 
it is easy to establish that the lower and upper (1 — 2a) confidence bounds on Orjoe^ are, respectively, 

{2Sll[_{F,-.{n-\,n-\)Sl]]-\l2 (2-98) 
and 

{YlSlF^-a{n-\,n-\)}ISl}-\ll. (2-99) 

We would especially recommend the continual acquisition of data on as fliany initruments as possible 
and the eventual accumulation of enough information to estabhsh the prtttsioa |>arameters Oe and the 
biases jSy or relative differences (j8i — ^82), etc., as accurately as pofsible. WHli luch determination of stable 
estimates, one may make a valid selection of the more precise initrumenti for reference purposes or 
standards. In addition, there seems to be some advantage in selecting M \tm tw« iMtrumcnts with small 
and equal imprecisions, e.g., Oe^ = Oe^ = Oe, say. In such a situation, if He rrftr to tfc« Measurements Ii and 
I2 and consider their difference u — r — s along with the quantity 

z = -(5-/)/2 + (/-r)/2 = r-(r-h«)/2 (2-100) 
then 

ASll{3Sl) = F{n-\,n-\) (2-101) 

if a^j = 0^2 = Oe. That is to say, the quantity ASlH^iSi) follows the SnedecOf-^»heT F distribution with 
(n — 1) and {n — \) df. Hence we calculate the observed or sample value F, • 

Fo = 4Sz/35i      - (2-102) 

and refer it to the table of percentage points of F, concluding that a,^ < 9r, 0,^ * o^, or 0,^ > a„ depending 
on whether Fo fell below the lower percentage point of F, or Fo fell Mtween the lower and upper percen- 
tage points of F, or Fo fell above the upper percentage point of F, respectivtiy. 

For the case where Oe^ # Oe^, but they are known accurately, see Ref. 12, p. 63, for significance tests and 
confidence bounds. 

2-8.5.4    Shukla's Three-Instrument Bounds for CT^j/afj 

Shukla (Ref. 15), apparently motivated by the paper of Hahn and Neiioft (Ref. 18), who used one 
instrument twice, generalized their theory and extended the work of Onl^lNI ij| lief. 12. Thus Shukla (Ref. 
15) regarded the Hahn and Nelson (Ref. 18) approach as a special ca« 6i three (Mependcnt instrument 
measurements (as does Grubbs in Refs. 2 and 12) and proceeds as follows. In ftct, Shukla (Ref. 15) defines 
and uses 

u, = r,-Si (2-103) 

v, = 5,-/, (2-104) 

8 = oljol^{=o\iT l/k^) (2-105) 

P=tlal{tl„+n-2) (2-106) 

*If Oe = Oe, the quantity v of Eq. 2-92 equals 3/4. 
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A =r^ -^ I uv ^ (2-107) 

B=2[{ri-P) + il-p)Su,/Si] (2-108) 

C = ri-P+il~P) [(S'u/S^) + (2Su./S'.)] (2-109) 
where ^ ' 

/i-a = upper a probability level of Student's ? of 1/and V 
Suv = sample covariance of u and v 
Sv — sample variance of v = ^ — r 

Su = sample variance of u = r ~ s. 

With these defined quantities, Shukla (Ref. 15) then points out that the (1 - 2a) confidence bounds on 
o — Oejoe^ are determined from 

Pr[dL<8<8u]=l-2a (2-110) 

where the lower 8L and upper 8u confidence bounds are found from 

[SL,8u\ = [-B±iB'-4AQ'^']/(2A). (2-111) 

Apparently, Shukla's confidence bounds given by Eq. 2-111 are much narrower than those of Hahn and 
Nelson (Ref. 18) as demonstrated by Shukla with the Hahn and Nelson sample data. 

Of course, an obvious rotation of the subscripts will give confidence bounds on oljal and ol I a] . 
Actually, the basic models described herein are of much more general use than'might appear at first 

Readers will, in general, have much familiarity with least squares and regression (Chapter 6) and thus will 
perhaps have experienced the analysis of residuals about a fitted curve. There may be some relation 
between standard error of residuals and our imprecision of measurement sigma. Moreover, if several 
mstruments are used to take the same basic physical data and their residuals properly "paired", the tech- 
niques of this chapter may still apply. Thus once a satisfactory model or curve has been fitted, an analysis 
of the imprecision and inaccuracy of measurement can be made on the "residuals" or "errors of 
measurement". 

We will illustrate Shukla's three-instrument method (Ref. 15) for I2 and I3 of Table 2-4. We "advance 
the subscripts" and calculate 

5'v'= 0.2711,        5-^ = 0.2252,       r^v =-0.8847,        5'vw =-0.2186 

P = 0.3317 from Eq. 2-106 a = 0.025; and A = 0.4510, B = -0.3954, 

C= -0.0419 from Eqs. 2-107, 2-108, and 2-109, respectively. . 

Finally, from Eq. 2-111 

6L =-0.0956,    8u = Q.91. 
Hence 

Pr[0 < aljal^ < 0.97] = ^^[0 < Oe^joe^ < 0.98] = 0.95.' 

(Had we calculated lower and upper 95% confidence bounds on olja\ using Shukla's method, both 
bounds would have been negative, due perhaps to a] !) 

2-9    MEASUREMENTS WITH A GENERAL NUMBER A^ > 3 OF INSTRUMENTS 
The separation of product variability and instrumental imprecision for any general number of measur- 

ing instruments was investigated in 1948 by Grubbs (Ref. 2) and later in 1964 by Jaech (Ref. 19). We will 
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define etj as before to be the random error of measurement for the Jth reading by the7th instrument {j = 
3, 4, . . . , AO, which measures the true unknown quantities x, (/ = 1, 2, . . . , n), which may vary randomly 
or even be constant. If we use the notation of Ref. 2 where 

Sx+ej = sample variance in readings of theyth instrument Ij 

>Jjf+e-5 x+c^ sample covariance of the sum of readings of instruments I; and I* 

Sej-ei^ = sample variance of the difference in readings of instruments I; and h, 

the best estimate of the variance of errors of measurement of the first instrument Ii for A'^ > 3 is 

eStCJe.  — Ox+f| 

2    \N 

(A^- l)(^-2) 

k=N 

■i      i^x+ei, x+ei, 
2<j<rk J       * 

N^ 
7 

j=2        ^   J 

1 k=N 

A^- 2/2<j<k    J * 
(2-112) 

The variance of the estimate given by Eq. 2-112 for normally distributed errors is 

Var(estae ) = 
n — 

4   I 

(A^-1)' 
2    Oe.Oe^ + 

; = 1      '   ■' (A^- l)^(A^-2)^ 

k=N 
V 2     2 

2<j<k     J     * 

(2-113) 

Formulas for estimates of al^, al^, . . . a]^ and the variances of these estimates may be found by 
rotation of the subscripts. In fact, one may merely designate the instrument he is interested in or working 
with as Ii and use Eqs. 2-112 and 2-113 repeatedly until all instruments are covered. 

The estimate of product variance of A'^ > 3 instruments is the average of all of the sample covariances or 

esta^ 
A^(A^- 1) 

k=N 

\<j<k J        " 
(2-114) 

—        9-^ 
1 k=N 

ix + {e. ei^WNi 

N\n- 1)  '-■'<* 
Oe-e T'k 

where the subscript [x + (ei + • • • + CN)! N^ means the average of the readings of all A' instruments for the 
/th (and other) items(s). 

The variance of the product variability estimate (Eq. 2-114) for normally distributed variables is 

Var(estCT^O = 
n — 

2 I 
Ox + 

n N' 
2     V        2   _i_ 

Ox     Z    Oe. -T 
; = 1       1 N\N- l)\ 

k=N .      . 
V 2       2 
Z Oe. Oe, 

\<j<k J      * 
(2-115) 

In 1964 Jaech (Ref. 19) studied a measurement error model for the case where readings of A'^ instru- 
ments are recorded on n items but where also r, "runs" are made on instrument I> (/ = 1,2,..., A'^). Since 
the total number of data points is then nR, where 
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N 

^";l/^ (2-116) 

some particular "unscrambling" of the measurement errors is clearly necessary 
The model considered by Jaech (Ref. 19) is linear, with constants a, and A to be determined and 

quantu.es .. representing the random error of measurement on the /th item and Tth run and" given by 

where n. = ^'^ + I3^x, +e., (2-117) 

rik = observed value or reading on rth item for "run" k 
i = \,2, . . ., n (i refers to /th item) 

k = 1, 2, ..., 7? (/? = total number of readings) 
Xi = true value of/th item measured. 

In Jaech's model the parameters «, and A are "joint" measures of instrument bias for "run" k In fact if 

~ 7i\^ ■ "' ""' '''''''' ^'"^ ^^ ^^ = '' ^"^ «* ^ 0' ^here is a constant bias for the instrument on 
run, and the bias is independent of the magmtude of the measured item. Moreover thrposSty hat 

Ltd b " '?""'"'•' " "°^^ applications. All unknown parameters in th   model can be   sti 
mated by using sample covariances 5,. and variances Sl as shown in Ref 19 and are 

R 

ft=  ,a   */S„r"",*^l (2.,,8> 

R 

oi=lg    ^uSWSJ^/"-')<-)i _ (2-119) 

'2    _   ^2 *2 
Oel  ~ Ol  — Ox .      ,:. 

M^   ="^1 (estimate of mean x) (2-123) 

(2-120) 

(2-121) 

(2-122) 

where 

= estimate of quantity under the ' 
Tk    = mean of readings on ytth "run" 

Ti    = mean of readings on run 1. 

t t'ample' " '"''" '''" ^^'' ''^'''' """" '"^^"^^^'^ ^^ ^ '^ '^^^^^^ '' '""^ ^-^ -"' -^^ therefore, 

iSyt actually estimates ;8>t/SI 
and 

Ok actually estimates a* - Pkai/Pi. 

The relative biases between runs are independent of the base chosen although the estimate M^ of the mean 
product value and the estimate ai of product variance do depend on the base run, but normally they are 
only of interest in solving for estimates of the other parameters, i.e., the imprecisions 

Jaech (Ref. 19) also gives expressions for variances and covariances of the estimators and methods of 
comparison including an analysis of variance. In another paper Jaech (Ref. 20) extends this research 
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investigation to develop large sample tests of various hypotheses on instrumental precision for more than 
two instruments. It is evident that there should be many applications for the models studied by Jaech. 

A computer program for estimating precision of measurement in accordance with the models of Ref. 2 
or Eqs. 2-112 through 2-115 for any number of instruments has been written, thoroughly checked, and 
applied to various problems by O'Bryon (Ref. 21). 

2-10    INTERLABORATORY TESTING FOR PRECISION AND ACCURACY STUDIES 

One of the very important, practical, current, and ever-continuing problems in studies of precision and 
accuracy of measurement is that of interlaboratory testing. In this connection, it has become common 
practice to send "standard" or "reference" material to a number of laboratories for testing in order that 
analyses of the goodness of laboratory measurements can be established. Also it is desired to "bring the 
different laboratories into line" by providing calibrations. The standard or reference material tested at a 
number of laboratories is selected to be of consistent quality, very small variation if possible, or otherwise 
"homogeneous". In this way, the differences arising during the "round-robin" tests of the material at the 
different laboratories will reflect primarily, or hopefully, the differences in errors of measurement among 
the testers. However, there is bound to be some variation in the material tested that is not ordinarily 
stripped out of the laboratory instrument readings, as we have done previously in the chapter, to get at an 
analysis of only the errors of measurement. In addition, one has to be on guard in interlaboratory testing 
for "outliers", which nearly always arise because there may have to be some treatment or elimination of 
spurious readings or observations. 

The precision of measurement at one (a single) laboratory will ordinarily be measured in terms of the 
standard deviation or variance in errors of measurement and is widely referred to as the "repeatability" 
sigma or value. Some will contend that repeatability should be measured in terms of a single operator on a 
single piece of measuring equipment at a single laboratory. We will avoid such arguments because it 
becomes most natural to identify, take into account, and estimate all of the components of variation that 
might arise in any particular problem facing the analyst or statistician. 

The variation among the true levels or large sample average readings of the laboratories at which the 
round-robin procedure is conducted, when compared with the repeatability, is rather widely referred to as 
the "reproducibility" sigma or value. The reproducibility sigma involves not only the variation among true 
(or large sample) averages of the readings at each laboratory but also depends on the repeatabihty sigma 
of a laboratory — and, indeed, the number of measurements taken at a laboratory! In our example that 
follows we will make specific calculations and precise estimates of the components of variance involved 
and will illustrate the procedure in all necessary detail. 

Although it is now often customary to include a fairly large number of laboratories (even 30 or 40) in a 
round-robin test, we will illustrate the problem for only seven laboratories since this will suffice for making 
our primary points. 

Our illustration of the problem of interlaboratory testing consists of the determination by each of seven 
laboratories of the amount of lead in standard samples of gasoline. The particular samples of gasoline 
made up for the purpose of interlaboratory testing contained precisely 0.029 g/gal., and either two or three 
measurements or determinations (duplicate or triplicate) were recorded at each of the seven laboratories in 
the round-robin procedure. The data, taken from Ref. 22, on the measurements of the amount of lead in 
standard gasoline samples are given on Table 2-7, where the determined amounts of lead have been multi- 
plied by 1000 for convenience of analysis. 

There are a total of A'^ = 17 measurements for all seven laboratories, and we define the following 
symbols for our use here: 

Xij — element (determined amount of lead in gasoline X 1000) or observation in the rth 
row and 7th column of Table 2-7 

Xx = XXxij = sum of all the observations in Table 2-7 

Xx^ = SSx,y = sum of squares (SS) of all the observations in Table 2-7 
2-43 
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{Xxf/N= Table 2-7 total squared divided by iV = the "correction term" 

rij = number of observations in the/th column = 2 or 3 for Table 2-7 

k = number of laboratories participating = 7 

Or = repeatability sigma, or standard deviation, within laboratories 

OL = standard deviation among true laboratory means or levels, or "external" sigma 

—5 T 
OL + Or = reproducibility sigma for a single observation at a laboratory.     (2-124) 

The reader with some statistical background will recognize the data of Table 2-7 as a standard one-way 
classification in the analysis of variance (ANOVA) with an unequal number of observations per cell. The 
method of statistical analysis is given directly in Tables 2-7 and 2-8 and may be found in many standard 
textbooks on statistics. 

Since there are unequal numbers of observations per cell in Table 2-7, some care must be exercised in 
estimating the components of variance, as we wiU see. 

The numerical ANOVA is summarized in Table 2-8. There are a total of 16 df, with 10 for the residual 
or repeatability variance oj, and the remaining 6 df are equal to one less than the number 7 of 
laboratories. 

TABLE 2-7 

ONE-WAY ANOVA CLASSIFICATION FOR LEAD IN GASOLINE 
(0.029 LEVEL; VALUES MULTIPLIED BY 1000) 

DuPont Mobil EPA Ethyl Amoco Ford Octel 

23 24 25 26 28 27 28 

2K 24 26 26 27 27 28 
23 .Jl 26 

70 48 77 52. 55 80 56 

N= n, x,j = element in /th row and /th column 

2x = SSx| = 23 + 24 + 23 + 24 + 24 + • • ■ + 28 + 28 = 438 

Xx^ = %Xx\ = (23)' + (24)' + (23)' + (24)' + (24)' + • • • + (28)' + (28)' = 11,330 

(Sx)'/7V = (438)'/17 = 11,284.94 

Total SS (about grand mean) = 2x' - (2JC)'/ A^ = 11,300 - 11,284.94 = 45.06 

SS among column (Lab) means = (70)'/3 + (48)'/2 + (77)'/3 + ■ • • + (56)'/2 - 11, 284.94 

= 11,327.50-11,284.94 = 42.56 

SS for repeatability within Labs= 45.06 - 42.56 = 2.50. 

Copyright, American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103. Reprinted with permission. 
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TABLE 2-8 

ANOVA TABLE 

Source 
of 

Variation 

Sum 
of 

Squares 
df                       Variance 

Total 
Among Labs 
Within Labs 

45.06 
42.50 

2.50 

1)], 

16 
6             7.093 = a? + 2.41 ai 

10                      0.25 = a? 

2.41 = (/V^ - S a, = 0.50, aL= 1.69, and OR = ^Jat+ 0' = 1.76 

Copyright, American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103. Reprinted with permission. 

The residual or repeatability variance o] is rather small; the estimate of it is 

a? =2.50/10 = 0.25    or a. = 0.5 

which converts to only 0.5/1000 = 0.0005 in g/gal. of lead. 
Note that the variation among laboratory true levels of measurement is quite large and highly significant 

with 

F= 7.093/0.25 = 28.4 

whereas fo.99 (6,10) is only 5.36. We must conclude, therefore, that the component of variance among 
laboratory measurement levels is rather large and deserves investigation to "bring the laboratories into 
Hne" by providing caHbration corrections. 

To estimate the component of variance among laboratory true levels of measurement, we must equate 

2 I 
Or + 

A^' - In] 

N{k -  1) 
ai = a?+2.41al = 7.093 (2-125) 

from which we obtain 
al = 2.84     or     OL = 1.69  (0.00169 g/gal.). 

Finally, the reproducibility variance al for n measurements at a laboratory taken at random would be 

OR = aL + a'/n = 2.84 + 0.25/«. (2-126) 

For the average result of A: laboratories, Eq. 2-126 would be divided by k, the number of laboratories. 
We will not discuss "outlying" laboratories in this chapter since "outliers" are covered in Chapter 3. Our 

prime interest is to show how the analysis should be conducted without rejecting any laboratory results at 
this stage. 

With reference to the interlaboratory test one notes that each and every measurement of the amount of 
lead in gasoline is consistently lower than the actual amount, i.e., 0.029 g/gal.; thus all laboratories show 
low readings. Some calibration is necessary, especially after some investigation to determine the possible 
cause of the consistently low measurements. In fact, by examining Table 2-9, we see that DuPont and 
Octel differ by 28.0 - 23.3 = 4.7, which is 4.7/1.76 = 2.7 times the reproducibility sigma of a single 

2-45 



DARCOM P 706 103 

TABLE 2-9 

AVERAGE LEVELS OF THE DIFFERENT LABORATORIES 

DuPont Mobil EPA Ethyl Amoco Ford Octel 

23.3* 24.0* 25.7 26.0 27.5 26.7 28.0 

*The levels of measurement at DuPont and Mobil appear significantly lower than the other laboratories. 

measurement! Apparently, there is no problem concerning the within-laboratory or repeatability sigma of 
0.50, but the laboratories urgently need bringing into line by calibration for average readings. 

Finally, we caution again that in this type of interlaboratory analysis of a test program, we are not 
necessarily dealing strictly with the errors of measurement to determine precision and accuracy as pre- 
viously stripped out as components in this chapter. Wc say this, even though in this particular round-robin 
test there may be little, if any, variation due to the product, i.e., amount of lead. It can often be expected, 
nevertheless, that some product variation may still be present in ordinary interlaboratory testing even 
though it would be highly desirable to deal only with errors of measurement for precision and accuracy 
studies of a test method as we have presented and recommended predominantly. 

The reader should note in particular that the interlaboratory test and the multi-instrument cases dis- 
cussed heretofore can sometimes, and often should, be treated as the same analytical procedure. In fact, 
the multi-instrument analysis seems more general. 

2-11    THE HIERARCHY OF CALIBRATIONS AND THE ACCUMULATION OF ERROR 

As the final major topic to be highlighted in this chapter, we believe it pertinent to discuss the problem 
of calibration of instruments up through the various calibration echelons to the prime reference standards 
at the National Bureau of Standards and also to discuss the accumulation of error throughout the chain. 
We have seen that both precision and accuracy are very important or mandatory, that instrumental preci- 
sion is required to detect bias or systematic error, and that bias or improper levels of measurement may be 
corrected by good calibration or bias correction procedures. 

Crow (Ref. 23) gives a brief account of the background of the calibration process, which will suffice for 
our needs in this chapter. We quote Crow (Ref. 23). 

"Since the art of measurement began there have been standards, more or less informal, by means of 
which further measuring sticks, weights, and capacity measures have been produced for use in construction 
and commerce. With each reproduction of the measures variations were inevitably introduced, and these 
often consisted of intentional as well as accidental errors. The ancient Egyptians, Greeks, and Romans had 
respected standards of measure, but these fell out of use during the Dark Ages, and the later attempts to 
establish widely used standards were long doomed to failure. 

"In 1830 the United States Senate noted that variations in the standards in use at various customhouses 
were causing loss of revenue and directed the Secretary of the Treasury to make comparisons of these 
standards. The Treasury in fact took steps to supply uniform weights and measures to all customhouses, 
and the Secretary reported in 1832 that standards were being fabricated at the United States Arsenal in 
Washington 'with all the exactness that the present advanced state of science and the arts will afford'. Thus 
the Office of Weights and Measures came to be established in the late 1830's within the Treasury Depart- 
ment. In 1901, when its budget was still less than $10,000, the Office became a part of the new National 
Bureau of Standards. In 1903 the Bureau was transferred to its present position in the Department of 
Commerce. 

"Now the Bureau maintains hundreds of national standards and calibrates the standards of the states, 
military departments, manufacturers, utilities, universities, private testing companies, and others. The 
Bureau is unable to calibrate all secondary standards and instruments, and the above types of organiza- 
tions in turn calibrate further standards. For example, counties and cities may have their balances, 
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weights, and other measures certified by their state offices, and they in turn certify the balances within 
their jurisdictions. 

"In electrical energy the Bureau uses a standard watthour meter accurate to about 0.03 percent to 
calibrate the master standards of public utility commissions and power companies. The latter in turn make 
measurements to about 0.1 percent of customers' meters. As a result in part of variability in time, custo- 
mers' meters operate within about one percent accuracy. 

"In recent years the demanding requirements of missiles, spacecraft, and other vehicles have led to the 
establishment of extensive hierarchies of standards laboratories by the military departments. As indicated 
in Fig. 1 [our Fig. 2-1], the National Bureau of Standards is at the apex of these hierarchies. The figure 
indicates just a few examples of the standards laboratories that enter in various levels, or echelons, of the 
hierarchy. For most basic standards the Bureau is itself just one of the many national laboratories deriving 
their units from the International Bureau of Weights and Measures. In each echelon of the hierarchy and 
with each transfer of information, some error is unavoidably introduced." 

With this coverage of the calibration process, let us take a brief look at the need for precision of 
measurement for each level at which the instrument may be calibrated and used for measurement purposes 
along with the accumulation of error in the instrument comparison process. We will number the echelons 
at which calibrations may occur with the numbers I, 2, . . . , m, where the first level or 1 refers to the 
National Bureau of Standards, 2 the second level, and so on down to the final laboratory or "bench" level 
m where measurements are taken on some item. Then at each and every level or echelon an error in 
calibration may be committed, or that is, we may say that the error committed at level / is e,. Hence if the 
calibrations at the different echelons are statistically independent, as we would expect, the total variance OT 

of the errors down to the mth level is 

OT —   X Oe  — moe 
1 = 1    ' 

(2-127) 

if the same standard error CT,. of measurement is made at each level. It might be expected, however, that 
precision of measurement should improve as the numbered level decreases, i.e., 5, 4, 3, 2, and 1. Thus the 
number m of levels may be of some importance although the relative precision in measuring product 
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Figure 2-1. Schematic Representation of Hierarchies of Military Standards Laboratories Using National Bureau of 
Standards Calibration Services (Ref. 23) 
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variability is of considerably more importance. In fact, to demonstrate this, recall that actual measure- 
ments will be made at the mth or last level, so that with the hope that no confusion will arise, one may 
take 

Om+i = Ox, when / becomes m, (2-128) 

i.e., the (m + 1) st sigma is the actual product standard deviation measured. What is important then is 
really the precision ratio r, (often misnamed the accuracy ratio) 

r, = Ox/oe. (2-129) 

at each level, and the accumulated variance (Eq. 2-127) at level m. 
The accumulation of calibration error or variance of the errors throughout the hierarchy of cahbration 

echelons has been studied very thoroughly by Woods and Zehna (Ref. 24) and particularly also in cost or 
economic detail by E. Crow (Ref. 23). 

It seems reasonable to define the resultant or total precision or accuracy ratio rr, say, as 

rT=ollXo]. (2-130) 

where total accumulation of variances in errors of measurement are accounted for and included. If at each 
stage / the relative precision ratio is constant, i.e., 

ri= Ox/oe. = c (2-131) 

Woods and Zehna (Ref. 24) have shown that the final or total precision ratio (Eq. 2-130) is simply 

2        (^     "    0<^ 
rT = -  . (2-132) 

As the number m of echelons of calibration increases without limit, rr approaches 

• . limrr=f'- 1. ' (2-133) 

Thus always 

rl>c^-\ (2-134) 

and/"r never falls below 
rT= yjc^- 1 (2-135) 

which is a very enlightening resuU indeed! Hence as a numerical example, if we require 

r,— OxlOe=  10 

the total precision or accuracy ratio does not fall below 
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for a large number of calibration echelons, the relative total precision ar/cr„ will not increase by more than 
about 15%. Thus as m-°°, it is only when a,+ i/a, becomes less than 2 that one should expect any very 
significant or intolerable accumulation of relative total calibration error precision orlam.* 

Crow (Ref. 23) conducts a very fine study of the optimum allocation of calibration errors based on total 
system cost of achieving a given or desired accuracy. He considers costs to be of two types: (1) the cost of 
research and development (R&D) that needs to be done only once or not at all if the measurement system 
has already been developed, and (2) the costs of installation and operation for each laboratory. Crow (Ref. 
23) then assumes that both types of costs decrease in a negative exponential manner with increasing size of 
the error E committed in a laboratory, i.e., 

R&D cost « 6o£""o (2-136) 

and _ • . ' 
Installation and Operation Cost «=/^i^ "' (2-137) 

where all constants are positive and 

flo, bo, ai, bi = fitted constants with ao>ai. 

By using the method of Lagrange MuUipliers to minimize total costs, Crow (Ref. 23) finds that the 
optimum precision error ratio between the ith and {i + l)st stage of the calibration echelons is given by 

a,.i/a, = (m,.0'""'' (2-138) 
where 

rrn+i = number laboratories at stage i + I 

and 0 < a < fli, and a = ai if research and development is unnecessary. Hence the exponent value a 
becomes equal to ai, or the exponent of the installation and operating cost curve, if no R&D is required 
for the instrumentation. 

2-12    ADDITIONAL DISCUSSION OF FUNDAMENTALS OF MEASUREMENT 

The American Society for Testing and Materials (ASTM) has published (1977) a compendium of stan- 
dards on precision and accuracy (Ref. 26). It is referred to as their "Green book" and may be of some 
interest to readers especially concerning just how precision and accuracy problems are now handled in 
much industrial work or practice. ASTM also has a standard recommended practice, designated E 177-71, 
entitled Use of the Terms Precision and Accuracy as Applied to Measurements of a Property of a Mate- 
rial, which may be found in the "Green book" (Ref. 26), pp. 124-41. 

As indicated earUer in the chapter, a rather informative and thorough discussion of the precision and 
accuracy problem in many areas of the physical sciences is covered in Ref. 1. Also concerning the precision 
and accuracy of the fundamental constants in physics and the needed adjustment of them, the reader is 
referred to Eisenhart (Ref. 27) in addition to the many papers in Ref. 1. 

Pontius discusses the fundamentals of measurement and the consideration of measurement as a produc- 
tion process in Ref. 28. 

Cameron (Ref. 29) discusses the general problem of measurement assurance, and DeVoe (Ref. 30) exam- 
ines the area of validation of the measurement process. 

Mandel (Ref. 31) discusses the measurement process, especially in terms of interlaboratory testing. 
The Engineering Design Handbooks (Refs. 32, 33, 34, 35, and 36) on experimental statistics constitute a 

very useful background of statistical knowledge for the reader concerning this chapter and also the other 
chapters of this handbook. 

Finally, we comment on some very recent accomplishments concerning the three-instrument case, which 
should have wide applications. As is evident from Eq. 4-2, the models represented by Eq. 2-15 and Eq. 

*The effect of calibration on end-item performance in echelon systems is discussed and modeled in Billiard and Miller (Ref. 25). 
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6A-1 of the Appendix 6A, the estimation techniques for the imprecision of measurement are very closely 
tied in with the two-way ANOVA concept. Indeed, in a private communication Professor Ralph Bradley 
and Dennis Brindley (1980) of Florida State University indicate some very striking results for the three- 
instrument (J = 3) case. They use r^j, which we have designated in this chapter to be the /th reading of the 
jth instrument, to mean the element of a two-way classification of the /th row andy'th column. Thus as in 
the analysis of variance modeling, the sum of the instrumental biases j8, can be taken to be zero (but are 
still representative) and the variance Var(ey) = ol. Then, upon taking 

Sj= iirij-7,-7,+7.y : (2-139) 
I = 1 

where the dots simply denote summing on that particular subscript and the bars average values, and using 
the quantities 

Qj = kSjIlin -\){k- 2)]-i^Sj/[{n - I) (k - 1) (k - 2)] (2-140) 

one finds for k — the number of columns (instruments in this chapter) that the expected value of Q, is 

E{.Qh = o\ (2-141) 

our imprecision variance of measurement for the j'th instrument, or here the residual variance in the 7th 
column when row and column level effects have been eliminated, leaving "measurement errors". For the 
case A: = 3, Brindley and Bradley indicate they have found the joint probabiHty density of the Q\, Q2, and 
Qj, and have established the hkelihood ratio test of the null hypothesis 

Ho: Oe^ = ol^ = ojj = ol (2-142) 

versus the alternative hypothesis                                                  ; : 

Ha:?>omtolMol^,j^q. -                   (2-143) 

The likelihood ratio statistic for testing Ho is 

A = XQ^Qi + 2.^3 + QiQ^)l{Q^ + ^2 + Q,f    , (2-144) 

and under //o the probability density of X is simply 

f{K)=\^ JA'"""^', 0<X< 1 (2-145) 

so that any a probability level of X, or A.^, will be given by 

k.^{af'^"-'\ (2-146) 

Brindley and Bradley have also established the power function of the test of Ho for the case of ^ = 3 
instruments. 

2-13    SUMMARY 
We have defined errors of measurement and the terms precision and accuracy of measurement in rather 

extensive and analytical detail, approaching the problem primarily from the practical point of view of 
requirements. Methods and techniques for estimating precision and accuracy of measurement for various 
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numbers of instruments used in the process are thoroughly covered along with statistical tests of signifi- 
cance on the parameters of imprecision and inaccuracy, and confidence bounds as well. Related work of 
many authors on the problem of precision and accuracy is discussed, and references to industrial practice 
are given. Finally, we present an account of the hierarchy of calibrations for instruments and indicate 
precision requirements for each echelon of laboratory calibrations. 

Many examples concerning applications of the currently available theory of precision and accuracy are 
presented throughout to orient the reader as well as possible. 

The methods of this chapter are especially recommended to accumulate data on precision, accuracy or 
bias, and calibration corrections for all instruments in order that instrumental capabilities will be docu- 
mented and appropriate selections of the best or standard reference instruments can be made as needed in 
the overall measurement process. 
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CHAPTERS 

PROCEDURES FOR DETECTING OUTLYING OBSERVATIONS 

Statistical principles for screening observational data to detect irregular or outlying observations are dis- 
cussed in appropriate detail and illustrated by examples. The best tests that have been found to be extensively 
used in practice are covered for the problem of detecting single or multiple outliers in samples. The principal 
tests include those for detecting whether the highest or the lowest observations are outliers, or the two highest 
or the two lowest, or the highest and lowest observations jointly come from different populations with shifted 
means or a change in the dispersion parameter. Moreover, the principles are extended to the problem of de- 
tecting more than two or many outliers in data, and the relation of outlier detection to tests of normality is 
presented. 

3-0 LIST OF SYMBOLS 

n-k ' 

a =    S Xi/{n — Ik) = trimmed mean of Rosn'er 
/=*+1 

a«-,+i = coefficient of the Wilk-Shapiro statistic 

B* = Hawkins and Perold's studentized maximum statistic of Eqs. 3-62 and 3-63 
b  = Rosner's trimmed variance in Eq. 3-49 

y/bi = sample skewness coefficient of Eq. 3-56 
bi = sample kurtosis coefficient of Eq. 3-57 

d = maximum studentized statistic of Halperin, Greenhouse, Cornfield, and Zalokar in Eq. 3-61 
E{ ) = expected or mean value of quantity in parentheses 

Ek = Tietjen-Moore ratio statistic given by Eq. 3-44 

E*k= {Sl+ U)liS^ + U) = Hawkins' outlier test statistic of Eq. 3-55 
F= fi) = cumulative distribution function 

/( ) = probability density function of quantity in parentheses 
Ho = null hypothesis 

k = number of "outliers" in Tietjen-Moore tests 
L = bound or limit 

Lk = Tietjen-Moore ratio statistic given by Eq. 3-46 
max I     1= maximum value of quantity inside I     | 

A'^ = total number of items in a finite population 
n = number of observations in the sample 
P = level of probability 

Pr[y<yo] = F(yo) = chance y is less than yo 
p = fraction of the total sample size 

Ri = Rosner's maximum ratio in Eq. 3-50 

/?2 = Rosner's second largest ratio in Eq. 3-51 
r = number less than A' 

r, =   \xi-x\= absolute residuals used by Tietjen and Moore to determine their 2,'s (par. 3-5.5.2) 
r,j =  Dixon's statistics for testing outliers (See Table 3-2 for all of Dixon's definitions used in this 

chapter.) For example, rn = (x„ - x^i)/(x„ - xi.) 

2 _      " - 2 
S =   l{xi — x) = total sum of squares about sample mean for the entire sample 
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Sk   =  Hawkins' inlier sum of squares based on unsuspected sample values 
Sn,n-\ = sum of squares, omitting the two highest sample values x„-i and x„ 

5i,2 =   S(x, — xi,2)^ = sum of squares, omitting the two lowest sample values 

s = sample standard deviation based on (n — 1) degrees of freedom 

s' =  \/S(x,- — x)'^ln = \/{n — l)/« 5 = sample standard deviation based on total sample size n 
s^ = sample variance based on {n — 1) degrees of freedom (See Eq. 3-2.) 
s^ = independent estimate of the standard deviation based on v degrees of freedom 
Tn — (xn — x)ls — statistic for testing whether the largest sample value x„ is too large 

Tx,Ty— values based on coordinates x,;^ 
T\= (x — X\)ls = statistic for testing x\ 

T{,Tn = values of Ti and Tn based on an independent s^, with v degrees of freedom in Eqs. 3-59 and 
3-60 

Ti'oo, r„'oo = critical T-values in Eqs. 3-65 and 3-66 based on known population standard deviation a 
;'" = largest signed value of ?, (See Eq. 3-13.) 
/,= (x, - x)/5'(See Eq. 3-11.) 

if = independent sum of squares used by Hawkins in Eq. 3-54 
fV= Wilk-Shapiro statistic of Eq. 3-65 
w = x„ ~ xi = sample range 

wis = ratio of sample range to sample standard deviation. Sometimes called the "studentized" 
range, although studentization usually calls for an independent 5 in the denominator. 

Wo = limit (of integration) for the range w 

Wi = range or maximum dispersion of a sample of three observations, i.e., largest minus smallest 
values 

Xi = ith ordered sample value in order of magnitude jci < X2 < x, < ■ ■ • < x„ 
x„ = largest sample value 
xi = smallest sample value -      , 

x'''= sample value making 7?i a maximum 
n 

x=   2 x,7/t = sample mean .. 
(=1 

X = grand mean ' 
n-k ■ ' 

Xk =   Xxi/{n — k), Tietjen-Moore mean 
1-1 

_ n-2 

Xn,n-\ —   Xxij{n — 2) = mean, omitting Xn-\ and x„ 
i=l 

n 

Xi,2 =   2x,7(« —2) = mean, omitting xi and X2 
/=3 

x'i = /th observation or sample value in the order taken, the original sample being xi, xi, ■ ■ ■, x't, Xn 
x',x",x"' = Lieblein's sample of three observations, where x' and x" are the two closest values 
\xi — Xk\ = absolute difference or positive value of the difference between any two sample values x, and 

Xk 

x,y ~ variables of integration, or variables, also coordinates 
y — (x' — x")/(x3 — xi) = Lieblein's ratio in Eq. 3-26 

jp = a limit 

z, = original observed x that is the /th closest to the sample mean x 
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z, - Tietjen-Moore designation for the original observations xi, such that z, is that particular x for 
which the r, is the /th ordered (increasing) absolute residual 

z = mean of the full sample = x also 

'Zk = Tietjen-Moore mean of the (« - k) least extreme observations given by Eq. 3-45 
a =  probability level = 0.05, 0.01, etc. 

ai-F= percentage point as in Eq. 3-31 '' . 
P =  probability level 

X,()8) = level for Rosner's /?, 

M = population or universe mean 
a =  population standard deviation 

o{) = standard deviation of quantity in parentheses 
Or = estimate of the within variance ar^ 
XQ= limit (of integration) for chi ■•■■■■ 
X  — X^(i') = chi-square with i-degrees of freedom        .... 

3-1    INTRODUCTION 

In Chapter 2 we covered the problem of taking measurements and trying to control or assure the quality 
of them by knowing the precision and accuracy of our measuring instruments. In fact, it becomes of utmost 
importance to have at hand the capability of any measuring instrument we use in applications because tak- 
ing action in the presence of errors of measurement would lead to unwarranted results or even to a costly 
state of affairs. Hence the need exists to control errors of measurement in all experiments by continuing to 
collect information on the precision and accuracy of our measuring instruments. Indeed, this should be a 
daily activity because measurements are expensive and should be taken with care. 

Once we can insure that our measurements are of high quality, we may proceed with confidence that our 
analyses of the data are correct, and we can depend on any action taken as a result thereof. Perhaps one of 
the most appropriate next steps is to examine the data we take or acquire for the presence of "outliers". In 
fact, one or more of the errors of measurement could be due to the existence of outlying observations (un- 
usually large errors of measurement), and it is important to examine the data for such measurements. For 
example, suppose we take the same measurements with two different measuring instruments as indicated 
m Chapter 2. We might list the differences in readings of the two instruments for each item or characteris- 
tic measured, and if one or more of the differences are large, we would certainly like to investigate the cause 
and possibly determine which instrument was at fault. Moreover, even if we made no errors of measure- 
ment or screened them out, our observations may still contain some deviant values. Also we would like to 
be able to judge whether there could have been a shift in level, or perhaps increased dispersion, other 
causes worth looking for, or whether the deviant values are truly characteristic of the items understudy. 
Hence we must be aware that our data will often have to be screened not only for errors of measurement, 
but for "outliers", or outlying observations, as well. The purpose of this chapter is to present methods for 
detecting outlying observations and for treating them in further analyses. 

An outlying observation, or an "outlier", is one of the sample values that appears to deviate markedly 
from the other members of the sample in which it occurs. In this connection, the two possible alternatives 
that follow are of some primary interest to us: 

1. An outlying observation may be merely an extreme manifestation of the random variability inherent 
in the data. If this is true, the values should be retained and processed in the same manner as the other ob- 
servations in the sample. 

2. On the other hand, an outlying observation may be the result of gross deviation from the prescribed 
experimental procedure or an error in calculating or recording the numerical value. In such cases, it may 
be desirable to undertake an investigation to determine the reason for the aberrant value. The observation 
may even eventually be rejected as a result of the investigation, though not necessarily so. At any rate, in 
subsequent data analysis the outlier or outliers will be recognized as probably being from a different popu- 
lation than that of the other sample values. 
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It is our purpose to provide statistical rules that will lead the experimenter almost unerringly to look for 
causes of outliers when they really exist and, hence, to decide whether previously given Alternative 1 is not 
the more plausible hypothesis to accept as compared to Alternative 2 in order that the most appropriate 
action in further data analysis may be taken. The procedures presented herein apply primarily to the 
simplest kind of experimental data, i.e., replicate measurements of some property of a given material or ob- 
servations in a supposedly single random sample. Nevertheless, the tests suggested do cover a wide enough 
range of cases in practice to have rather broad utihty. 

When the skilled experimenter is clearly aware that a gross deviation from prescribed experimental 
procedure has taken place, the resultant observations should be discarded whether or not they agree with 
the rest of the data and without recourse to statistical tests for outliers. If a reliable correction procedure, 
for example, for temperature, is available, the observation may sometimes be corrected and retained. 

In many cases evidence of deviation from prescribed procedure will consist primarily of the discordant 
value itself. In such cases it is advisable to adopt a cautious attitude. Use of one of the criteria discussed 
subsequently will sometimes permit a clear-cut decision to be made. In doubtful cases the experimenter's 
judgment will have considerable influence. When the experimenter cannot identify abnormal conditions, he 
should at least report the discordant values and indicate to what extent they have been used in the analysis 
of the data. 

Thus for purposes of orientation relative to the overall problem of experimentation, our position on the 
matter of screening samples for outlying observations is precisely as follows: 

1. Physical Reason Known or Discovered for Outlier(s): 
a. Reject observation(s). 
b. Correct observation(s) on physical grounds. 
c. Reject it (them) and possibly take additional observation(s). 

2. Physical Reason Unknown—Use Statistical Test: 
a. Reject observation(s). 
b. Correct observation(s) statistically. 
c. Reject it (them) and possibly take additional observation(s). 
d. Employ truncated or censored sample theory not involving the suspected outliers for estimation 

purposes (Chapter 7). 
The statistical test may always be used to lend support to a judgment that a physical reason does actual- 

ly exist for an outlier, or the statistical criterion may be used routinely as a basis on which to initiate action 
to find a physical cause. 

Before proceeding to the presentation and discussion of statistical significance tests for detecting outlying 
observations, we will cover a very important topic—namely, that of the mathematical bounds on certain of 
the key sample statistics. In other words, the statistical tests of significance will cover the cases in which we 
deal with or detect unusually large "random" variations, and there also actually exist some "mathematical 
limits" on the sample values or statistics themselves without any reference to random variations. These 
conditions will, in fact, have direct bearings on the suitability of the statistical tests of significance concern- 
ing whether they are even mathematically possible. For example, if for some given sample size there is an 
upper or mathematical bound on the deviation of the largest observation from the sample mean, there is no 
point in testing it statistically using the random sample theory to detect whether it is more deviant than 
that bound since this would be meaningless. We now discuss the mathematical bounds. 

3-2    PRELIMINARIES AND MATHEMATICAL BOUNDS OF INTEREST 

3-2.1    DESIGNATION OF THE SAMPLE 

Ordinarily, in our procedures for detecting outlying observatior,s in samples, we consider that a rand >m 
sample of size n has been drawn from a population—almost always assumed to be a Gaussian or no/mal 
universe—and then a significance test will be carried out to judge whether or not, for example, the largest 
observation is too high or the smallest observation too low. However, for our discussion of mathematical 
bounds, we do not need to have any reference whatever to either a random sample or a normal universe. 

3-4 



DARCOM-P 706-103 

We will designate the sample in the order the observations were drawn by 

-^1? -^2» -^3)  •   •   •   5-^/5 •   •   •   ^Xn .        I 

However, since we will be concerned almost exclusively with ordered sample observations, the sample 
values are listed as 

Xi < A:2 < X3 < •   •   ■   < X,- < •   ■   •   <Xn 

where 
.v„ = largest observation in the sample. 
x\ = smallest observation in the sample. 

The sample mean x is given by 
n 

■ X = Xxi/n = Xxi/n, (3-1) 

and the sample variance s^ based on («-l) degrees of freedom (df) is given by 

s'^Xix,-x)'l{n-l) = \-^=        -^^ (3-2a) 
'-1 n(n — 1) n(n — 1) 

= XXixi-XjYIllnin-1)1 (3-2b) 

Eq. 3-2b for .v^ is especially of interest. Because the observations x, and x, (/?^./) are independent, it is 
easier to take expected values of that particular form, and if one of the observations, say Xk.k ^ /, is an 
outlier, the absolute difference |x, — x*| would be large in comparison to other absolute differences not 
involving X*. 

Finally, we will make use of the maximum dispersion or sample range w given by 

w = x„ — xi, (3-3) 

i.e., the largest minus the smallest observations. 
With these definitions, we may now give several mathematical bounds of interest. 

3-2.2    BOUNDS FOR THE RATIO OF THE SAMPLE RANGE TO THE SAMPLE 
STANDARD DEVIATION 

G. W. Thomson (Ref. 1) has determined the upper and lower mathematical bounds of the ratio w/s of 
the sample range to the standard deviation. We quote from his paper (Ref. 1): 

"It can readily be shown that the upper and lower bounds o^w/s for samples from any population with 
nonzero variance arise from certain simple configurations of the sample points. The upper bound, which 
corresponds to minimum s for a given range w, results from the arrangement with (« - 2) of the points at 
the sample mean and the other two points at equal distances from the mean. The lower bound, which 
corresponds to maximum s for a given w, results from the concentration of half of the sample points at one 
extreme and the other half (plus one, if the sample size is odd) of the sample points at the other extreme. 
The numerical values of the bounds can be shown to be: . . . 

2\/{n — \)ln , for n even 

2\/nl{n + 1) , for n odd 
w Is < V2(n - I) . " (3-4) 
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We will illustrate the inequality (Eq. 3-4) with an example. 

Example 3-1: 
From the data of Table 2-2 we found that instrument Ii had the largest standard deviation in errors of 

measurement. Hence, we calculate the ratio of the range to standard deviation and check with the bounds 
of Eq. 3-4 to see whether there is possibly an error in computation. 

We see from Eq. 2-9 that 

S] = 0.04714, and therefore, our .s =5. = 0.2171. 

Furthermore, from either Table 2-1 or Table 2-2 we note the largest reading for instrument Ii is 10.32, and 
the smallest reading is 9.44, or the sample range is w = 0.88. Hence the quantity w/s = 0.88/0.2171 = 4.053, 
whereas the upper bound is 

V2(« - 1) = 7.62 

and the lower bound is 

2\/(«- !)/«= 1.97 

so that neither bound is reached, and "everything is go" to test for statistical outliers! 
Since the standard deviation is the most efficient estimate of dispersion, but is more difficult to calculate, 

statisticians have often determined the range and used the bounds of Eq. 3-4 as a numerical check for wild 
values of the sample standard deviation. 

3-2.3    BOUNDS FOR THE RESIDUALS OR DEVIATIONS FROM THE SAMPLE MEAN 

In a 1968 paper titled "How Deviant Can You Be?", Nobel Prize winner Paul A. Samuelson 
(Ref. 2) studied maximum deviations from the sample and population means and showed that for 
a finite universe of A'' items, no value can lie more than *^(A^ - 1) standard deviations away from the 
mean. Samuelson also showed for the sample standard deviation s' based on the number of sample 
items It, instead of (/i - 1) df, that 

max|x, — x\< sjn — 1 s' (3-5) 

where the sample standard deviation s' based on a total sample size « is 

■     s' = V2(x,- - xfln. ' (3-6) 

The conversion of 5, from Eq. 3-2, to .y'is given by ;. 

s = s/n/in- 1)5' •    ■- (3-7) 

and hence in terms of i', we also have that • 

max\x, — x\<[(n~\)/\/n]s. (3-8) 

Samuelson (Ref. 2) furthermore points out that the inequality (Eq. 3-5) may be sharpened in only 
special cases or restrictions: 

"Thus, if the probability distribution is known to be symmetric, the greatest relevant deviant will be 
found where all but two of the observations are clustered halfway between the remaining two, and for a 
symmetric distribution the above theorem [our inequality (Eq. 3-5) using s'] can have •A' - 1 replaced by 
/JVyZ a definite improvement when N>2.'' 
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It is well-known that for any population with mean ^ and standard deviation a, the Tchebycheff 
inequality (TI) states that 

Pr[\{x-n)/a\>L]<\/U (3-9) 
where 

L = selected "limit". 

Samuelson (Ref. 2) applies this to a finite universe of N items by equating \/U to 1//V to give 

P/-[|(.v-M)/a|>v^] < 1/^ (3.10) 

which, for example, states that for a universe of only 2 items not more than one of the observations can 
he more than 1.414 standard deviations away from the mean with the probability 0.5. The inequality (Eq. 
3-5) is much sharper, however, because it says that no observation may lie more than just 1.00 standard 
deviation from the mean. 

Samuelson (Ref. 2) summarizes his results in terms of the following two theorems and a final summary: 
''Theorem. Of N observations, no r (of them) [r = number less than A^] can be more than the following 

number of standard deviations from the mean: 
^N/r for r an even number, 

and 
(A^ - 1) / V {Nr - 1) for r an odd number. 

''Theorem: No one of the A' observations can be more than A' mean absolute deviations away from the 
median. 

"Final Summary: Although TchebychefPs inequality cannot, in general, be improved upon, for uni- 
verses (or samples) known to consist of a finite number of items N, an improvement on TchebychefPs in- 
equality is possible when dealing with r of A' items, r being odd, but with the relative amount of improve- 
ment ^0 as A'-'°°." 

In a fundamental and very important paper, which appeared in 1936, Pearson and Chandra Sekar (Ref 
3) studied the recommendation of W. R. Thompson (Ref. 4) for detecting outliers in a sample based on 
the use of an arbitrary x,   selected at random from a sample of size n and the criterion 

/, = (x, - F)/5'. (3.11) 

In particular, Pearson and Chandra Sekar (Ref. 3) were interested in the possible use of Eq. 3-11 and its 
efficiency in testing for outliers in the presence of more than a single outlier. They found, for example 
that if the significance level of 0.10 (10%) were used, involving the risk of rejecting one observation in 
every 10 samples when the null hypothesis Ho is true, then under po circumstances could one reject more 
than one observation until a sample of size « = 11 is reached, and one cannot reject more than two obser- 
vations until A7 = 22 is reached; no more than three observations until n = 33, etc. This led Pearson and - 
Chandra Sekar to make a thorough study of the mathematical bounds on the sample values since the sta- 
tistical frequencies of acceptance and rejection from random sample theory may be spuriously interpreted 

Pearson and Chandra Sekar (Ref. 3) considered the n values of the t, in a sample arranged in descend- 
ing order of absolute magnitude as 

Ui|>U2|>--->U„| (3.12) 

and also the n values of the /,   arranged in magnitude considering sign as 

.    r<">/'^>>-•■>/<"'. (3-13) 

In an appendix to Ref. 3, J. M. C. Scott presented the following information concerning bounds that 
may be of some possible interest: 
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max|/,| = \/n{n — i)/[i{n — i) + I], if / odd and / < n (3-14) 

(or max|?i|  = Vn - 1 as Samuelson (Ref. 2) later showed) 

max|/„| = yJin — \)/{n + 1), if / = n and /is odd (3-15) 

max|/,| = y/n/i, if / is even. (3-16) 

The quantities ?*^* and ?'""'* also reach into the tails of distributions of interest, as J. M. C. Scott 
(Appendix, Ref. 3) shows that ^___  

max?'^' = V(«-2)/2 ' (3-17) 
and 

min;"'"" = -V(«-2)/2. (3-18) 

We quote from Scott (Ref. 3): 
"The maximum value of |/i| occurs when {n - 1) of the observations have the same (identical) value and 
the remaining observation any different value. The maximum ?'^' occurs when (« - 2) observations have 
the same (identical) value and the other two have a different but common value, that is, ?'" = /'^'. The 
maximum | /2I occurs when {n - 2) observations have the same or identical value and the other two differ 
with ?i = - ti. The maximum l^.^l occurs when (n - 3) observations have the same value and the other 
three differ with tt = tj = -ty, etc." (This process continues similarly as described in Ref. 3, Appendix.) 

Thus we see that Pearson and Chandra Sekar (Ref. 3), in fact, made a very substantial contribution to 
the problem of testing random sample values for outliers, especially for small sample size n. Indeed, the 
mathematical bounds will be the controlling conditions in some cases, and we should be aware of their ef- 
fect, especially insofar as such bounds have rigid controls on random sampling distributions for testing 
outliers. 

With these preliminaries on mathematical bounds, we will consider the sampling or probability distri- 
butions for the special cases of samples of size either n = 2 or n = 3. 

3-3    SOME RELATIONSHIPS AND SAMPLING DISTRIBUTIONS FOR SAMPLES OF 
SIZE TWO OR THREE 

3-3.1    RELATION BETWEEN THE RANGE AND STANDARD DEVIATION EOR A 
SAMPLE OE SIZE TWO 

When « = 2, there is a special relation between the sample range and the two sample standard devia- 
tions, i.e., 

w=2s'=V2s       (« = 2only). (3-19) 

The relationship given by Eq. 3-19 is often of some practical interest. In fact, since the range and the two 
sample standard deviations differ only by constant factors, it is easy to establish the probability distribution 
of all three quantities. In this connection, it is well-known from statistical theory that, for any sample size 
and the assumption of sampling a normal population, the quantities 

{n - l)s'/o' = ns''/o' = S(JC, - x)'/o' - x\n - 1). (3-20) 

Or, the total sum of squares (SS) about the sample mean divided by the population variance follows the 
chi-square distribution with («   —  1) df. 

From Eq. 3-20 it is easily noted that when we have a sample of size n = 2, 

sya^ = Is'Va^ = wyila') = x^(l) (3-21) 
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or all of the first three quantities in Eq. 3-21 are distributed as chi-square with a single degree of freedom. 
Moreover, from Eq. 3-21 it is easily seen that 

s|<r=^/2s' /a = w/^Jl(J = x{'^), (3-22) 

or the square roots of the first three quantities are distributed as chi with 1 df. 
This means that 

Pr[slo < Xo] = Pr[s'ja < Xo/\/2] = Pr[wja < \/2 XQ] 

= 2^1 {lly/2^-)exp{-t'l2)dt - 1, Xo > 0 (3-23) 

which is in terms of the standardized normal integral 

3-3.2    THE   RANGE  FOR  SAMPLES  OF  SIZE THREE AND  PROPERTIES  OF THE TWO 
CLOSEST OF THREE OBSERVATIONS 

The case of a sample of size three (« = 3) from a normal population is also of some special practical in- 
terest concerning the problem of outliers. To begin with, the ratio of the sample range to the sample 
standard deviation takes on a rather simple distributional form, and historically, there has been much in- 
terest in samples of size three from the standpoint of checking results. Thus many experimenters, espe- 
cially chemists, have reasoned as follows: "If I take only one observation, then I can't be sure it is a good 
value. If I take two observations, then I can't know which one is correct either. But if I take three obser- 
vations, then I can always select the closest two of the three and depend on them!" 

The range wj. of a sample of three observations is 

W3 = X3 - X\ (3-24) 

i.e., the largest minus the smallest of the observations. 
It can be shown (see for example Ref. 5, p. vii, Eq. 12, and p. xxxiii, Eq. 46, that the probability 

distribution of Wi/a can be related directly to the bivariate normal distribution. In fact, for sam- 
ples of size « = 3 

Pr[w3/a<wo] = 12F(wo/\/2, wo/V6) (3-25) 

= 12/^°     //'    {\l27r)cxp[-ix' + y')l2]dxdy 

and it may be determined directly from Table III of Ref. 5. 
The probability integral of the range for sample sizes of « = 2 (1)20, including n - 3, has been tabu- 

lated by Pearson and Hartley in Ref. 6. 
As a result of intense interest on the part of scientific and engineering personnel, especially chemists, 

Lieblein (Ref. 7) carried out an excellent study on the properties of certain sample statistics involving the 
closest pair of observations in a sample of size three. This is especially important since there is clearly a 
very natural tendency to quote, use, and depend on only the closest two of three observations and to brand 
the remaining one as being discrepant, or an "outlier". Lieblein describes the condition quite aptly in the 
abstract or summary of his paper (Ref. 7) as follows: 

"Triplicate readings are of wide occurrence in experimental work. Occasionally, however, only the 
closest pair of a triad is used, and the outlying high or low one discarded as evidencing some gross error. 
The present paper presents a mathematical investigation leading to precise determination of some of the 
biases that result from such selection. This project was suggested by certain experiments involving random 
samphng numbers and analysis of published chemical determinations. The theoretical findings agree close- 
ly with the empirical results and imply that selected pairs not only tend to overesfimate considerably the 
precision of the experimental procedure, but also result in less accurate determinations.". 
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Lieblein's paper (Ref. 7) is highly recommended for study by experimental investigators in all fields of 
application since the investigators may be often throwing away important information in the sample and, 
hence, possibly render bias to their conclusions. For our purposes, however, we will limit our coverage to 
the sampling distributions of normal samples of size three for (1) the ratio of the difference between the 
closest two of three observations and the sample range and (2) the ratio of the sample range to the sample 
standard deviation. Thus the three ordered observations are 

and, as Lieblein did, we designate these three (not ordered) values as 

x',x",x"' 

where x' and x" are the closest two of the three, and we take x'>x" for convenience. Lieblein then finds 
the probability distribution function (pdf) of 

y = ix'-x")/ix,-xi) (3-26) 

for sample of « = 3 from a normal parent to be simply 

f(y) - 3y/3l[7riy'-y+l)l 0<y< 1/2. (3-27) 

We note that the sample statistic y in Eq. 3-26 does not depend on any nuisance population parameters 
and is completely independent of origin and scale effects. Thus for random samples of three from an as- 
sumed normal population, Eq. 3-26 may be calculated to discern whether the closest two observations are 
actually too close or too far apart by referring the calculated value to a table of percentage points. 

The cumulative distribution of >' in Eq. 3-26 is (Ref. 7) 

Pr[y<yo] = F(yo) - (6/7r) arc tan [{2yo - O/x/T] + 1* (3-28) 

where 
yo = any upper limit. 

The mean E(y) and standard deviation a(y) of y are 

E{y) = 0.2621 (3-29) 
and 

<7iy) = 0.1428. (3-30) 

The lower 1% probability level of Eq. 3-28 is >'o = 0.00603, and the lower 5% level is at yo = 0.02979 
(Ref. 7) for judging whether the two closest observations are "unusually close", so that the third one is an 
"outlier". If y of Eq. 3-26 does not fall below one of these selected values, the remaining observation 
should not be suspected. 

For samples of size three, a paper by Anscombe and Barron (Ref. 8) is also of particular interest be- 
cause it discusses the choice of an outlier rejection criterion in terms of the effect of it on the mean square 
error of estimates of population parameters, e.g., the mean. 

Finally, for samples of three observations the distribution of the sample range divided by the sample 
standard deviation, i.e., w/s, may be of particular interest and, in' fact, takes on a rather simple form. 
Thomson (Ref. 1) points out in this connection that the upper a]-F percentage point of w/s is determined 
simply from 

a,-f=2cos[30°(l-F)] (3-31). 

* The arc tan is in radians. When arc tan is expressed in deg, the constant b/ir must be changed to 1/30. 
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where 
F = cumulative relative frequency. 

Thus if we want the upper 5% point or the 95% cumulative level, we set F = 0.95 and find that 

ao.95 = Upper ao.o5 = 1.9993. 

Lower percentage points are obtained by putting f <0.50, e.g., F = 0.05 in Eq. 3-31 gives the lower 5% 
level—or actually the 5% level—as 

Lower ao.05 = 2cos[30°(0.95)] = L75763. 

Unfortunately, if w/s is significantly low (or high), it would not reveal whether xi or X3 is an outlier. 
Thus Lieblein's closest two out of three test, or Eq. 3-26, would be best for this. See Example 3-2 for an il- 
lustration of Lieblein's procedure. 

Example 3-2: 
To illustrate Lieblein's "closest pair of three" statistical test, let us take the data on the fourth round of 

Table 2-2. In this particular case the measured times for observers L, L, and I3 are 9.79, 9.71, and 9.70 s, 
respectively. Is there any evidence that L's reading of 9.79 is an outlier? 

We note in this connection that 

9.70<9.71<9.79, 

so that the range w = Xj - x, = 9.79 - 9.70 = 0.09. Also x' = 9.71 and x" = 9.70, so that x' - x" = 
0.01. Thus from Eq. 3-26 we see that Lieblein's 

9 71  _ 9 70 
y    =    9 79 _ 9 70    =  0.01/0.09   =  0.111 

and from Eq. 3-28 

Pr[y<0.\\\] = 0.19 

which does not fall in the range of a significant probability, i.e., PA-<0.05, for example. Therefore, we 
conclude that the closest two values, 9.70 and 9.71, are not so close as to indicate that 9.79 should be dis- 
carded. Also this example points out that, as Lieblein has indicated, if only the closest two values of the 
three were used, we would be discarding too often an apparently good observation due to random sam- 
pling. 

3-4    BASIS OF STATISTICAL CRITERIA FOR OUTLIERS 

We will now develop sample criteria for testing the significance of the outlying or remote values for 
general sample sizes—i.e., not only for « = 2 or 3 as previously stated, but also for any greater sample size 
as well. In fact, the coverage that follows represents the more usual cases that will occur in practice. 

There are a number of criteria for testing outliers. In all of these the doubtful observation is included in 
the calculation of the numerical value of a sample criterion (or statistic). The numerical value is then com- 
pared with a critical value based on the theory of random sampling to determine whether the doubtful ob- 
servation is to be retained or rejected. The critical value is that value of the sample criterion that would be 
exceeded by chance with some specified (small) probability on the assumption that all the observations 
did indeed constitute a random sample from a common system of causes, a single parent population, dis- 
tribution, or universe. The specified small probability is called the significance level or percentage point 
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re. and can be thought of as the risk of erroneously rejecting a good observation. It becomes clear, therefo.., 
that if there exists a real shift or change in the value of an observation that arises from nonrandom' 
causes—human error, loss of calibration of instrument, change of measuring instrument, or even change 
of time of measurements, etc.—the numerical value of the sample criterion used would exceed the critical 
value based on random sampling theory. Tables of critical values are usually given for several different 
significance levels, for example, 5% or 1%. For statistical tests of outlying observations, it is generally 
recommended that a low significance level, such as 1%, be used and that significance levels greater than 
5% would not be common practice. In this chapter we will usually illustrate the use of the 5% significance 
level. Proper choice of a significance level depends on the particular problem, just what may be involved, 
and the risk that one is willing to take in rejecting a good observation—i.e., whether the null hypothesis 
stating "all observations in the sample come from the same normal population" may be properly as- 
sumed. 

It should be pointed out that almost all criteria for outliers are based on an assumed underlying normal 
(Gaussian) population, universe, or distribution. When the data are not normally or approximately 
normally distributed, the probabilities associated with these tests will be different. Until such time as cri- 
teria not sensitive to the normality assumption are developed, the experimenter should be cautioned 
against interpreting the probabilities too literally. 

Although our primary interest is to detect outlying observations, we remark that some of the statistical 
criteria presented may also be used to test the hypothesis of normality or that the random sample taken 
did indeed come from a normal, or Gaussian, population. For all practical purposes the end result is the 
same, i.e., we really wish to know whether we ought to proceed as if we have a sample of homogeneous 
observations—i.e., no outlying observations—from the same (normal) universe. 

3-5    RECOMMENDED OUTLIER DETECTION CRITERIA FOR SINGLE SAMPLES 

3-5.1    TESTS FOR EITHER THE HIGHEST OR LOWEST OBSERVATION 
Let the sample of n observations be denoted in order of increasing magnitude  Xi < X2 < Xj < 

< Xn. The xi or x,, denotes the doubtful value, i.e., the smallest or largest value. The test criterion for the 
largest item T„, recommended for testing whether or not the largest observation is an outlier, based on 
the work of Grubbs (Refs. 9, 10, 11, and 12), is as follows: 

n ^ (3-32). 

where 
X = arithmetic average of all n values 
s = estimate of the population standard deviation based on the sample data calculated as follows: 

1_   « — 1     J |_    n(n — 1) 
(3-33) 

If X|, the smallest value, rather than x„, is the doubtful value, the test criterion (Refs. 9, 10, II, and 12) 
is 

T--         JC        JC I 
(3-34) 

The critical values for either case, for the I and 5% levels of significance, from Grubbs and Beck (Ref. 13), 
are given m Table 3-1. Table 3-1 gives the one-sided significance levels. In many previous treatments of 
outliers, the tables listed values of significance levels double those in the accompanying tables since it was 
considered that the experimenter would test either the lowest or highest observation (or both) for statisti- 
cal significance. However, to be consistent with actual practice and in an attempt to avoid any further 
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TABLE 3-1 

CRITICAL VALUES FOR r(ONE-SIDED TEST OF T, OR r„) WHEN THE STANDARD DEVIATION 
IS CALCULATED FROM THE SAME SAMPLE (Ref. 13) 

No. Upper Upper Upper Upper Upper Upper 
Obs. 0.1% Sig. 0.5% Sig. l%Sig. 2.5% Sig. 5% Sig. 10% Sig. 

n Level Level Level Level Level Level 
3 1.155 1.155 1.155 1.155 1.153 1.148 
4 1.499 1.496 1.492 1.481 1.463 1.425 
5 1.780 1.764 1.749 1.715 1.672 1.602 
6 2.011 1.973 1.944 1.887 1.822 1.729 
7 2.201 2.139 2.097 2.020 1.938 1.828 
8 2.358 2.274 2.221 2.126 2.032 1.909 
9 2.492 2.387 2.323 2.215 2.110 1.977 

10 2.606 2.482 2.410 2.290 2.176 2.036 
11 2.705 2.564 2.485 ■■     2.355 2.234 2.088 
12 2.791 2.636 2.550 2.412 2.285 2.134 
13 2.867 2.699 2.607 2.462 2.331 2.175 
14 2.935 2.755 2.659 2.507 2.371 2.213 
15 2.997 2.806 2.705 2.549 2.409 2.247 
16 3.052 2.852 2.747 2.585 2.443 2.279 
17 3.103 2.894 2.785 2.620 2.475 2.309 
18 3.149 2.932 2.821 2.651 2.504 2.335 
19 3.191 2.968 2.854 2.681 2.532 2.361 
20 3.230 3.001 2.884 2.709 2.557 2.385 
21 3.266 3.031 2.912 2.733 2.580 2.408 
22 3.300 3.060 2.939 2.758 2.603 2.429 
23 3.332 3.087 2.963 2.781 2.624 2.448 
24 3.362 3.112 2.987 2.802 2.644 2.467 
25 3.389 3.135 3.009 2.822 2.663 2.486 
26 3.415 3.157 3.029 2.841 2.681 2.502 
27 3.440 3.178 3.049 2.859 2.698 2.519 
28 3.464 3.199 3.068 2.876 2.714 2.534 
29 3.486 3.218 3.085 2.893 2.730 2.549 
30 3.507 3.236 3.103 2.908 2.745 2.563 
31 3.528 3.253 3.119 2.924 2.759 2.577 
32 3.546 3.270 3.135 2.938 2.773 2.591 
33 3.565 3.286 3.150 2.952 2.786 2.604 
34 3.582 3.301 3.164 2.965 2.799 2.616 
35 3.599 3.316 3.178 2.979 2.811 2.628 
36 3.616 3.330 3.191 2.991 2.823 2.639 
37 3.631 3.343 3.204 3.003 2.835 2.650 
38 3.646 3.356 3.216 3.014 2.846 2.661 
39 3.660 3.369 3.228 3.025 2.857 2.671 
40 3.673 3.381 3.240 3.036 2.866 2.682 
41 3.687 3.393 3.251 3.046 2.877 2.692 
42 3.700 3.404 3.261 3.057 2.887 2.700 
43 3.712 3.415 3.271 3.067 2.896 2.710 
44 3.724 3.425 3.282 3.075 2.905 2.719 
45 3.736 3.435 3.292 3.085 2.914 2.727 
46 3.747 3.445 3.302 3.094 2.923 2.736 
47 3.757 3.455 3.310 3.103 2.931 2.744 
48 3.768 3.464 3.319 3.111 2.940 

(cont'd 
2.753 

on next page) 

3-13 



DARCOM-P 706 103 

TABLE 3-1 (cont'd) 

No. Upper Upper Upper Upper Upper Upper Obs. 0.1%Sig. 0.5% Sig. l%Sig. 2.5% Sig. 5% Sig. 10% Sig. n Level Level Level Level Level Level 
49 3.779 3.474 3.329 3.120 2.948 2.760 50 3.789 3.483 3.336 3.128 2.956 2.768 51 3.798 3.491 3.345 3.136 2.964 2.775 52 3.808 3.500 3.353 3.143 2.971 2.783 53 3.816 3.507 3.361 3.151 2.978 2.790 54 3.825 3.516 3.368 3.158 2.986 2.798 55 3.834 3.524 3.376 3.166 2.992 2.804 56 3.842 3.531 3.383 3.172 3.000 2.811 
57 3.851 3.539 3.391 3.180 3.006 2.818 58 3.858 3.546 3.397 3.186 3.013 2.824 59 
y#4 

3.867 3.553    . 3.405 3.193 3.019 2.831 
60 3.874 3.560   . 3.411 3.199 3.025 2.837 61 3.882 3.566 3.418 3.205 , .     3.032 2.842 
62 3.889 3.573 3.424 3.212 3.037 2.849 63 3.896 3.579 3.430 3.218 3.044 2.854 64 3.903 3.586 3.437 3.224 3.049 2.860 65 3.910 3.592 3.442 3.230 3.055 2.866 66 3.917 3.598   . 3.449 3.235 3.061 2.871 67 3.923 3.605  . 3.454 3.241 3.066 2.877 68 3.930 3.610 3.460 3.246 3.071 2.883 
69 3.936 3.617    ,.. 3.466 3.252 3.076 2.888 70 3.942 3.622 3.471 3.257 3.082 2.893 
71 3.948 3.627 3.476 3.262 3.087 2.897 
10; 3.954 3.633 3.482   ■ 3.267 3.092 2.903 73 3.960 3.638 3.487 3.272 3.098 2.908 
74 3.965 3.643 3.492 3.278 3.102 2.912 
75 3.971    ■ 3.648 3.496 3.282 3.107 2.917 76 3.977 3.654     ,. 3.502 3.287 3.111 2.922 
77 3.982 3.658 3.507 3.291 3.117 2.927 78 3.987 3.663 3.511 3.297 3.121 2.931 
79 3.992 3.669 3.516 3.301 3.125 2.935 
80 3.998 3.673 3.521 3.305 3.130 2.940 81 4.002 3.677 3.525 3.309 3.134 2.945 
82 4.007 3.682 3.529 3.315 3.139 2.949 
83 4.012 3.687 3.534 3.319 3.143 2.953 84 4.017 3.691    ^ 3.539 3.323 3.147 2.957 
85 4.021      , 3.695 3.543 3.327 3.151 2.961 
86 4.026 3.699 3.547 3.331 3.155 2.966 
87 4.031 3.704 3.551 3.335 3.160 2.970 
88 4.035 3.708     . 3.555 3.339 3.163 2.973 
89 4.039 3.712 3.559 3.343 3.167 2.977 
90 4.044 3.716 3.563 3.347 3.171 2.981 
91 4.049 3.720 3.567 3.350 3.174 2.984 
92 4.053 3.725 3.570     , 3.355 3.179 2.989 93 4.057 3.728 3.575 3.358 3.182 2.993 
94 4.060 3.732 3.579 3.362 3.186 2.996 
95 4.064 3.736 3.582 3.365 3.189 3.000 
96 4.069 3.739 3.586 3.369     [ 3.193 3.003 
97 ^.073 3.744 3.589 3.372      .:-■ 3.196 3.006 
98 4.076 3.747 3.593 3.377 3.201 3.011 

(cont'd on next page) 
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TABLE 3-1 (cont'd) 

No. Upper Upper Upper Upper Upper Upper 
Obs. 0.1% Sig. 0.5% Sig. l%Sig. 2.5% Sig. 5% Sig. 10% Sig. 

n Level Level Level Level Level Level 

99 4.080 3.750 3.597 3.380 3.204 3.014 
100 4.084 3.754 3.600 3.383 3.207 3.017 
101 4.088 3.757 3.603 3.386 3.210 3.021 
102 4.092 3.760 3.607 3.390 3.214 3.024 
103 4.095 3.765 3.610 3.393 3.217 3.027 
104 4.098 3.768 3.614 3.397 3.220 3.030 
105 4.102 3.771 3.617 3.400 3.224 3.033 
106 4.105 3.774 3.620 3.403 3.227 3.037 
107 4.109 3.777 3.623 3.406 3.230 3.040 
108 4.112 3.780 3.626 3.409 3.233 3.043 
109 4.116 3.784 3.629 3.412 3.236 3.046 
110 4.119 3.787 3.632 3.415 3.239 3.049 
HI 4.122 3.790 3.636 3.418 3.242 3.052 
112 4.125 3.793 3.639 3.422 3.245 3.055 
113 4.129 3.796 3.642 3.424 3.248 3.058 
114 4.132 3.799 3.645 3.427 3.251 3.061 
115 4.135 3.802 3.647 3.430 3.254 3.064 
116 4.138 3.805 3.650 3.433 3.257 3.067 
117 4.141 3.808 3.653 3.435 3.259 3.070 
118 4.144 3.811 3.656 3.438 3.262 3.073 
119 4.146 3.814 3.659 3.441 3.265 3.075 
120 4.150 3.817 3.662 3.444 3.267 3.078 
121 4.153 3.819 3.665 3.447 3.270 3.081 
122 4.156 3.822 3.667 3.450 3.274 3.083 
123 4.159 3.824 3.670 3.452 3.276 3.086 
124 4.161 3.827 3.672 3.455 3.279 3.089 
125 4.164 3.831 3.675 3.457 3.281 3.092 
126 4.166 3.833 3.677 3.460 3.284 3.095 
127 4.169 3.836 3.680 3.462 3.286 3.097 
128 4.173 3.838 3.683 3.465 3.289 3.100 
129 4.175 3.840 3.686 3.467 3.291 3.102 
130 4.178 3.843 3.688 3.470 3.294 3.104 
131 4.180 3.845 3.690 3.473 3.296 3.107 
132 4.183 3.848 3.693 3.475 3.298 3.109 
133 4.185 3.850 3.695 3.478 3.302 3.112 
134 4.188 3.853 3.697 3.480 3.304 3.114 
135 4.190 3.856 3.700 3.482 3.306 3.116 
136 4.193 3.858 3.702 3.484 3.309 3.119 
137 4.196 3.860 3.704 3.487 3.311 3.122 
138 4.198 3.863 3.707 3.489 3.313 3.124 
139 4.200 3.865 3.710 3.491 3.315 3.126 
140 4.203 3.867 3.712 3.493 3.318 3.129 
141 4.205 3.869 3.714 3.497 3.320 3.131 
142 4.207 3.871 3.716 3.499 3.322 3.133 
143 4.209 3.874 3.719 3.501 3.324 3.135 
144 4.212 3.876 3.721 3.503 3.326 3.138 
145 4.214 3.879 3.723 3.505 3.328 3.140 
146 4.216 3.881 3.725 3.507 3.331 3.142 
147 4.219 3.883 3.727 3.509 3.334 3.144 

Reprinted with permission. Copyright © by the American Statistical Association. 
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misunderstanding, single-sided significance levels are tabulated herein so that both viewpoints can be rep- 
resented. The user can then make his own judgments in his many individual applications. 

The hypothesis that we are testing in every case is that all observations in the sample come from the 
same normal population. Let us adopt, for example, a significance level of 0.05 (or 0.01). If we are in- 
terested only in outliers that occur on the high side, we should always use the statistic Tn = {Xn — x)ls 
(Eq. 3-32) and take as critical value the 0.05 (or 0.01) point of Table 3-1. On the other hand, if we are interested 
only in outliers occurring on the low side, we should always use the statistic Ti = {x — x\) /^ (Eq. 3-34) and again 
take as a critical value the 0.05 (or O.OI) point of Table 3-1. Suppose, however, that we are interested in outliers 
occurring on either side but do not believe that outliers can occur on both sides simultaneously. We might, 
believe that at some time during the experiment something possibly happened to cause an extraneous variation 
on the high side or on the low side but that it was very unlikely that two or more such events could have 
occurred: one being an extraneous variation on the high side and the other an extraneous variation on the low 
side. With this point of view we should use the statistic !„ =(x„ -x)/sor the statistic Ti-\{x - Xi)/s, whichever 
is larger. If in this instance we use the 0.05 point of Table 3-1 as our critical value, the true significance level 
would be twice 0.05 or 0.10. If we wish a significance level of 0.05 and not 0.10, we must, in this case, use as a 
critical value the 0.025 point of Table 3-1. Similar considerations apply to the other tests given in the sequel. 

Example 3-3: 
As an illustration of the use of Tr, and Table 3-1, consider the following 10 observations on breaking 

strength (in pounds) of 0.104-in. hard-drawn copper wire arranged in increasing order: 568, 570, 570, 570, 
572, 572, 572, 578, 584, 596. The doubtful observation is the high value, x,o = 596. Is the value of 596 sig- 
nificantly high? 

The mean is J = 575.2, and the estimated standard deviation is s = 8.70. We compute 

^       _    596 - 575.2 
^'^     " 8J0  =  ^•^^• 

From Table 3-1 for n = 10, note that a Tw as large as 2.39 would occur by chance with probability less 
than 0.05. In fact, so large a value would occur by chance not much more often than 1% of the time. Thus 
using the 5% level of significance, the weight of the evidence is against the doubtful value having come 
from the same population as the others (assuming the population is normally distributed). Investigation 
of the doubtful value on physical grounds is therefore indicated. 

3-5.2    DIXON'S CRITERIA 

An alternative system, the Dixon criteria (based entirely on ratios of differences between the observa- 
tions), is described in the literature (Ref. 14). It may be used in cases where it is desirable to avoid calcula- 
tion of the standard deviation 5 or where quick judgment is necessary. For the Dixon test the sample cri- 
terion, or statistic, changes with sample size. Table 3-2 gives the appropriate statistic to calculate and also 
gives the critical values of the statistic for the 1, 5, and 10% levels of significance. 

Example 3-4: 

As an illustration of the use of Dixon's test, consider again the observations on breaking strength given 
in Example 3-3, and suppose that a large number of such samples had to be screened quickly for outliers, 
and it was judged too time-consuming to compute s. Table 3-2 for n =  \0 indicates use of 

Thus for n =  \0, 
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TABLE 3-2 
DIXON CRITERIA FOR TESTING OF EXTREME OBSERVATION 

(SINGLE SAMPLE)MRef. 14) 

Criterion 

Significance Level 

n 10% 5% 1% 

3 r\o = (X2 - - x,)/(x„ - X\) if smallest value is suspected; 0.886 0.941 0.988 
4 = (Xn - - Xn-\)j{X„ — xi) if largest value is suspected. 0.679 0.765 0.889 
5 0.557 0.642 0.780 
6 0.482 0.560 0.698 
7 0.434 0.507 0.637 

8 rii = {X2 - - X\)l{Xn-\ — xi) if smallest value is suspected; 0.479 0.554 0.683 
9 = ix„ - - X„-\)l{Xn — X2) if largest value is suspected. 0.441 0.512 0.635 

10 0.409 0.477 0.597 

11 ri\ = {Xi - - X\)l{Xn-\ — x\) if smallest value is suspected; 0.517 0.576 0.679 
12 = (x„- - Xn-l)l(X„ — JC2) if largest value is suspected. 0.490 0.546 0.642 
13 0.467 0.521 0.615 

14 rii = (X3 - - X\)j(Xn-2 — X\) if smallest value is suspected; 0.492 0.546 0.641 
15 = {x„ - Xn-l)l(X„ — xi) if largest value is suspected. 0.472 0.525 0.616 
16 0.454 0.507 0.595 
17 0.438 0.490 0.577 
18 0.424 0.475 0.561 

19 ■ •■   ■■■ 0.412 0.462 0.547 
20 0.401 0.450 0.535 
21 0.391 0.440 0.524 
22 0.382 0.430 0.514 
23 0.374 0.421 0.505 

24 0.367 0.413 0.497 
25 0.360 0.406 0.489 

'•x,<X2<-<X„ 

Reprinted with permission. Copyright ©by Biometrika trustees. 

For the measurements of breaking strength in this example, 

596 - 584 
A-ll     = 

596 - 570 
0.462, 

which is a little less than 0.477, the 5% critical value for n = 10. Therefore, under the Dixon criterion, we 
should not consider this observation as an outlier at the 5% level of significance. These results illustrate 
how borderline cases may be accepted under one test but rejected under another. 

It should be remembered, however, that the T statistic previously discussed is the best one to use for the 
single outlier case, and final statistical judgment should be based on it. See, for example, Ferguson (Refs. 
15 and 16). (The advent of the modern, scientific pocket calculator may reduce the need for the "quick" 
Dixon ratios.) 

Further examination of the sample observations on breaking strength of hand-drawn copper wire indi- 
cates that none of the other values need testing for rejection. 

With experience we may just look at the sample values to observe whether an outlier is present. How- 
ever, strictly speaking, the statistical test should be applied to all samples under examination to guarantee 
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the significance levels used. Comments are made later concerning multiple tests for outliers in a single 
sample since it changes the overall significance level. 

A test equivalent to r„(or T\) based on the sample sum of squared deviations from the mean for all the 
observations and the sum of squared deviations omitting the outlier is given by Grubbs in Ref. 9. 

3-5.3    OUTLIER TEST FOR SMALLEST AND LARGEST OBSERVATIONS 

The next type of problem to consider is the case in which there is the possibility of two outlying obser- 
vations, i.e., the least and the greatest observations in a sample. (The problem of testing the two highest 
or the two lowest observations is considered in par. 3-5.4.) To test the least and the greatest observations 
simultaneously as probable outliers in a sample, we use the ratio of the sample range to the sample 
standard deviation test of David, Hartley, and Pearson (Ref. 17). The significance levels for this sample 
criterion are given in Table 3-3. Alternatively, the largest residuals test of Tietjen and Moore (Ref. 18) 
could be used, as in par. 3-5.5.2. The procedure for the test of David, Hartley, and Pearson is explained 
by Example 3-5. 

Example 3-5: 
There is one rather famous set of observations that a number of writers on the subject of outlying ob- 

servations have referred to in applying their various tests for outliers. This classic set consists of a sample 
of 15 observations of the vertical semidiameters of Venus made by Lieutenant Herndon in 1846 (Ref. 19). 
In the reduction of the observations, the following residuals were found, which have been arranged in as- 
cending order of magnitude: 

0.48 
0.63 
LOl. 

The deviations -1.40 and 1.01 appear to be outliers. Here the suspected observations lie at each end of 
the sample. Much less work has been accomplished for the case of outliers at both ends of the sample 
than for the case of one or more outliers at only one end of the sample. This is not necessarily because the 
one-sided case occurs more frequently in practice but because two-sided tests are somewhat more difficult 
with which to deal. For a high and a low outlier in a single sample, we give two procedures. The first is a 
combination of tests, which includes the test of David, Hartley, and Pearson (Ref. 17). The second is a 
single test of Tietjen and Moore (Ref. 18), discussed in par. 3-5.5.2, which may have nearly optimum- 
properties. 

For the observations on the semidiameter of Venus previously stated, all the information on the avail- 
able measurement errors is contained in the sample of 15 residuals. In cases like this in which no inde- 
pendent estimate of variance is available (i.e., we still have the single sample case), a useful statistic is the 
ratio of the range of the observations to the sample standard deviation (David, Hartley and Pearson Ref 
17): 

-1.40 in. -0.24 -0.05 0.18 
-0.44 -0.22 0.06 0.20 
-0.30 -0.13 0.10 0.39 

s 

where 
s is as in Eq. 3-33. 

W  _   Xn— Xi ^        ^ ^ 
 ,  Xv<X2<- ■ ■<Xn (3-37) 

If Xn were about as far above the mean x as x\ is below x and if wjs were to exceed the chosen critical 
value from Table 3-3, one would conclude that both the doutful values could be outliers. If, however, xi 
and Xn were displaced from the mean by rather different amounts, then some further test would have to 
be made to decide whether to reject as outlying only the lowest value, only the highest value, or both the 
lowest and highest values. 

For this example the mean of the residuals or deviations is x = 0.018, the sample standard deviation s 
= 0.551, and the David, Hartley, and Pearson statistic (Ref. 17) is 
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TABLE 3-3 

CRITICAL VALUES FOR w/s (RATIO OF RANGE TO SAMPLE 
STANDARD DEVIATION)MRef. 17) 

Number of 5% 1% 0.5% 
Observations Significance Significance Significance 

n Level Level Level 

3 2.00 
4 2.43 
5           , 2.75 
6 3.01 
7 3.22 
8 3.40 
9 3.55 

10 3.68 
11 3.80 
12 3.91 
13 4.00 
14 4.09 
15 4.17 
16 4.24 
17 4.31 
18 4.38 
19 4.43 
20 4.49 
30 4.89 
40 5.15 
50 5.35 
60 5.50 
80 5.73 

100 5.90 
150 6.18 
200 6.38 
500 6.94 

1000 7.33 

2.00 2.00 
2.44 2.45 
2.80 2.81 
3.10 3.12 
3.34 3.37 
3.54 3.58 
3.72 3.77 
3.88 3.94 
4.01 . 4.08 
4.13 4.21 
4.24 4.32 
4.34 4.43 
4.43 . 4.53 
4.51 4.62 
4.59 4.69 
4.66 4.77 
4.73 4.84 
4.79 4.91 
5.25 5.39 
5.54 ,. 5.69 
5.77 ' 5.91 
5.93 6.09 
6.18 - 6.35 
6.36 . 6.54 
6.64 6.84 
6.85 . 7.03 
7.42 7.60 
7.80 7.99 

W = X„ — Xl,   Xi S X2 S: •   •   •    5=: Xn 

s =yJX{xi-]^'l{n- 1) ■ ;    ;     ■■. 

.   . - Reprinted with permission. Copyright © by Biometrika Trustees. 

L01-(-1.40)       2.41 
w/s = ^ - = =4.374. 

0.551 0.551 

From Table 3-3 for n = 15, we see that the value of w/s = 4.374 falls between the critical values for the 1 
and 5% levels. If the test were being run at the 5% level of significance, we would conclude that this 
sample contains one or more outliers. The lowest measurement, —1.40 in., is 1.418 below the sample 
mean; the highest measurement, 1.01 in., is 0.992 above the mean. Since, however, these extremes are not 
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symmetric about the mean, either both extremes are outliers, or only -1.40 is an outlier. That -1.40 is an 
outlier can be verified by use of the T\ statistic of Eq. 3-34. We have from Eq. 3-34 that 

^      ,-        ,,        0.018-(-1.40) 
T. = i.-..)ls = ^^^^ = 2.574. 

This value is greater than the critical value of 2.409 from Table 3-1 for the 5% level; therefore, we should 
look for the cause of this or reject -1.40. Since we have decided that -1.40 is an outlier, we use the re- 
maining 14 observations and test the upper extreme observation 1.01 either with the criterion (Eq. 3-32) 

Tn =   

or with Dixon's rn. Omitting -1.40 and renumbering the observations, we compute 

X   =     ^-^^     =  0.119,.9 = 0.401 

and 

-r       _    1.01 -0.119        T^T 
^'^ 0:401  =  2-22. 

From Table 3-1 for « = 14 we find that a value as large as 2.22 would occur by chance more than 5% of 
the time, so we should retain the value 1.01 in further calculations. For further information we calculate 
Dixon's 

=     ^-^-^'^     =     lQl-0-48     ^     0.53    ^ 
-X14-X3 1.01+0.24 1.25 

From Dixon's Table 3-2 for n = 14, we see that the 5% critical value for r^ is 0.546. Since our calculated 
value (0.424) is less than the critical value, we also retain 1.01 by Dixon's test, and no further values 
would be tested in this sample. 

It should be noted that in a multiplicity of tests of this kind, the final, overall significance level will be 
somewhat less than that used in the individual tests since we are offering more than one chance of accept- 
ing the sample as one produced by a random operation.* It is not our purpose to cover the theory of mul- 
tiple tests very extensively because it introduces a broad subject area although we will give some coverage 
of multiple-type tests as required in pars. 3-5.5.2 and 3-5.5.3. 

Finally, we should remark at this point that we have begun to reject some of the suspected outliers in 
our examples. To many experimental investigators, the matter of just rejecting observations on statistical 
grounds and depending on inferences from the remaining "statistically homogeneous" values "sounds a 
very sour note" indeed. We agree that we must be very careful about rejecting observations, including 
perhaps the outlying ones, unless we can very definitely establish that they are due to errors of measure- 
ment, for example, and do not represent the true characteristics of the physical process we are sampling or 
investigating. Actually, data are taken, hopefully, to make further inferences from our investigations or to 
place our findings in a generalized framework. Thus we desire to estimate population means, standard 
deviations, and other characteristics of the universe we are sampling, and the rejection of observations 
will very definitely have an important effect on any such inferences. For this reason, we will discuss this 
general and important problem later in more detail, but next we will address the problem of detecting 
either two high or two low outliers especially before proceeding to tests for many outliers. Also we will re- 
turn to Example 3-5 for further consideration relative to the so-far-retained value of 1.01. 

* In Example 3-5 our resulting or overall significance level turns out to be very close to 90% and is not 95%. 
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3-5.4    SIGNIFICANCE TESTS FOR THE TWO HIGHEST OR THE TWO LOWEST 
OBSERVATIONS 

To detect whether the two largest or the two smallest observations are probable outliers, we employ a 
test provided by Grubbs (Refs. 9, 10, 11, and 12). This test is based on the ratio of the sample SS when 
the two doubtful values (two highest or two lowest) are omitted to the total sample SS when the two 
doubtful values are included. If simplicity in calculation is the prime requirement, the Dixon type of test 
(par. 3-5.2)—actually omitting one observation in the sample—might be used for this case also. In illus- 
trating the test procedure, we will apply the theory to two examples. 

Example 3-6: .•   . u * 
In a comparison of strength of various plastic materials, one characteristic studied was the percentage 

of elongation at break. Before comparison of the average elongation of the several materials, it seems de- 
sirable to isolate for further study any pieces of a given material that gave very small elongation at break- 
age compared with the rest of the pieces in the sample. In such an investigation one might have primary 
interest only in outliers to the left of the mean for study since very high readings indicate exceeding plas- 
ticity—a desirable characteristic. 

Ten measurements of percentage of elongation at break made on Material No. 23 are 3.73, 3.59, 3.94, 
4.13, 3.04, 2.22, 3.23, 4.05, 4.11, and 2.02. 

Arranged in ascending order of magnitude, these measurements are 2.02, 2.22, 3.04, 3.23, 3.59, 3.73, 
3.94, 4.05, 4.11, 4.13. The questionable readings are the two lowest, 2.02 and 2.22. We can test these two 
low readings simultaneously by using the following criterion (Refs. 9, 10, 11, and 12): 

4^=S(x,-xu)VS(x,-3^^    ■ (3-38) 

where for the numerator sum of squares the two lowest observations are omitted and 

x,,2= Xx,/(«-2). (3-39) 
1=3 

If we were to test the significance of the two highest observations, clearly, the largest and next to largest 
observations only would be truncated. See the equations at the bottom of Table 3-4. 
For the 10 measurements the denominator S^ of Eq. 3-38 is 

n n 

„                  nXx] — {Xxif 
S2=X{x,-^'=-^ ^^      ; (3-40) 

1=1 n 

_ 10(121.3594)-(34.06)' 

10 

and for the truncated sample, using eight measurements. 

= 5.351 

(n-2)Xx]-{Xxd^ 

5^,= S(x,-3cu)^= '-'    ,    '-' (3-41) 
i=3 ' n — 2 

8(112.3506)-(29.82)' = i 197 

8 

Thus we find by Eq. 3-38 

Sii      1.197 >1,2 
= 0.224. 

S'      5.351 
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TABLE 3-4 

' ,nlS' OR SlilS^ FOR SIMULTANEOUSLY TESTING CRITICAL VALUES FOR Slmi^  UR ^U 

THE TWO LARGEST OR TWO SMALLEST OBSERVATIONS (Ref 13)' 

No. of Lower Lower Lower Lower Lower Lower 
Obs. 0.1% Sig. 0.5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig. 

n Level Level Level Level Level Level 
4 0.0000 0.0000 0.0000 0.0002 0.0008 0.0031 
5 0.0003 0.0018 0.0035 . 0.0090 0.0183 0.0376 
6 0.0039 0.0116 0.0186 0.0349 0.0564 0.0920 
7 0.0135 0.0308 0.0440 0.0708 0.1020 0.1479 
8 0.0290 0.0563 0.0750 0.1101 0.1478 0.1994 
9 0.0489 0.0851 0.1082 0.1492 0.1909 0.2454 
10 0.0714 0.1150 0.1414 0.1864 0.2305 0.2863 
11 0.0953 0.1448 0.1736 0.2213 0.2667 0.3227 ■ 
12 0.1198 0.1738 0.2043 0.2537 0.2996 0.3552 
13 0.1441 0.2016 0.2333 0.2836 0.3295 0.3843 
14 0.1680 0.2280 0.2605 0.3112 0.3568 0.4106 
15 0.1912 0.2530 0.2859 0.3367 0.3818 0.4345 
16 0.2136 0.2767 0.3098 0.3603 0.4048 0.4562 
17 0.2350 0.2990 0.3321 0.3822 0.4259 0.4761 
18 0.2556 0.3200 0.3530 0.4025 0.4455 0.4944 
19 0.2752 0.3398 0.3725 0.4214 0.4636 0.5113 
20 0.2939 0.3585 0.3909 0.4391 0.4804 0.5270 
21 0.3118 0.3761 ■  0.4082 0.4556 0.4961 0.5415 
22 0.3288 0.3927 0.4245 0.4711 0.5107 0.5550 
23 0.3450 0.4085 0.4398 0.4857 0.5244 0.5677 
24 0.3605 0.4234 0.4543 0.4994 0.5373 0.5795 
25 0.3752 0.4376 0.4680 0.5123 0.5495 0.5906 
26 0.3893 0.4510 . 0.4810 0.5245 0.5609 0.6011 
27 0.4027 0.4638 0.4933 0.5360 0.5717 ■ 0.6110 
28 0.4156 0.4759 0.5050 0.5470 0.5819 0.6203 
29 0.4279 0.4875 0.5162 0.5574 0.5916 0.6292 
30 0.4397 0.4985 0.5268 0.5672 0.6008 0.6375 
31 0.4510 0.5091 0.5369 0.5766 0.6095 0.6455 
32 0.4618 0.5192 0.5465 0.5856 0.6178 0.6530 
33 0.4722 0.5288 0.5557 0.5941 0.6257 0.6602 
34 0.4821 0.5381 0.5646 0.6023 0.6333 0.6671 
35 0.4917 0.5469 0.5730 0.6101 0.6405 0.6737 
36 0.5009 0.5554 0.5811 0.6175 0.6474 

(cont'd on 
0.6800 

next page) 

S = Xixi — xf ; x=— t X,; xi < X2 < • • 
1=1 n i = [ 

2 " _       2     - 1        V 
Sl,2 =  .S (X, - X,,2)    ; Af,,2 =  J^ih"" 

Sn-l,n =  .2j  (Xi — Xn-\,n)    ', Xn-\,n —      _^ ^y^' 
n-2 

* A calculated ratio less than the appropriate critical ratio in this table calls for rejection of the null hypothesis. 
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^ - TABLE 3-4 (cont'd) 

No. of Lower Lower Lower Lower Lower Lower 

Obs. 0.1% Sig. 0.5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig. 
n Level Level Level Level Level Level 

37 0.5098 0.5636 0.5889 0.6247 0.6541 0.6860 

38 0.5184 0.5714 0.5963 0.6316 0.6604 0.6917 

39 0.5266 0.5789 0.6035 0.6382 0.6665 0.6972 
40 0.5345 0.5862 0.6104 0.6445 0.6724 0.7025 
41 0.5422 0.5932 0.6170 0.6506 0.6780 0.7076 

42 0.5496 0.5999 0.6234 0.6565 0.6834 0.7125 
43 0.5568 0.6064 0.6296 0.6621 0.6886 0.7172 
44 0.5637 0.6127 0.6355 0.6676 0.6936 0.7218 
45 0.5704 0.6188 0.6412 0.6728 0.6985 0.7261 

46 0.5768 0.6246 0.6468 0.6779 0.7032 0.7304 

47 0.5831 0.6303 0.6521 0.6828 0.7077 0.7345 

48 0.5892 0.6358 0.6573 0.6876 0.7120 0.7384 

49 0.5951 0.6411 0.6623 0.6921 0.7163 0.7422 

50 0.6008 0.6462 0.6672 0.6966 0.7203 0.7459 

51 0.6063 0.6512 0.6719 0.7009 0.7243 0.7495 
52 0.6117 0.6560 0.6765 0.7051 0.7281 0.7529 

53 0.6169 0.6607 0.6809 0.7091 0.7319 0.7563 
54 0.6220 0.6653 0.6852 0.7130 0.7355 0.7595 

55 0.6269 0.6697 0.6894 0.7168 0.7390 0.7627 

56 0.6317 0.6740 0.6934 0.7205 0.7424 0.7658 

57 0.6364 0.6782 0.6974 0.7241 0.7456 0.7687 
58 0.6410 0.6823 0.7012 0.7276 0.7489 0.7716 
59 0.6454 0.6862 0.7049 0.7310 0.7520 0.7744 
60 0.6497 0.6901 0.7086 0.7343 0.7550 0.7772 
61 0.6539 0.6938 0.7121 0.7375 0.7580 0.7798 
62 0.6580 0.6975 0.7155 0.7406 0.7608 . 0.7824 
63 0.6620 0.7010 0.7189 0.7437 0.7636 0.7850 
64 0.6658 0.7045 0.7221 0.7467 0.7664 0.7874 
65 0.6696 0.7079 0.7253 0.7496 0.7690 0.7898 
66 0.6733 0.7112 0.7284 0.7524 0.7716 0.7921 
67 0.6770 0.7144 . 0.7314 0.7551 0.7741 0.7944 
68 0.6805 0.7175 0.7344 0.7578 0.7766 0.7966 
69 0.6839 0.7206 0.7373 0.7604 0.7790 0.7988 
70 0.6873 0.7236 0.7401 0.7630 0.7813 0.8009 
71 0.6906 0.7265 0.7429 0.7655 0.7836 0.8030 
72 0.6938 0.7294 0.7455 0.7679 0.7859 0.8050 
73 0.6970 0.7322 0.7482 0.7703 0.7881 0.8070 
74 0.7000 0.7349 0.7507 0.7727 0.7902 0.8089 
75 0.7031 0.7376 0.7532 0.7749 0.7923 0.8108 
76 0.7060 0.7402 0.7557 0.7772 0.7944 0.8127 
77 0.7089 0.7427 0.7581 0.7794 0.7964 0.8145 
78 0.7117 0.7453 0.7605 0.7815 0.7983 0.8162 
79 0.7145 0.7477 0.7628 0.7836 0.8002 0.8180 
80 0.7172 0.7501 0.7650 0.7856 0.8021 0.8197 
81 0.7199 0.7525 0.7672 0.7876 0.8040 0.8213 
82 0.7225 0.7548 0.7694 0.7896 0.8058 0.8230 
83 0.7250 0.7570 0.7715 0.7915 0.8075 0.8245 
84 0.7275 0.7592 0.7736 0.7934 0.8093 0.8261 
85 0.7300 0.7614 0.7756 0.7953 0.8109 0.8276 

(cont'd on next page) 
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TABLE 3-4 (cont'd) 

No. of Lower Lower Lower Lower Lower Lower 
Obs. 0.1%Sig. 0.5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig. 

n Level Level Level 

0.7776 

Level 

0.7971 

Level 

0.8126 

Level 
86 0.7324 0.7635 0.8291 
87 0.7348 0.7656 0.7796 0.7989 0.8142 0.8306 
88- 0.7371 0.7677 0.7815 0.8006 0.8158 0.8321 
89 0.7394 0.7697 0.7834 0.8023 0.8174 0.8335 
90 0.7416 0.7717 0.7853 0.8040 0.8190 0.8349 
91 0.7438 0.7736 0.7871 0.8057 0.8205 0.8362 
92 0.7459 0.7755 0.7889 0.8073 0.8220 0.8376 
93 0.7481 0.7774 0.7906 0.8089 0.8234 0.8389 
94 0.7501 0.7792 0.7923 0.8104 0.8248 0.8402 
95 0.7522 0.7810 0.7940 0.8120 0.8263 0.8414 
96 0.7542 0.7828 0.7957 0.8135 0.8276 0.8427 
97 0.7562 0.7845 0.7973 0.8149 0.8290 0.8439 
98 0.7581 0.7862 0.7989 0.8164 0.8303 0.8451 
99 0.7600 0.7879 0.8005 0.8178 0.8316 0.8463 
100 0.7619 0.7896 0.8020 0.8192 0.8329 0.8475 
101 0.7637 0.7912 0.8036 0.8206 0.8342 0.8486 
102 0.7655 0.7928 0.8051 0.8220 0.8354 0.8497 
103 0.7673 0.7944 0.8065 0.8233 0.8367 0.8508 
104 0.7691 0.7959 0.8080 0.8246 0.8379 0.8519 
105 0.7708 0.7974 0.8094 0.8259 0.8391 0.8530 
106 0.7725 0.7989 0.8108 0.8272 0.8402 0.8541 
107 0.7742 0.8004 0.8122 0.8284 0.8414 0.8551 
108 0.7758 , 0.8018 0.8136 0.8297 0.8425 0.8563 
109 0.7774 0.8033 0.8149 0.8309 0.8436 0.8571 
110 0.7790 0.8047 0.8162 0.8321 0.8447 0.8581 
111 0.7806 0.8061 0.8175 0.8333 0.8458 0.8591 
112 0.7821 0.8074 0.8188 0.8344 0.8469 0.8600 
113 0.7837 0.8088 0.8200 0.8356 0.8479 0.8610 
114 0.7852 0.8101 0.8213 0.8367 0.8489 0.8619 
115 0.7866 0.8114 0.8225 0.8378 0.8500 0.8628 
116 0.7881 0.8127 0.8237 0.8389 0.8510 0.8637 
117 0.7895 ■ 0.8139 0.8249 0.8400 0.8519 0.8646 
118 0.7909 0.8152 0.8261 0.8410 0.8529 0.8655 
119 0.7923 0.8164 0.8272 0.8421 0.8539 0.8664 
120 0.7937 0.8176 0.8284 0.8431 0.8548 0.8672 
121 0.7951 0.8188 0.8295 0.8441 0.8557 0.8681 
122 0.7964 0.8200 0.8306 0.8451 0.8567 0.8689 
123 0.7977 0.8211 0.8317 0.8461 0.8576 0.8697 
124 0.7990 0.8223 0.8327 0.8471 0.8585 0.8705 
125 0.8003 0.8234 0.8338 0.8480 0.8593 0.8713 
126 0.8016 0.8245 0.8348 0.8490 0.8602 0.8721 
127 0.8028 0.8256 0.8359 0.8499 0.8611 0.8729 
128 0.8041 0.8267 0.8369 0.8508 0.8619 0.8737 
129 0.8053 0.8278 0.8379 0.8517 0.8627 0.8744 
130 0.8065 0.8288 0.8389 0.8526 0.8636 0.8752 
131 0.8077 0.8299 0.8398 0.8535 0.8644 0.8759 
132 0.8088 0.8309 0.8408 0.8544 0.8652 0.8766 
133 0.8100 0.8319 0.8418 0.8553 0.8660 0.8773 
134 0.8111 0.8329 0.8427 0.8561 0.8668 

(cont'd on 
0.8780 

next page) 
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TABLE 3-4 (cont'd) 

No. of Lower Lower Lower Lower Lower Lower 
Obs. 0.1% Sig. 0.5% Sig. 1% Sig. 2.5% Sig. 5% Sig. 10% Sig. 

n Level Level Level Level Level Level 
135 0.8122 0.8339 0.8436 0.8570 0.8675 0.8787 
136 0.8134 0.8349 0.8445 0.8578 0.8683 0.8794 
137 0.8145 0.8358 0.8454 0.8586 0.8690 0.8801 
138 0.8155 0.8368 0.8463 0.8594 0.8698 0.8808 
139 0.8166 0.8377 0.8472 0.8602 0.8705 0.8814 
140 0.8176 0.8387 0.8481 0.8610 0.8712 0.8821 
141 0.8187 0.8396 0.8489 0.8618 0.8720 0.8827 
142 0.8197 0.8405 0.8498 0.8625 0.8727 0.8834 
143 0.8207 0.8414 0.8506 0.8633 0.8734 0.8840 
144 0.8218 0.8423 0.8515 0.8641 0.8741 0.8846 
145 0.8227 0.8431 0.8523 0.8648 0.8747 0.8853 
146 0.8237 0.8440 0.8531 0.8655 0.8754 0.8859 
147 0.8247 0.8449 0.8539 0.8663 0.8761 0.8865 
148 0.8256 0.8457 0.8547 0.8670 0.8767 0.8871 
149 0.8266 0.8465 0.8555 0.8677 0.8774 0.8877 

Reprinted with permission. Copyright © by the American Statistical Association. 

From Table 3-4 for n = 10, the 5% significance level for S\,2lS is 0.2305. A calculated ratio less than the 
appropriate critical ratio in this table calls for rejection of the null hypothesis. Since the calculated value is 
less than the critical value, we conclude that both 2.02 and 2.22 are outHers. 

In a situation such as the one described in this example, where the outHers are to be isolated for further 
analysis, a significance level as high as 5% or perhaps even 10% would probably be used to get a reason- 
able number of sample items for additional study. The problem may really be one of economics, and,we 
should therefore use appropriate probability theory as a sensible basis for action. 

Kudo (Ref. 19) indicates that if the two outliers are due to a shift in location or level, as compared to 
the scale 5, then the optimum sample criterion for testing should be of the type 

min(2x — x, — Xj)/s = (2x — Xi — xij/s (3-42) 

in our Example 3-6. 
In Example 3-7 we give an example in ballistics for which short-range rounds may be due to excessive 

projectile yaw, i.e., some explainable physical meaning. 

Example 3-7: 
The following ranges (horizontal distances measured in yards from gun muzzle to point of ground im- 

pact of a projectile) were obtained in firings from a weapon at a constant angle of elevation and with the 
same weight of charge of propellant: 

4782 4420 
4838 4803 
4765 4730 
4549 4833 

We desire to make a judgment on whether the projectiles exhibit uniformity in baUistic behavior or 
whether some of the ranges are inconsistent. The doubtful values are the two smallest ranges, 4420 and 
4549 yd. For testing these two suspected outliers, the statistic Sj,2/S^ of Eq. 3-38 and Table 3-4 is prob- 
ably the best to use. 
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The distances, arranged in increasing order of yards or magnitude, are 

4420 4782 
4549 4803 
4730 4833 
4765 4838, 

The value of S^ from Eq. 3-40 is 158,592. Omission of the two shortest ranges, 4420 and 4549, and re- 
calculation for the remaining SS gives 5'f,2 from Eq. 3-41 equal to 8590.8. Thus 

SI2   _     8590.8 
52 158,592 

=    0.054 

which is significant at the 0.01 level. (See Table 3-4.) Therefore, it appears highly unlikely that the two 
shortest ranges—actually occurring from excessive yaw—could have come from the same population as 
that represented by the other six ranges for the projectiles. It should be noted that the critical values in 
Table 3-4 for the 1% level of significance are smaller than those for the 5% level. So for this particular test, 
we should keep in mind that the calculated value is significant if it is less than the chosen critical value. 

If simplicity in calculation is desired or if a large number of samples must be examined individually for 
outliers, the questionable observations may be tested with the application of Dixon's criteria. Disregard- 
ing only the lowest range, 4420, and reducing the sample size to seven, we test whether the next lowest 
range, 4549, is outlying. With « = 7 we see from Table 3-2 that rio is the appropriate statistic. Renumber- 
ing the ranges as xi to xj, beginning with 4549, we find: 

jc,-x, 4730-4549 ^ A-7A 
'■■0  =      x-j-x,      -   4838 - 4549    "  ^•^^^' 

which is only a little less than the 1% critical value, 0.637, for n = 1. So, if the test is being conducted at 
any significance level greater than a 1% level, we would conclude that 4549 is an outlier. Since the lowest 
of the original set of ranges, 4420, is even more outlying than the one we have just tested, it can be classi- 
fied as an outlier without further testing. We note, however, that this test did not use all of the sample ob- 
servations. 

3-5.5    SIGNIFICANCE TEST FOR DETECTING SEVERAL OR MANY OUTLIERS 

3-5.5.1    Preliminary Comments 

Although the procedures previously given for detecting a single outlier in a sample have been rather 
widely studied over the years and have been found to possess about as much power as possible, the prob- 
lem of detecting several outliers appears to call for much more research. In fact, we commented earlier 
(par. 3-5.3) that in using the ratio of sample range to standard deviation test to judge whether the largest 
and smallest observations simultaneously are outliers, one invariably finds that a very satisfactory and 
clear-cut procedure for rejecting the two extreme values or either one of them is not available without 
further testing. Thus it appears that tests involving possible outliers on both sides of the sample mean may 
need much additional study; this applies to several outliers on only one side of the sample mean as well. 
Indeed, this trend of investigation has been followed in recent years by Tietjen and Moore (Ref 18), 
Rosner (Ref 20), Hawkins (Ref 21), and others. In view of the analytical complexity involved in the 
overall problem, much of the statistical research in this area must of necessity resort to Monte Carlo-type 
simulations to obtain answers, at least for the present time. 

3-5.5.2    The Tietjen and Moore Tests 

For suspected observations on both the high and low sides in the sample and to deal with the situation 
in which some of/: > 2 suspected "outliers" are larger and some smaller than the remaining values in the 
smr.ple, Tie-^j?'" ?nd Moore (Ref 18) suggested the type of statistic that follows. Let the ordered sample 
values be x\, Xi, xy, . . ., Xn, and compute the sample mean x. Then calculate the n absolute residuals r, 
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rx= \xi-x\, r2=\x2-x\, . . . , rn=\xn-x\ (3-43) 

where the sample mean x for the whole, original sample is used. Now relabel the original observations x\, 
xi, . . ., x„ as z's in such a manner that z, is that original observation x whose r, is the /"th ordered (in- 
creasing) absolute residual given by Eq. 3-43. This now means that n is that observation x closest to the 
mean and that z„ is the observation x farthest from the mean. The Tietjen-Moore (Ref. 18) statistic Ek for 
testing the significance of the k largest residuals is then 

n-k 

S(z,- 
1=1 

--Z^f 

n 

S(z,- 
1=1 

-^' 

Ek =   (3-44) 

where 
n-k 

Zk = Xzil{n — k) 
1=1 

= mean of the {n — k) least extreme observations 
z = mean of the full sample. 

(3-45) 

The null distribution percentage points of Ek for the two-sided Tietjen-Moore significance test (Ref. 
18)—computed by Monte Carlo methods on a high-speed electronic calculator—are given in Table 3-5. 

Example 3-8: 
Apply the Tietjen-Moore test to the data of Example 3-5 to see whether -1.40 and 1.01 are outliers. We 

find that the total sum of squares of deviations for the entire sample is 4.24964. Omitting -1.40 and 1.01, 
the suspected two or largest residual "outliers", we find that the sum of squares of deviations for the re- 
duced sample of 13 observations is 1.24089. From Eq. 3-44 the Tietjen-Moore Ei = 1.24089/4.24964 = 
0.292. Using Table 3-5,*we find that this observed Ei is somewhat smaller than the 5% critical value of 
0.317, so that the Ei test would reject both of the observations, -1.40 and 1.01. Thus we would probably 
lean toward taking this latter recommendation since the level of significance for the Ei test is precisely 
0.05, whereas that for the double application of tests for a single outlier, as we carried out in Example 3-5, 
is greater than 0.05 but less than 1 - (0.95)^ = 0.0975. Also we will check this decision to reject -1.40 and 
1.01 with the aid of the Rosner (Ref. 20) and Hawkins (Ref. 21) tests in Example 3-9 of par. 3-5.5.3. 

Tietjen and Moore (Ref. 18) have also developed tests for suspected outliers on only one side of the 
sample mean. These are referred to as the Lk Tests of Significance, for the k largest sample values sus- 
pected, where 

n-k n 

Lk = X (Xi - Xkfl S {xi - J)^ (3-46) 

and 
n-k 

Xk= Xx,/in-k). (3-47) 

A similar, obvious test for the k smallest suspected sample values is also used by Tietjen and Moore by 
deletion of these k lowest values in the numerator. Note that the Tietjen-Moore L: for either the two 
highest or two lowest sample values is precisely the Sln-ijS^ or SlijS^ of Grubbs(Refs. 9, 10, 11, and 12), 
which is discussed in par. 3-5.4. The Lk percentage points of Tietjen and Moore also were calculated by 
means of Monte Carlo runs on a high-speed computer and are given in Table 3-6t. Again, the columns 
headed with an** indicate the agreement of the Tietjen-Moore Monte Carlo simulations with the exact 
theoretical percentage points calculated by Grubbs in 1950 for L\ and Li only. Theory for A: > 3apparent- 

* If the calculated ratio is less than the appropriate ratio given in Table 3-5, the values are rejected as outliers. 
tif the calculated ratio is less than the appropriate ratio given in Table 3-6, the values are rejected as outliers. 
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TABLE 3-5 

CRITICAL VALUES FOR Eu* (Ref. 18) 
a = 0.01 

«\A:        1 2 3 4 5 6 7 8 9 10 

3 0.000 
4 0.004 0.000 
5 0.029 0.002 
6 0.068 0.012 0.001 
7 0.110 0.028 0.006 
8 0.156 0.050 0.014 0.004 
9 0.197 0.078 0.026 0.009 

10 0.235 0.101 0.037 0.013 
11 0.274 0.134 0.064 0.030 0.012 
12 0.311 0.159 0.083 0.042 0.020 0.008 
13 0.337 0.181 0.103 0.056 0.031 0.014 
14 0.374 0.207 0.123 0.072 0.042 0.022 0.012 
15 0.404 0.238 0.146 0.090 0.054 0.032 0.018 
16 0.422 0.263 0.166 0.107 0.068 0.040 0.024 0.014 
17 0.440 0.290 0.188 0.122 0.079 0.052 0.032 0.018 
18 0.459 0.306 0.206 0.141 0.094 0.062 0.041 0.026 0.014 
19 0.484 0.323 0.219 0.156 0.108 0.074 0.050 0.032 0.020 
20 0.499 0.339 0.236 0.170 0.121 0.086 0.058 0.040 0.026 0.017 
25 0.571 0.418 0.320 0.245 0.188 0.146 0.110 0.087 0.066 0.050 
30 0.624 0.482 0.386 0.308 0.250 0.204 0.166 0.132 0.108 0.087 
35 0.669 0.533 0.435 0.364 0.299 0.252 0.211 0.177 0.149 0.124 
40 0.704 0.574 0.480 0.408 0.347 0.298 0.258 0.220 0.190 0.164 
45 0.728 0.607 0.518 0.446 0.386 0.336 0.294 0.258 0.228 0.200 
50 0.748 0.636 0.550 0.482 0.424 0.376 0.334 0.297 0.264 0.235 

(cont'd on next page) 

*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers. 

ly has not been worked out and likely would be very difficult although the Monte Carlo values may cer- 
tainly be trusted for general use. There is no point in checking the outliers found in Examples 3-6 and 3-7 
with the Tietjen-Moore Li since that test is equivalent to the one already used. 

A point in favor of the Tietjen-Moore type tests is that they clearly cut down or even eliminate the need 
for and use of several, or multiple, outlier tests. 

3-5.5.3    The Rosner and Hawkins Multiple Outlier Detection Procedures 

While the Tietjen-Moore procedures for detecting outliers in samples have been valuable in many ex- 
perimental situations, there have been some improvements since the publication of their paper in 1972 
(Ref. 18), especially for the Ek procedure and the rankings called for in Eq. 3-43. In fact, one notes from 
Eq. 3-43 that all of the rankings of the r, are based on the original sample mean J although it seems more 
intuitively powerful after finding an outlier to delete that observation from any further consideration and 
proceed to test the remaining sample values. The point is that an outlier used in the calculation of the 
sample mean, which is always used in the Tietjen-Moore ranking of Ref. 18, might even mask a second 
outlier and result in the conclusion that this second outlier is an "inlier" or a perfectly acceptable homo- 
geneous value. This apparently is underlying thoughts of Rosner (Ref. 20) and Hawkins (Ref. 21), and in- 
deed Hawkins (Ref. 21) gives an excellent example to point up this difficulty. Hawkins (Ref. 21) suggests 
consideration of a sample of « = 10 items for which the largest observation x„ = 100, the next largest or 
x„-i  = 10, and the remaining observations of the sample are from M0,1), i.e., a normal universe with 
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TABLE 3-5 (cont'd) 
a — 0.05* 

n\k 1 1** 2 3 4 5 6 7 8 9 10 

3 0.001 0.001 
4 0.025 0.025 0.001 
5 0.081 0.081 0.010 
6 0.146 0.145 0.034 0.004 
7 0.208 0.207 0.065 0.016 
8 0.265 0.262 0.099 0.034 0.010 
9 0.314 0.310 0.137 0.057 0.021 

10 0.356 0.352 0.172 0.083 0.037 0.014 
11 0.386 0.390 0.204 0.107 0.055 0.026 
12 0.424 0.423 0.234 0.133 0.073 0.039 0.018 
13 0.455 0.453 0.262 0.156 0.092 0.053 0.028 
14 0.484 0.479 0.293 0.179 0.112 0X)68 0.039 0.021 
15 0.509 0.503 0.317 0.206 0.134 0.084 0.052 0.030 
16 0.526 0.525 0.340 0.227 0.153 0.102 0.067 0.041 0.024 
17 0.544 0.544 0.362 0.248 0.170 0.116 0.078 0.050 0.032 
18 0.562 0.562 0.382 0.267 0.187 0.132 0.091 0.062 0.041 0.026 
19 0.581 0.579 0.398 0.287 0.203 0.146 0.105 0.074 0.050 0.033 
20 0.597 0.594 0.416 0.302 0.221 0.163 0.119 0.085 0.059 0.041 0.028 
25 0.652 0.654 0.493 0.381 0.298 0.236 0.186 0.146 0.114 0.089 0.068 
30 0.698 0.549 0.443 0.364 0.298 0.246 0.203 0.166 0.137 0.112 
35 0.732 0.596 0.495 0.417 0.351 0.298 0.254 0.214 0.181 0.154 
40 0.758 0.629 0.534 0.458 0.395 0.343 0.297 0.259 0.223 0.195 
45 0.778 0.658 0.567 0.492 0.433 0.381 0.337 0.299 0.263 0.233 
50 0.797 0.684 0.599 0.529 0.468 0.417 0.373 0.334 0.299 0.268 

(cont'd on next page) 

*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers. 
**From Grubbs, Table I, Ref. 9. Note in this connection that the Tietjen-Moore Monte Carlo values of Ref. 18 check theGrubbs 

theoretical 0.05 probability levels of Ref. 9. 

mean of zero and standard deviation of unity. Hawkins then points out that the two largest values, 100 
and 10 are truly outliers, whereas the original sample mean x is about 11, which perhaps brands the value 
10 as an inlier. That is to say, the Tietjen-Moore tests {E or L) would test jc„ = x^o = 100 correctly but 
would sometimes miss the outlier x„-i= x^ = 10 by finally testing the algebraically largest of the remaining 
eight values, one or more of which on occasion would exceed the Xg = 10. 

In 1975 Rosner (Ref. 20) made a rather significant advance in the problem of detecting multiple outliers 
in a sample by attempting to get away from testing for a prefixed or specified number of outliers, i.e., 
developing a more flexible procedure to detect from one to k outliers and yet keep the significance level 
fixed at a. The chief advantage of the Rosner approach is that it should be powerful enough to detect any 
number of outliers up to [pn], where/? is some fraction of the total sample size, and not lose much power 
against an alternative of a specified number of outliers. Conversely, as Rosner points out, any outlier de- 
tection test that is geared to finding a specific number of aberrant values can be much less powerful in de- 
tecting any other number of deviant sample observations. Indeed, the number of outhers to expect in ad- 
vance is hardly ever known, and there is the obvious need to apply a routine rule for any possible number 
of outliers that may actually be in the sample rather than first trying to guess the correct number by 
simply observing the data and then using a rule that is good against that particular number of outliers. 
This means that the Type I error, or a, must be controlled at its present level throughout the sequential 
testing for as many as k outliers. Rosner's procedure (Refs. 20 and 22) is to employ a set of R statistics, or 
"RST" multiple outlier tests, as he calls them. Rosner (Refs. 20 and 22) decides in advance that he will 
test a sample of observations for up to as many as k outliers. The number k is in fact rather arbitrary and 
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TABLE 3-5 (cont'd) 
a - = 0.10* 

n\k 1 1** 2 3 4 5 6 7 8 9 10 

3 0.003 0.003 
4 0.050 0.049 0.002 
5 0.127 0.127 0.022 
6 0.204 0.203 0.056 0.009 
7 0.268 0.270 0.094 0.027 
8 0.328 0.326 0.137 0.053 0.016 
9 0.377 0.374 0.175 0.080 0.032 

10 0.420 0.415 0.214 0.108 0.052 0.022 ; 
11 0.449 0.451 0.250 0.138 0.073 0.036 
12 0.485 0.482 0.278 0.162 0.094 0.052 0.026 
13 0.510 0.510 0.309 0.189 0.116 0.068 0.038 

:-''| 

14 0.538 0.534 0.337 0.216 0.138 0.086 0.052 0.029 
15 0.558 0.556 0.560 0.240 0.160 0.105 0.067 0.040 
16 0.578 0.576 0.384 0.263 0.182 0.122 0.082 0.053 0.032 
17 0.594 0.593 0.406 0.284 0.198 0.140 0.095 0.064 0.042 
18 0.610 0.610 0.424 0.304 0.217 0.156 0.110 0.076 0.051 0.034 
19 0.629 0.624 0.442 0.322 0.234 0.172 0.124 0.089 0.062 0.042 
20 0.644 0.638 0.460 0.338 0.252 0.188 0.138 0.102 0.072 0.051 0.035 
25 0.693 0.692 0.528 0.417 0.331 0.264 0.210 0.168 0.132 0.103 0.080 
30 0.730 0.582 0.475 0.391 0.325 0.270 0.224 0.186 0.154 0.126            ■' ■ 
35 0.763 0.624 0.523 0.443 0.379 0.324 0.276 0.236 0.202 0.172 
40 0.784 0.657 0.562 0.486 0.422 0.367 0.320 0.278 0.243 0.212 
45 0.803 0.684 0.593 0.522 0.459 0.406 0.360 0.320 0.284 0.252 
50 0.820 0.708 0.622 0.552 0.492 0.440 0.396 0.355 0.319 0.287 

*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers. 

**From Grubbs, Table I, Ref. 9. Note in this connection that the Tietjen-Moore Monte Carlo values of Ref. 18 check the Grubbs 
theoretical 0.10 probability levels of Ref. 9. 

Reprinted with permission. Copyright © by the American Statistical Association. 

is used to "lop off or trim the k largest and k smallest observations from the sample so that only an in- 
ner sample having no outliers remains and provides a "trimmed" reference sample for a "safe" mean and 
sigma. He then calculates the trimmed mean a and trimmed variance b^ for the remaining sample values, 
or the inliers, which are 

n-k 

a=   X Xi/{n — 2k) = trimmed mean :       (3-48) 
i=k+\ , , ^ ■' 

n-k 

b^ =   S (x, —fl)^/(n — 2/: — 1) = trimmed variance. (3-49) 

Rosner (Refs. 20 and 22) then calculates the largest studentized residual in absolute value R\ for the entire 
sample, but he uses a and b instead of the Y and s of the whole sample. Thus the observed value of R\ is 
calculated as 

/?i = max|x,-fl|/6= |x"'-fl|//?7 (3-50) 
Xi 

where 
x'" = particular value that makes i?i a maximum. 

The calculated value of /?i is tested statistically against a percentage point or probability level computed 
by Rosner for R\ by Monte Carlo methods. Thus the value jc*", which will turn out to be the farthest 
value from the trimmed mean, is then branded either an outlier or not, but if judged an outlier, it is not 
considered in the computation of the next studentized residual ^2- 
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TABLE 3-6 

CRITICAL VALUES FOR If (Ref  18) 
a = 0.01 

n\k 1 1** 2 2*** 3 4 5 6 7 8 9 10 

3 0.000 0.000 
4 0.011 0.010 0.000 0.000 
5 0.045 0.044 0.004 0.004 
6 0.091 0.093 0.021 0.019 0.002 
7 0.148 0.145 0.047 0.044 0.010 
8 0.202 0.195 0.076 0.075 0.028 0.008 
9 0.235 0.241 0.112 0.108 0.048 0.018 

10 0.280 0.283 0.142 0.141 0.070 0.032 0.012 
11 0,327 0.321 0.178 0.174 0.098 0.052 0.026 
12 0.371 0.355 0.208 0.204 0.120 0.070 0.038 0.019 
13 0.400 0.386 0.233 0.233 0.147 0.094 0.056 0.033 
14 0.424 0.414 0.267 0.261 0.172 0.113 0.072 0.042 0.027 
15 0.450 0.440 0.294 0.286 0.194 0.132 0.090 0.057 0.037 
16 0.473 0.463 0.311 0.310 0.219 0.151- 0.108 0.072 0.049 0.030 
17 0.480 0.485 0.338 0.332 0.237 0.171 0.126 0.091 0.064 0.044 
18 0.502 0.504 0.358 0.353 0.260 0.192 0.140 0.104 0.076 0.053 0.036 
19 0.508 0.522 0.366 0.373 0.272 0.201 0.154 0.118 0.088 0.064 0.046 
20 0.533 0.539 0.387 0.391 0.300 0.231 0.175 0.136 0.104 0.078 0.058 0.042 25 0.607 0.468 0.377 0.308 0.246 0.204 0.168 0.144 0.112 0.092 30 0.650 0.527 0.434 0.369 0.312 0.268 0.229 0.196 0.166 0.142 35 0.690 0.573 0.484 0.418 0.364 0.321 0.282 0.250 0.220 0.194 40 0.722 0.610 0.522 0.460 0.408 0.364 0.324 0.292 0.262 0.234 45 0.745 0.641 0.558 0.498 0.444 0.399 0.361 0.328 0.296 0.270 50 0.768 0.667 0.592 0.531 0.483 0.438 0.400 0.368 0.336 0.308 

(cont'd on next page) 
*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers. 

**From Grubbs, Table I, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values 
***From Grubbs, Table V, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values. 

If .Y<ii is discardable, the same trimmed mean a and trimmed standard deviation b are used to calculate 
/?2, the next RST given by 

i?2 = max|x,-fl|/6= |jc'^'-a|/6 (3.5I) 

where 
x'^' = particular subsample value that makes R2 a maximum. 

The sample values tested do not include x'". The process is continued through R,, etc., to 7?,, stopping there or 
before. In effect, therefore, the Rosner outlier test procedure is sequential in nature and'calls for multiple 
significance tests. This means that a series of calculations is necessary, and the determination of an outlier has 
to be made at each testing stage. 

Rosner (Ref. 20) works with the marginal distributions of Ru R2, . . ., and R, to determine specifically 
tne values of/?, the correct probability level at each stage, and the percent points Ai(/3), k2(l3), . . ., X,(;3) 
sucn iritit 

Pr[7?,>X,(;3)] = /3,  /=!, (3-52) 
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TABLE 3-6 (cont'd) 
a — 0.025* 

n\k 1 

0.001 

1** 

0.001 

2 2*** 3 4 5 6 7 8 9 10 

3 0.000 0.000 
4 0.025 0.025 0.000 0.000 
5 0.084 0.081 0.011 0.009 
6 0.146 0.145 0.034 0.035 0.005 
7 0.209 0.207 0.076 0.071 0.021 
8 0.262 0.262 0.115 0.110 0.045 0.013 
9 0.308 0.310 0.150 0.149 0.073 0.030 

10 0.350 0.353 0.188 0.187 0.100 0.052 0.023 
11 0.366 0.390 0.225 0.221 0.129 0.074 0.040 
12 0.440 0.423 0.268 0.254 0.162 0.096 0.057 0.031 
13 0.462 0.453 0.292 0.284 0.184 0.122 0.077 0.047 
14 0.493 0.479 0.317 0.311 0.214 0.145 0.098 0.063 0.038 
15 0.498 0.503 0.341 0.337 0.239 0.167 0.111 0.078 0.051 
16 0.537 0.525 0.372 0.360 0.261 0.185 0.137 0.096 0.065 0.045 

17 0.552 0.544 0.388 0.382 0.282 0.208 0.156 0.117 0.082 0.058 

18 0.570 0.562 0.406 0.403 0.299 0.226 0.171 0.129 0.095 0.068 0.048 

19 0.573 0.579 0.416 0.421 0.311 0.243 0.189 0.145 0.108 0.080 0.059 
20 0.595 0.594 0.442 0.439 0.341 0.265 0.209 0.165 0.128 0.098 0.073 0.054 

25 0,654 0.512 0.417 0.342 0.282 0.233 0.192 0.159 0.132 0.113 

30 0.699 0.567 0.479 0.408 0.352 0.302 0.261 0.226 0.193 0.165 

35 0.732 0.610 0.527 0.455 0.398 0.348 0.308 0'.274 0.242 0.213 

40 0.755 0.644 0.561 0.491 0.433 0.387 0.348 0.314 0.283 0.257 

45 0.773 0.667 0.592 0.529 0.473 0.430 0.391 0.356 0.325 0.295 

50 0.796 0.697 0.622 0.559 0.510 0.466 0.428 0.392 0.363 0.334 

' ■■• 

(cont'd on next page) 

*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers. 
**From Grubbs, Table I, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values. 

***From Grubbs, Table V, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values, 

and the union U of all these sets gives also 

-::r.:'^. ' /'r|u[/?,>x,(i3)]|-«. (3-53) 

Rosner (Ref. 22) then establishes the percentage points \,(i3) for the /?, with increasing / = 1, 2, 3, 4, 
etc. Such investigations, including especially the power of the detection procedures to reject false null hy- 
potheses, must be made through the means of Monte Carlo-type simulations, which aided Rosner in com- 
ing to the following conclusions. He found that the one-outlier detection procedures were slightly more 
powerful in detecting a single outlier than the several or many outlier detection rules were. However, such 
advantage seems to be rather slight when compared with the substantial increase in power obtained for 
the alternative of two or more outliers, particularly when the outliers are on the same side of the mean. 
The greatest improvement in power for the many outlier detection rules was for the case of multiple out- 
liers on one side of the sample mean, as in the example of Hawkins previously cited. Rosner (Ref. 20) 
therefore concludes positively that the many outlier detection procedures are preferable to their one- 
outlier counterparts, particularly if all of the outliers are on the same side of the sample mean. Moreover, 
by using a multiple outlier detection procedure, instead of a single outlier rule, one tends to give up some 
power against the alternative of one actual outlier (probably at most 10% depending on the alternative), 
however, one gains much more power against alternatives of several outliers, and as much as 50% for al- 
ternatives where the real outliers are on the same side of the sample mean. Even though one has to give 

3-32 



DARCOM-P 706-103 

TABLE 3-6 (cont'd) 
a = = 0.05* 

n\k 1 1** 2 2*** 3 4 5 6 7 8 9 10 

3 0.003 0.003 
4 0.051 0.049 0.001 0.001 
5 0.125 0.127 0.018 0.018 
6 0.203 0.203 0.055 0.057 0.010 
7 0.273 0.270 0.106 0.102 0.032 
8 0.326 0.326 0.146 0.148 0.064 0.022 
9 0.372 0.374 0.194 0.191 0.099 0.045 

10 0.418 0.415 0.233 0.230 0.129 0.070 0.034 
% a 11 0.454 0.451 0.270 0.267 0.162 0.098 0.054 

12 0.489 0.482 0.305 0.300 0.196 0.125 0.076 0.042 
13 0.517 0.510 0.337 0.330 0.224 0.150 0.098 0.060 
14 0.540 0.534 0.363 0.357 0.250 0.174 0.122 0.079 0.050 
15 0.556 0.556 0.387 0.382 0.276 0.197 0.140 0.097 0.066 
16 0.575 0.576 0.410 0.405 0.300 0.219 0.159 0.115 0.082 0.055 
17 0.594 0.593 0.427 0.426 0.322 0.240 0.181 0.136 0.100 0.072 
18 0.608 0.610 0.447 0.446 0.337 0.259 0.200 0.154 0.116 0.086 0.062 
19 0.624 0.624 0.462 0.464 0.354 0.277 0.209 0.168 0.130 0.099 0.074 
20 0.639 0.638 0.484 0.480 0.377 0,299 0.238 0.188 0.150 0.115 0.088 0.066 
25 0.696 0.692 0.550 0.450 0.374 0.312 0.262 0.222 0.184 0.154 0.126 
30 0.730 0.601 0.506 0.434 0.376 0.327 0.283 0.245 0.212 0.183 
35 0.762 0.641 0.554 0.482 0.424 0.376 0.334 0.297 0.264 0.235 
40 0.784 0.673 0.588 0.523 0.468 0.421 0.378 0.342 0.310 0.280 
45 0.802 0.698 0.618 0.556 0.502 0.456 0.417 0.382 0.350 0.320 
50 0.820 0.720 0.646 0.588 0.535 0.490 0.450 0.414 0.383 0.356 

(cont'd on next page) 

*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers. 
**From Grubbs, Table I, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values. 

***From Grubbs, Table V, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values. 

Up some power against the alternative of two outliers when a multiple outlier procedure is used, the ad- 
vantage is that one does not have to declare two outUers when in fact only one outlier is actually present; 
this reduces the number of false positives. Rosner appeared to prefer the extreme studentized deviate 
(ESD) procedure of Eqs. 3-50 and 3-51 over other rejection rules he studied because they seemed to be the 
best and were "computationally reasonable". By using Monte Carlo methods, Rosner (Ref. 22) found the 
ki(l3) for certain sample sizes and the maximum number k of outliers suspected in the sample, and we give 
these in Tables 3-7, 3-8, and 3-9. Example 3-9 illustrates the Rosner procedure. 

Example 3-9: 
Return to the data of Example 3-5 for the 15 observations concerning the semidiameter measurements 

of Venus and apply Rosner's outlier test procedure to determine whether -1.40 and 1.01 both should be 
branded as outliers. 

The 15 observations ranked in increasing order are -1.40, -0.44, -0.30, -0.24, -0.22, -0.13, -0.05, 
0.06, 0.10, 0.18, 0.20, 0.39, 0.48, 0.63, and 1.01. Now we suspect that at most -1.40 and 1.01 are outliers,' 
so that we may as well put k = 2, and censor the two lowest values, -1.40 and -0.44, and the two highest 
values, 0.63 and 1.01, for the purpose of calculating the trimmed mean a and trimmed standard deviation 
b. We use -0.30, -0.24, -0.22, -0.13, -0.05, 0.06, 0.10, 0.18, 0.20, 0.39, and 0.48 in Eqs. 3-48 and 3-49 
to get 

a =0.04273 and 6 = 0.2576. 
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TABLE 3-6 (cont'd) 
a '■ = 0.10* 

n\k 1 1** 2 2*** 3 4 5 6 7 8 9 10 

3 0.011 0.011 
4 0.098 0.098 0.003 0.003 
5 0.200 0.199 0.038 0.038 ■; 

6 0.280 0.283 0.091 0.092 0.020 
7 0.348 0.350 0.148 0.148 0.056 
8 0.404 0.405 0.200 0.199 0.095 0.038 
9 0.448 0.450 0.248 0.245 0.134 0.068 

10 0.490 0.488 0.287 0.286 0.170 0.098 0.051 
11 0.526 0.520 0.326 0.323 0.208 0.128 0.074 
12 0.555 0.548 0.361 0.355 0.240 0.159 0.103 0.062 
13 0.578 0.573 0.388 0.384 0.270 0.186 0.126 0.082 
14 0.600 0.594 0.416 0.411 0.298 0.212 0.150 0.104 0.068 
15 0.611 0.613 0.436 0.435 0.322 0.236 0.172 0.124 0.086 
16 0.631 0.631 0.458 0.456 0.342 0.260 0.194 0.144 0.104 0.073 
17 0.648 0.646 0.478 0.476 0.364 0.282 0.216 0.165 0.125 0.092 
18 0.661 0.660 0.496 0.494 0.384 0.302 0.236 0.184 0.142 0.108 0.080 
19 0.676 0.673 0.510 0.511 0.398 0.316 0.251 0.199 0.158 0.124 0.094 
20 0.688 0.685 0.530 0.527 0.420 0.339 0.273 0.220 0.176 0.140 0.110 0.085 
25 0.732 0.732 0.591 0.489 0.412 0.350 0.296 0.251 0.213 0.180 0.152 
30 0.766 0.637 0.523 0.472 0.411 0.359 0.316 0.276 0.240 0.210 
35 0.792 0.674 0.586 0.516 0.458 0.410 0.365 0.328 0.294 0.262 
40 0.812 0.702 0.622 0.554 0.499 0.451 0.408 0.372 0.338 0.307 
45 0.826 0.726 0.648 0.586 0.533 0.488 0.447 0.410 0.378 0.348 
50 0.840 0.746 0.673 0.614 0.562 0.518 0.477 0.442 0.410 0.380 

** 
*** 

*If the calculated ratio is less than the appropriate ratio given in this table, the values are rejected as outliers. 
From Grubbs, Table 1, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values. 
From Grubbs, Table V, Ref. 9. Use instead of Tietjen-Moore Monte Carlo values. 

Reprinted with permission. Copyright © for portion of table by American Statistical Association. Copyright © for remainder of 
table by Institute of Mathematical Statistics. 

Hence proceeding to apply Eqs. 3-50 and 3-51, one finds that 

/?!= 1-1.40 - 0.04271/0.2576 = 5.60 
and 

/?2 = 11.01 - 0.04271/0.2576 = 3.76. 

From Rosner's Table 3-7 for n = 15, we find that neither -1.40 nor 1.01 are rejectable at the 5% level, but 
only -1.40 is an outlier at the 10% level! This is somewhat of a surprise because the Tietjen-Moore test 
rejected both -1.40 and 1.01. Hence we will next examine Hawkins' test and review this matter again in 
Example 3-10. 

In an extended study of the problem of multiple outliers, Hawkins (Ref. 21) points out that Rosner 
(Ref. 20) apparently noticed the masking-type defect in the widely used Tietjen-Moore Ek statistic (Ref. 
18) but did not actually highlight the finding specifically. Hawkins (Ref. 21) also states that the rationale 
behind the Rosner scheme matches that which one would use intuitively. When trying to decide whether a 
particular observation is an outlier, one should delete from the sample all observations already concluded 
to be outHers. Also this is in consonance with the ideas behind the S},2/S^ outlier type tests of Grubbs 
(Ref. 9). Hawkins also points out that the Rosner ranking procedure leads for any number k of outliers to 
a set of retained inliers with minimum variance as is the case for likelihood ratio test statistics. Finally, 
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TABLE 3-7 
PERCENTAGE POINTS OF ROSNER'S RST MANY OUTLIER TEST STATISTICS 

/?, AND Ri (Ref. 22)* 

«= 10(5)20(10)50(25)100 and A: = 2 

n 
10 

Ri 

g^O.lO 

7.35 ±0.102 
4.92 ± 0.067 

a = 0.05 

8.90 ±0.146 
5.92 ±0.103 

a = 0.01 

13.38 ±0.748 
9.13 ±0.407 

15 ^1 

^2 

5.28 ± 0.63 
3.84 ± 0.045 

6.01 ±0.056 
4.31 ±0.060 

8.10 ±0.208 
5.39 ±0.134 

20 
Ri 

4.64 ± 0.043 
3.50 ± 0.024 

5.18 ±0.053 
3.81 ±0.032 

6.47 ±0.182 
4.70 ± 0.095 

30 R^ 
Rj 

4.26 ±0.027 
3.31 ±0.021 

4.62 ± 0.037 
3.57 ±0.017 

5.51 ±0.108 
4.15 ±0.053 

40 ^1 

Ri 
4.04 ±0.019 
3.23 ±0.017 

4.41 ±0.033 
3.43 ± 0.030 

5.26 ± 0.047 
3.92 ± 0.042 

50 R^ 
Ri 

3.98 ±0.013 
3.20 ±0.011 

4.25 ±0.019 
3.39 ±0.022 

4.98 ±0.081 
3.80 ±0.047 

75 

100 

^1 

^2 

^2 

3.89 ±0.016 
3.19 ±0.013 

3.83 ±0.016 
3.20 ±0.012 

4.16 ±0.016 
3.37 ±0.029 

4.09 ± 0.027 
3.34 ± 0.0076 

4.77 ± 0.074 
3.72 ±0.038 

4.66 ± 0.088 
3.74 ± 0.037 

The ± values are standard errors. 
This is Table 1 of Rosner. 
♦For later tables associated with outlier procedures, see also Jain (Ref. 23). 

Reprinted with permission. Copyright© by the American Statistical Association. 

Hawkins (Ref. 21) allows for an extension of the family of statistics to include the considerations of Paul- 
son (Ref. 24) and Quesenberry and David (Ref. 25) who provided for the case in which there may also be 
available some additional information on the underlying standard deviation a in the form of previous or 
extraneous data to the immediate problem at hand. In such case, an extraneous sum of squares would 
provide an independent estimator of a^ in the form of 

= chi-square with v df 
(3-54) 

where 
U^ = an independent sum of squares to estimate the variance 
(j^ = estimated population variance. 

Hawkins then defines the extended statistic £* as 

Et = iSl* + U)/iS+ U) (3-55) 
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TABLE 3-8 
PERCENTAGE POINTS OF ROSNER'S RST MANY OUTLIER TEST STATISTICS 

Ru Ri, AND ^3 (Ref. 22) 

n = 20(10)50(25)100 and A; = 3 

0.10 a = 0.05 a = 0.01 

Ri 5.91 ±0.059 6.60 + 0.079 

Ri 4.50 + 0.047 5.06 + 0.052 
Ri 3.73 ± 0.037 4.16 + 0.046 

Ri 5.07 + 0.037 5.60 + 0.063 
R2 3.93 + 0.028 4.32 + 0.037 

Ri 3.35 + 0.016 3.62 + 0.039 

Ri 4.60 ± 0.037 5.06 + 0.040 
Ri 3.68 + 0.021 3.92 + 0.021 
Ry 3.20 + 0.016 3.41 + 0.024 

Ri 4.43 + 0.033 4.76 + 0.049 
R2 3.60 + 0.014 3.82 + 0.018 
Ri 3.14 + 0.019 3.30 + 0.014 

Ri 4.18 + 0.024 4.46 + 0.034 
R2 3.47 + 0.013 3.67 + 0.019 
Ri 3.08 + 0.0096 3.19 + 0.012 

Ri 4.12+0.019 4.37 + 0.034 
Rj 3.44 + 0.012 3.60 ± 0.022 
Ri 3.10 + 0.012 3.21+0.016 

20 Ri 5.91+0.059 6.60 + 0.079 8.19 + 0.137 
6.34 + 0.151 
5.22 + 0.098 

30     Ri 5.07 + 0.037 5.60 + 0.063 6.88 + 0.093 
5.09 + 0.121 
4 .27+ 0.076 

40 Ri 4.60 + 0.037 5.06 + 0.040 6.05 + 0.103 
4.53 + 0.051 
3.82 + 0.063 

50 /?i 4.43 + 0.033 4.76 + 0.049 5.68 + 0.038 
4.55 + 0.086 
3.77 + 0.047 

75      Ri 4.18 + 0.024 4.46 + 0.034 5.10 + 0.036 
4.10 + 0.040 
3.57 + 0.045 

100 Ri 4.12+0.019 4.37 + 0.034 4.98 + 0.120 
* 3.88 + 0.039 

3.45 + 0.031 

The ± values are standard errors. 
This is Table 2 of Rosner. 

Reprinted with permission. Copyright© by the American Statistical Association. 

where 
5r = inlierSS 

S^   = SS for the entire sample    ' ' 

as a suggested test statistic for the presence of k outliers for the additional or past information U on the 
unknown rr^. In the event that no external information on a is available, one simply sets U = v = 0, and 
the statistic £* becomes the inlier SS divided by the SS for the entire sample, i.e., the Grubbs (Ref. 9) type 
test. By a Monte Carlo process Hawkins (Ref. 21) calculates tables of percentage points of the statistic£■*; 
this information is in Table 3-10. It is believed that these new tables of percentage points of Hawkins 
should be of rather wide application, and Example 3-10 is an example of their use. 

Example 3-\Q: 
Consider again the 15 observations on the semidiameter measurements of Venus in Example 3-5 and 

also Example 3-8, where we used the Tietjen-Moore Ej test and rejected both the -1.40 and 1.01 observa- 
tions. 

We have, as before, that the inlier sum of squares is 1.2409, and the total sample SS is 4.2496. Hence 
for c = 0 there is no difference between the Tietjen-Moore test and that of Hawkins. We note that the 5% 
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TABLE 3-9 
PERCENTAGE POINTS OF ROSNER'S RST MANY OUTLIER TEST STATISTICS 

Ru Ri, Ri and R4 (Ref. 22) 

n = 20(10)50(25)100 and A: = 4 

a t     . ■ ■ a = 0.10 

20 Ri 7.56 + 0.083 

Ri 5.88 ±0.042 

R3 4.91+0.038 

RA 4.17 + 0.035 

30 Ri 5.90 ±0.030 

R2 4.63 ± 0.030 

R3 3.95 ± 0.037 

RA 3.50 ±0.024 

40 «i 5.23 ±0.036 

R2 4.13 ±0.025 

Ri 3.60 ±0.031 

RA 3.25 ± 0.020 

50 Ri 4.85 ± 0.036 

R2 3.95 ± 0.022 

Ri 3.46 ±0.014 

RA 3.14 ±0.0098 

75 Ri 4.55 ± 0.039 

Rt 3.73 ± 0.022 

Ri 3.31 ±0.010 

RA 3.04 ±0.014 

00 Ri 4.43 ± 0.037 

R2 3.64 ±0.016 
Ri 3.27 ±0.012 

RA 3.03 ±0.011 

a = 0.05 

8.52 ±0.112 
6.53 ± 0.050 
5.46 ± 0.064 
4.65 ± 0.056 

6.40 ± 0.055 
5.01 ±0.034 
4.27 ± 0.049 
3.76 ±0.034 

5.67 ± 0.066 
4.47 ± 0.037 
3.82 ±0:030 
3.43 ± 0.027 

5.19 ±0.063 
4.18 ±0.028 
3.67 ±0.019 
3.30 ±0.021 

4.87 ± 0.060 
3.94 ±0.018 
3.47 ± 0.020 
3.16±0.019 

4.67 ± 0.034 
3.80 ±0.018 
3.39 ±0.011 
3.14 + 0.012 

a = 0.01 

11.70 + 0.340 
8.83 ± 0.263 
7.23 ±0.199 
6.03 ±0.116 

7.65 ± 0.096 
5.90 ± 0.094 
5.09 ± 0.089 
4.53 ±0.101 

6.8S±0.264 
5.24'± 0.087 
4.52 ±0.079 
3.99 ± 0.043 

6.18 ±0.111 
4.86 ±0.082 
4.20 ± 0.066 
3.75 ±0.041 

5.66 ±0.105 
4.41 ± 0.054 
3.81 ±0.021 
3.50 ± 0.034 

5.38 ± 0.091 
4.28 ± 0.056 
3.72 ±0.037 
3.41 ±0.028 

The ± values are standard errors. 
This is Table 3 of Rosner. 

Reprinted with permission. Copyright© by the American Statistical Association. 

level of £S for « = 15 in Table 3-lOt is 0.3104, whereas that of Tietjen and Moore in Table 3-5 is 0.317. 
Note that Hawkins indicates his Monte Carlo calculations are good to perhaps four decimal places. We 
decide to reject both —1.40 and 1.01 because we believe the sum of squares type test may be superior to 
the Rosner outlier test. This is our final conclusion for these data. 

3-5.5.4    The Skewness and Kurtosis Tests for Outliers 

In our account of testing samples for multiple outliers, we should also record some discussion concern- 
ing the related work of Ferguson (Refs. 15 and 16). In fact, the use of the skewness and kurtosis coeffi- 
cients have long been studied as tests of normality and also as a way of screening samples for outliers. We 
have already mentioned the matter of possible spurious values in the sample being masked by the 
presence of other anomalous observations since this will have an effect on any significance tests to detect 
outlying observations. Outlying observations occur due to a shift in level (or mean) or a change in scale 

+ If the calculated ratio is less than the appropriate ratio given in Table 3-10, the values are rejected as outliers. 
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(i.e., a change in variance of the observations), or both. Ferguson (Refs. 15 and 16) has studied the power 
of the various rejection rules relative to both changes in level or scale. For several outliers and repeated 
rejection of observations, Ferguson points out that the sample coefficient of skewness /S; 

\fbx = s/^k {X, - 3c)V[(n - l)'/'5'] 

(3-56) 

= N/^I I {xi - X)V [2(x, - x)']^/'} 

should be used for one-sided tests (change in level of several observations in the same direction). On the 
other hand, the sample coefficient of kurtosis b2 

^2 = «S(x,-30V[(«- 1)V] 

(3-57) 

= nX{xi-x)'l\X{Xi-xff 

is recommended for two-sided tests (change in level to higher and lower values) and also for changes in 
scale (variance). In applying the skewness and/or kurtosis tests, the y/1^ or the b., or both, are computed. 
If their observed values exceed those for significance levels given in either Table 3-11 or Table 3-12, the 
observation farthest from the mean is rejected and the same procedure is repeated until no further sample 
values are judged as outliers. (As we have said, and is well-known, /57 and bi are also used as tests of nor- 
mality.) 

In Eqs. 3-56 and 3-57 for /^ and bi, respectively, s is defined as generally used in this chapter with {n - 
1) df, i.e., 

n 

s = }^{xi-^^l{n-\). (3.58) 

The significance levels in Tables 3-11 and 3-12 for sample sizes of 5, 10, 15, and 20 (and 25 for 6.) were 
obtained by Ferguson (Refs. 15 and 16) on an IBM 704 computer using a sampling experiment or Monte 
Carlo procedure. The significance levels for the other sample sizes are from E. S. Pearson, "Table of Per- 
centage Points of/57 and bi in Normal Samples; a Round Off (Ref. 26). For n = 25, Ferguson's Monte 
Carlo values of bi agree with Pearson's computed values. Other tables of interest concerning /57 and bi 
are those of Mulholland (Ref. 27). 

The /^ and bi statistics have the optimum property of being "locally" best against one-sided and two- 
sided alternatives, respectively. The /^ test is good for up to 50% spurious observations in the sample for 
the one-sided case, and the bi test is optimum in the two-sided alternatives case for up to 21% "contami- 
nation" of sample values. For only one or two outliers, however, the sample statistics of the previous 
paragraphs (pars. 3-5.1 and 3-5.4) are recommended, and, in fact, Ferguson (Ref. 1) discusses in detail 
their optimum properties of pointing out either one or two outliers. 

Instead of the more complicated /FT and bi statistics, one can use the Tietjen and Moore tests dis- 
cussed in par. 3-5.5.2 or Rosner's test from par. 3-5.5.3 and Hawkins" test from par. 3-5.5.3 for the sample 
sizes and percentage points given. 

3-6    RECOMMENDED OUTLIER TESTS USING INDEPENDENT STANDARD 
DEVIATION ESTIMATORS 

We now consider tests of outliers for which the estimate of variance is independent of the suspected 
values tested in samples. Such tests apply, for example, to analysis of variance tables and elsewhere. In 
par. 3-5.5.3 we also mentioned some related concepts by Hawkins (Ref. 21). 

Suppose that an independent estimate of the standard deviation is available from either previous data 
or is otherwise available, as under null hypothesis situations for the analyses of variance (ANOVA's). 
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TABLE 3-11 

SIGNIFICANCE LEVELS FOR y/K 

Significance 
Level, % 

Sample Size n 

5" 10" 15" 20" 25 30 35 

0.92 
0.62 

40 

0.87 
0.59 

50 

0.79 
0.53 

60 

1 
5 

1.34 
1.05 

1.31 
0.92 

1.20 
0.84 

1.11 
0.79 

1.06 
0.71 

0.98 
0.66 

0.72 
0.49 

"These values were obtained by Ferguson (Refs. 15 and 16) using a Monte Carlo procedure. 

Reprinted with permission. Copyright © for portion of table by Biometrika Trustees; copyright © for remainder of table by 
University of California Press. 

TABLE 3-12 

SIGNIFICANCE LEVELS FOR 62 

Significance 
Level, % 

Sample Size n 

5" 10" 15"              20" 25" 50 

4.88 
3.99 

75 

4.59 
3.87 

100 

1 
5 

3.11 
2.89 

4.83 
3.85 

5.09            5.23 
4.07            4.15 

5.00 
4.00 

4.39 
3.77 

"These values were obtained by Ferguson (Refs. 15 and 16) using a Monte Carlo procedure. 
Reprinted with permission. Copyright © for portion of table by Biometrika Trustees; copyright © for remainder of table by 
University of California Press. 

These estimates of the true a may be from a single sample of previous similar data, or they may be the re- 
sult of combining estimates from several such previous sets of appropriate data. In any event each such 
estimate will have df equal to one less than the sample size or group on which it is based. Thus the proper 
combined estimate is a weighted average of the several values of .?2; the weights are proportional to the re- 
spective df. The total df in the combined estimate then is the sum of the individual df. When one uses an 
independent estimate of the standard deviation .s,, based on v df, the useful test criterion recommended 
for judging a low or high outlier is either 

T{ = 
Xi 

(3-59) 

or 

where 

T' 
Xn 

(3-60) 

V — total number of df in the independent estimate s^ of o. 

The critical values for Ti'and 7;' for the 5% and 1% significance levels are from David (Ref. 28) and are 
given in Table 3-13. In Table 3-13 the notation v = df indicates the total number of df associated with the 
independent estimate of the standard deviation a, and n indicates the number of observations in the sam- 
ple under study. 

Another very useful set of tables for testing samples for outlying observations using an independent s^ 
is that of Halperin, Greenhouse, Cornfield, and Zalokar (Ref. 29). They have tabulated the percentage 
points of the statistic d, where 
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TABLE 3-13 

CRITICAL VALUES FOR T' WHEN STANDARD DEVIATION s, IS INDEPENDENT 
OF PRESENT SAMPLE (Ref. 28) 

n 

v = d{ 3 4 5 6 7 8 9 10 12 

1% Point 

10 2.78 3.10 3.32 3.48 3.62 3.73 3.82 3.90 4.04 
11 2.72 3.02 3.24 3.39 3.52 3.63 3.72 3.79 3.93 
12 2.67 2.96 3.17 3.32 3.45 3.55 3.64 3.71 3.84- 
13 2.63 2.92 3.12 3.27 3.38 3.48 3.57 3.64 3.76 
14 2.60 2.88 3.07 3.22 3.33 3.43 3.51 3.58 3.70 

15 2.57 2.84 3.03 3.17 3.29 3.38 3.46 3.53 3.65 
16 2.54 2.81 3.00 3.14 3.25 3.34 3.42 3.49 3.60 
17 2.52 2.79 2.97 3.11 3.22 3.31 3.38 3.45 3.56 
18 2.50 2.77 2.95 3.08 3.19 3.28 3.35 3.42 3.53 
19 2.49 2.75 2.93 3.06 3.16 3.25 3.33 3.39 3.50 

20 2.47 2.73 2.91 3.04 3.14 3.23 3.30 3.37 3.47 
24 2.42 2.68 2.84 2.97 3.07 3.16 3.23 3.29 3.38 
30 2.38 2.62 2.79 2.91 3.01 3.08 3.15 3.21 3.30 
40 2.34 2.57 2.73 2.85 2.94 3.02 3.08 3.13 3.22 

60 2.29 2.52 2.68 2.79 2.88 2.95 3.01 3.06 3.15 
120 2.25 2.48 2.62 2.73 2.82 2.89 2.95 3.00 3.08 

oo 2.22 2.43 2.57 2.68 2.76 2.83 2.88 2.93 3.01 

5% Points 

10 2.01 2.27 2.46 2.60 2.72 2.81 2.89 2.96 3.08 
11 1.98 2.24 2.42 2.56 2.67 2.76 2.84 2.91 3.03 
12 1.96 2.21 2.39 2.52 2.63 2.72 2.80 2.87 2.98 
13 1.94 2.19 2.36 2.50 2.60 2.69 2.76 2.83 2.94 
14 1.93 2.17 2.34 2.47 2.57 2.66 2.74 2.80 2.91 

15 1.91 2.15 2.32 2.45 2.55 2.64 2.71 2.77 2.88 
16 1.90 2.14 2.31 2.43 2.53 2.62 2.69 2.75 2.86 
17 1.89 2.13 2.29 2.42 2.52 2.60 2.67 2.73 2.84 
18 1.88 2.11 2.28 2.40 2.50 2.58 2.65 2.71 2.82 
19 1.87 2.11 2.27 2.39 2.49 2.57 2.64 2.70 2.80 

20 1.87 2.10 2.26 2.38 2.47 2.56 2.63 2.68 2.78 
24 1.84 2.07 2.23 2.34 2.44 2.52 2.58 2.64 2.74 
30 1.82 2.04 2.20 2.31 2.40 2.48 2.54 2.60 2.69 
40 1.80 2.02 2.17 2.28 2.37 2.44 2.50 2.56 2.65 

60 1.78 1.99 2.14 2.25 2.33 2.41 2.47 2.52 2.61 
120 1.76 1.96 2.11 2.22 2.30 2.37 2.43 2.48 2.57    • 

oo 1.74 1.94 2.08 2.18 2.27 2.33 2.39 2.44 2.52 

Reprinted with permission. Copyright © by Biometrika Trustees. 
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d = max 
x\ 

(3-61) 

and the standard deviation s^, is calculated from past or other data independent of the current sample for 
which outliers are being tested. The authors refer to their test as that for the studentized maximum abso- 
lute deviate in normal samples. The statistic d can be seen to be that of the two-sided alternative Student- 
type test of Nair (Ref. 30) or Grubbs (Ref. 9), in which the scaling statistic s^, of the denominator must be 
independent of the numerator residuals. 

As pointed out by Halperin, Greenhouse, Cornfield, and Zalokar (Ref. 29), their tables, reproduced 
here as Table 3-14, may be used to test whether the largest observation without regard to sign is too large, 
or the tables may be used for multiple significance tests of a set of n sample means arising from inde- 
pendent normal populations possibly with different true means. Thus Table 3-14 may be used in many 
ANOVA test procedures to determine or judge either high or low treatment effects, for example. 

For each entry in Table 3-14 and for any given sample size n and number of df v, the authors of Ref. 29 
list upper and lower values, these being due to the computational procedure available (see Section 3 of 
Ref. 29). The authors point out that the lower values are known to be closer to the true, or correct, per- 
centage points; accordingly, they recommend using the lower tabulated levels of significance in most 
cases. In fact, the actual difference in exact probabilities between the two tabulated values appears to be 
in the second decimal place, except for the rather small sample sizes, and consequently is of little practical 
interest. ' , 

The reader might note that so far in the outlier-type detection procedures of this paragraph, informa- 
tion in the particular sample tested for outliers is not used. Therefore, one would wonder whether there 
would be any gain in information or perhaps in power to detect spurious values if the variability measure 
for the current sample were also included in the test. In this connection, the reader perhaps noticed that 
just this rather useful concept was available for application in Table 3-10 prepared by Hawkins (Ref. 21) 
for multiple tests of outliers. Hence with reference to the studentized residuals-type tests of outliers, Haw- 
kins and Perold (Ref. 31) have prepared a table of percentage points or critical levels of the statistic 

B   = max|(x, — x)|/5'= max 

where 

•^n        -^ \   / •\        <\ \ 

SH   / \    SH 
(3-62) 

and 

SH= X (x. -5c)'+ U=S'+ U , (3-63) 

Ulo' = uslio' = xl. (3-64) 

Thus and as before, the quantity U is an independent a^Xv variate with v df if such information is avail- 
able for use. Note also that S^ is the total SS for the current sample of interest, which may contain con- 
taminated values. When only data on the current or same sample are available, U (and v) are taken as 
zero. 

Hawkins and Perold's critical values or percentage points of their statistic B* are given in Table 3-15. 
Summarizing somewhat at this point, we note that there are a variety of useful tests and related tables 

to detect outliers in samples for the case in which only an independent estimate of the underlying sigma is 
used or for the case in which the independent estimate is used along with the current sample information. 

Now—that we have covered David's statistic (Ref. 28), using an independent estimate of the standard 
deviation to test for an outlier; also the similar d statistic of Halperin, Greenhouse, Cornfield, and Zalo- 
kor (Ref. 29); and finally the augmented B* statistic of Hawkins and Perold (Ref. 31)—it would be of in- 
terest to give an illustrative example. For this purpose, we will return to the interlaboratory, or round 
robin, test data of Table 2-7. 
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Example 3-11: 
In the interlaboratory test of par. 2-10 for measurements of the amount of lead in gasoline, it seemed 

probable that the levels of measurement of the Du Pont and Mobil laboratories were low compared to 
those of the other laboratories. Is there any statistical evidence to back up this hypothesis? 

Since, under the assumptions of the ANOVA procedure, the among-laboratory and within-laboratory 
SS are independent, we will first use only the residual or within-laboratory SS to estimate sigma. In this 
connection, we have that   ar.= 0.50 based on the within-laboratory SS of 2.50 and v = \0 df. 

The observed levels or average measurements of the amount of lead in gasoline (multiplied by 1000) are 
as follows: 

DuPont Mobil EPA Ethyl Ford AMOCO Octel 
23.3 24.0 25.7 26.0 26.7 27.5 28.0. 

We note, however, that these were based on different sample sizes, i.e., either 2 or 3 per laboratory. A 
very satisfactory, approximate way to solve the problem posed is to note that the grand mean for all the 
laboratories is x = 438/17 = 25.76; therefore, we will consider the largest deviations from this value. In 
fact, we may as well pool the readings of Du Pont and Mobil since we will test both as low outliers and 
obtain their average as 

(70 + 48)/5 = 23.60. 

Hence we will use an approximate test on the difference 

25.76-23.60 = 2.16 

and we must determine the estimated standard error of this unevenly weighted difference. Under the null 
hypothesis of no differences in laboratory levels and hence the use of only the within-laboratory sigma for 
testing for outliers, we note that the stated difference is really 

118/5-[(118)+ (438 - 118)]/17 ^ y --/y) (118)--fi^(320) = 1^(118)--1(320)=-2.16 

where 118 is the sum of 5 observations of Du Pont and Mobil, and 320 is the sum of the remaining 12 ob- 
servations. Thus since a] is the variance of an individual laboratory reading, the estimated variance of the 
stated difference, i.e., —2.16, is 

2 .     2 

aWO = (^)(5cTi)+ (^) (12a^.)= 0.\4\al 
■ S5''     '    V85 

This means that the equivalent sample size for the numerator of a Student's ?-type statistic to use is about 
1/0.141 = 7.09. Hence we may take our studentized statistic i to be approximately 

t « -2.16/(V0.141 Or) = -2.16/(0.5/^7^) = -11-50 

which for v = 10 df is very highly significant from either Table 3-13 or Table 3-14. There seems to be little 
doubt, therefore, on the basis of the ANOVA residual or error variance, that the readings of Du Pont and 
Mobil are significantly low. The ANOVA of Table 2-7 established a very significant difference between 
the among-laboratory and within-laboratory variations, i.e., a huge ratio of 7.093/0.25 = 28.37 to 1 on 
the variance scale or 5.33 to 1 on the sigma scale. 

Ordinarily, Hawkins' B* test might be applied to testing whether the Du Pont and Mobil laboratory 
levels are low if we could pool the among-laboratory and within-laboratory sum of squares. We can at 
least illustrate the principle in spite of the fact that there is a large difference between the among- and with- 
in-laboratory variances. Thus we found the sum of squares (about the table mean) among columns based 
on an individual reading to be 42.56 and that of the within or residual sum of squares V to be 2.30. Hence 
according to Eq. 3-63, we obtain 
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S^ = 42.56 + 2.50 = 45.06 

where the v of Eq. 3-64 has the value, v = \0 df. Since the average 23.60 was based on the equivalent of 
about 7.09 observations and 5"^ = 45.06 is for an individual observation, we take Hawkins' B* as approxi- 
mately B*^ynjy^{x-xi)/S = 2.66 (25.76 - 23.60) /6.71 = 0.86, where we used the grand mean x and 
the average of the two lowest laboratories. Referring to Table 3-15 for critical values of Hawkins' B*, we 
find for rt = 6 laboratories (we combined Du Pont and Mobil) and j/ = 5 df that the 0.001 percentage 
poi'nt is 0.8207, whereas for f = 15, the 0.001 probability level is 0.6674. Therefore, for p = 10 we would 
even reject the null hypothesis of no difference among laboratory measurements under the (questionable) 
pooling procedure. In any event, it certainly seems that we can now settle the question raised in Table 2-7; 
namely, the measurements of lead in gasoline by Du Pont and Mobil are significantly low, and an investi- 
gation is called for to "bring them into line". (All laboratories, on the average, still measure a little low.) 

It is such an investigation of laboratory measurement levels that is called for concerning the whole mat- 
ter of testing for outlying laboratories. Thus we saw in Table 2-7 that the within, residual, or repeatability 
sigma amounted to 0.50 and the among-laboratory sigma had a value of 1.69, so that the reproducibility 
sigma for an individual measurement taken at a randomly selected laboratory became 1.76. This shows 
that the residual sigma representing precision at one or a single laboratory is quite inconsequential be- 
cause practically all the variability comes from the fact that the laboratory levels are not in agreement, 
and, therefore, there is indeed quite a problem to bring them together or to calibrate their measurement 
procedures or instruments. This is at the heart of the whole matter of procedures for testing for aberrant 
readings, and we see that it becomes urgent to investigate first and to do something about the results com- 
ing from Du Pont and Mobil. In fact, it is only through such investigations or through calibration pro- 
cedures that we can hope to reduce the among-laboratory sigma of 1.69 and thereby gain some improve- 
ment in the precision of measurement of the amount of lead in gasoline. 

In addition, it is easy to note that although we had no problem really in the choice of the "right" 
underlying estimate of sigma to test for outliers in single samples, this is not the case for ANOVA pro- 
cedures where two or more components of variance may be real and quite different, as in Table 2-7. In 
fact, we believe that the among-laboratory sigma may not be brought into line with the almost negligible 
residual sigma of only 0.50. That is, we should expect that the among-laboratory sigma will most always 
be larger than the within value at a single laboratory, and, in fact, several times the latter value. Hence we 
should expect that this would be the usual case and that the real or basic problem toward improving pre- 
cision and accuracy would revolve around properly correcting for the different measurement levels at the 
various laboratories. Having observed this, we will proceed with another, but more extensive, example 
(Example 3-12) on interlaboratory testing and will show that our thoughts on the matter are well verified 
and justified. 

Example 3-12: 
In an analysis of interlaboratory test procedures, data representing normalities of sodium hydroxide 

solutions were determined by 12 different laboratories. In all the standardizations a 0.1 normal sodium 
hydroxide solution was prepared by the Standard Methods Committee using carbon-dioxide-free distilled 
water. Potassium acid phthalate (PAP), obtained from the National Bureau of Standards, was used as the 
test standard at all of the participating laboratories in the round robin test. 

Test data by the 12 laboratories are given in Table 3-16. The PAP readings have been coded to simplify 
the calculations. The variances among the three readings within all laboratories were found to be homo- 
geneous. A one-way classification in the ANOVA was first analyzed to determine whether the variation in 
laboratory results (averages) was statistically significant. This variation was found to be very significant 
and indicated a need for action, so tests for outliers were then applied to isolate the particular laboratories 
whose results gave rise to the significant variation. 

Table 3-17 shows that the variation between laboratories is highly significant, exhibiting an F ratio of 
48.61. To test whether this (very significant) variation is caused by one laboratory (or perhaps two) that 
obtained "outlying" results (i.e., perhaps showing nonstandard technique), we can test the laboratory 
averages for outliers. From the ANOVA we have an estimate of the within or residual variance of an indi- 
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TABLE 3-16 
STANDARDIZATION OF SODIUM HYDROXIDE SOLUTIONS AS DETERMINED 

BY PLANT LABORATORIES (Ref. 10) 

Standard Used: Potassium Acid Phthalate (PAP) 
Deviation of 

(PAP 0.096000) Average from 
Laboratory xio' Sums Averages Grand Average 

1 1.893 
1.972 
1.876 5.741 1.914 +0.043 

2 2.046 
1.851 
1.949 5.846 1.949 +0.078 

3 1.874 
1.792 
1.829 5.495 1.832 -0.039 

4 1.861 
1.998 
1.983 5.842 1.947 +0.076 

5 1.922 
1.881 
1.850 5.653 1.884 +0.013 

6 2.082 
1.958    ^ 
2.029 6.069 2.023 +0.152 

7 1.992 
1.980 
2.066 6.038 2.013 +0.142 

8 2.050 
2.181 
1.903 6.134 2.045 +0.174 

9 1.831 
1.883 

f. 

1.855 5.569 1.856 -0.015 

10 0.735 
0.722 
0.777 2.234 0.745 -1.126 

11 2.064 
1.794 
1.891 5.749 1.916 +0.045 

12 2.475 
2.403 
2.102 6.980 2.327 +0.456 

Grand Sum 67.350 

Grand Average 1.871 

Reprinted with permission. Copyright© by the American Statistical Association. 
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vidual reading as 0.008793 based on 24 df. The estimated standard deviation of the average of three read- 
ings is therefore 0.094//T = 0.054. The complete ANOVA is given in Table 3-17 and, due to the huge 
variation resulting from some differences in levels of measurement for some of the laboratories, we must 
now conduct an analysis to determine just which laboratories have unacceptable levels of measurement. 

In this example we are not concerned about any variation in number of observations per laboratory 
since they are all three in number, and hence no adjustment for the 50% variation from two to three ob- 
servations is needed as in Example 3-11. Also since we illustrated the Hawkins technique in Example 
3-11, we may as well use David's studentized statistic or the d statistic of Halperin, Greenhouse, Corn- 
field, and Zalokar, and accompanying tables of percentage points. Since the estimate of within-laboratory 
variation is independent of any difference between laboratories, we can use the David statistic TI of Eq. 
3-59 and T,^ of Eq. 3-60 to test for outliers. An examination of the deviations of the laboratory averages 
from the grand average indicates that Laboratory 10 obtained an average reading much lower than the 
grand average and that Laboratory 12 obtained a rather high average level of measurement compared to 
the overall average. First, to test whether Laboratory 10 is an outlier, we calculate 

T'      =     1-871 -0.745      -.^^ 
' 0.054 -^u.y. 

The value of T\ is, from Table 3-13, obviously significant at a very low level of probability (P«0.01). 
We conclude, therefore, that the test methods of Laboratory 10 should be investigated and corrected. 

Excluding Laboratory 10 and at the risk of increasing the Type I error*, we compute a new grand 
average of 1.973 and test whether the results of Laboratory 12 are outlying. We have that 

2.327-1.973 

^"= 0.054        ='■'' 

and this value of Tn is significant at /'«0.01.We conclude that the procedures of Laboratory 12 should 
also be investigated. 

Concerning Laboratories 10 and 12, we could also have used Table 3-14 or, that is, the maximum inde- 
pendently studentized statistic d of Halperin, Greenhouse, Cornfield, and Zalokar (Ref. 29). In this con- 
nection we see that for Laboratory 10, d = Ti = 20.9, and using Table 3-14 for /7 = 12 and v = 24, it is 
quite clear that Laboratory 10 is an outlier. Moreover, repeating this same test after eliminating Labora- 
tory 10, we see also that Laboratory 12 has too high a level of measurement and should be investigated. 
In summary, we find that the d statistic establishes that Laboratories 10 and 12 are outliers and should be 
investigated. Furthermore, Halperin, Greenhouse, Cornfield, and Zalokar (Ref. 29) point out in their ap- 
pendix that the chance that the statement made concerning Laboratories 10 and 12 is incorrect when the 
null hypothesis of no differences whatever is true is clearly 0.01—our specified level of testing. Also when 
the null hypothesis is false, this chance is less than 0.01, even for multiple tests. 

To verify that the remaining laboratories did indeed obtain homogeneous results, we might repeat the 
analysis of variance omitting Laboratories 10 and 12. The calculations give the results shown in Table 
3-18. 

For this analysis, the variation between laboratories is not significant at the 5% level, and we conclude 
that all except Laboratories 10 and 12 exhibit the same capability in testing procedure. 

In conclusion, there should be a systematic investigation of test methods for Laboratories 10 and 12 to 
determine why their test procedures are apparently different from the other ten laboratories. 

* Determination and control of the Type I error,  especially with  the aid of the Bonferroni inequalities, is discussed in 
Chapter 4. , 
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TABLE 3-17 
ANALYSIS OF VARIANCE FOR THE DATA OF TABLE 3-16 

Source of Variation 

Degrees of 
Freedom 

(dO 

Sum of 
Squares 

(SS) 
Mean Square 

(MS) F Ratio 

Between laboratories 
Within laboratories 

11 
24 

4.70180 
0.21103 

0.4274 
0.008793 

F= 48.61 
(highly significant) 

/'< 0.001 

Total 35 4.91283 

Reprinted with permission. Copyright © by the American Statistical Association. 

TABLE 3-18 
ANALYSIS OF VARIANCE OMITTING LABORATORIES 10 AND 12 

Source of Variation 

Degrees of 
Freedom 

(dO 

Sum of 
Squares 

(SS) 
Mean Square 

(MS) F Ratio 

Between laboratories 
Within laboratories 

9 
20 

0.13889 
0.13107 

0.01543 
0.00655 

= 2.35 (not significant) 
F,,o5 (9,20) = 2.40 
F„.„i (9,20) = 3.45 

Total 29 0.26996 

Reprinted with permission. Copyright © by the American Statistical Association. 

3-7    RECOMMENDED CRITERIA FOR KNOWN STANDARD DEVIATION 

Frequently,   the  population   standard   deviation   a  may   be   known   with   sufficient   accuracy   and 
hence does not have to be estimated. 

In such cases a statistic of the form 

T[^ = {x-xx)lo    . (3-65) 
or 

TL = {Xn-^lo > (3-66) 

where 

X\ ^Xi <X3< Xn 

We illus- may be used to test for simple outliers. Table 3-19 gives the critical values of T[^ and  Tn^ 
trate this with Example 3-13. 

Example 2i-\2> {a kno^NX\): '      '   * 
In the early days of satellites, the passage of the Echo 1 (Balloon) Satellite was recorded on star 

plates when it was visible. Photographs were made by means of a camera with the shutter automati- 
cally timed to obtain a series of points for the Echo path. Since the stars were also photographed at 
the same times as the Satellite, all the pictures showed star trails and were thus called star plates. 

The X- and >'-coordinates of each point on the Echo path were read from a photograph with a stereo- 
comparator. To eliminate bias of the reader, the photograph was placed in one position and the coordi- 
nates were read; then the photograph was rotated 180 deg and the coordinates reread. The average of the 
two readings was taken as the final reading. Before any further calculations were made, the readings had 
to be screened for gross reading or tabulation errors. This was done by examining the difference in the 
readings taken at the two positions of the photograph. 
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TABLE 3-19 

CRITICAL VALUES OF TL AND Zi'^ WHEN THE POPULATION STANDARD 
DEVIATION a IS KNOWN (Ref. 10) 

Number of 5% 1% 0.5% 
Observations Significance Significance Significance 

n Level Level Level 
2 1.39 1.82 1.99 
3 1.74 2.22 2.40 
4 1.94 2.43 2.62 
$ 2.08 2.57     . 176 
6 2.18 2.68 2.87 
7 2.27 2.76 2.95 
& 2.33 2.83 3.02 
9 2.39 2.88 3.07 

10 2.44 2.93 '     3.12 
11 2.48 2.97 3.16 
12 ■       ■    2.52 3.01 3.20 
13 2.56 3.04 3.23 
14 2.59 3.07 3.26 
15 2.62 3.10 3.29 
16 2.64 3.12 3.31 
17 2.67 3.15 3.33 
18 2.69 3.17 3.36 
19 2,71 3.19 3.38 
20 2.73 3.21 3.39 
21 2.75 .    .,        3.22 3.41 
22 2.77 3.24 3.42 
23 2.78 3.26 3.44 
24 2.80 3.27 3.45 
25 2.81 3.28 3.46 

Reprinted with permission. Copyright © by the American Statistical Association. 

Table 3-20 records a sample of six readings made by the Ballistic Research Laboratories (BRL) at the 
two positions and the differences in these readings. On the third reading the differences are rather large. 
Has the operator made an error in placing the cross hair on the point? 

For this example an independent estimate of G is available since extensive tests on the stereo- 
comparator have shown that the standard deviation in reader's error is about Ajim. The standard devia- 
tion of the difference in two readings is therefore 

V42 +42=^32 = 5.7 Mm. 

For the six readings (Table 3-20) the mean difference in the x-coordinates is ^x = 3.5, and the mean 
difference in the ^-coordinates is ^y = 1.8. By using Eq. 3-66 for the questionable third reading, we have 

T" = 24-3.5 
5.7 

= 3.60 

T; = 22- 1.8 
5.7 

= 3.54. 
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TABLE 3-20 

STAR PLATE MEASUREMENTS, Mm* 

x-coordinate ^'-coordinate 

Position 1 
Position 1 
+ 180deg Ax Position 1 

Position 1 
+ ISOdeg Ay 

-53011 -53004 -7 70263 70258 + 5 

-38112 -38103 -9 -39729 -39723 -6 

-2804 -2828 +24 81162 81140 + 22 

18473 18467 +6 41477 41485 -8 

25507 25497 + 10 1082 1076 + 6 

87736 87739 -3 -7442 -7434 -8 

♦These data represent a sample of typical measurements taken by the former Ballistic Measurements Laboratory of the 
BRL many years ago. 

Reprinted with permission. Copyright © by the American Statistical Association. 

From Table 3-19 we see that for « = 6 values of n» as large as the calculated values would occur by 
chance less than 1% of the time (actually even less than 0.5%) so that a significant readmg error seems to 
have been made on x- and >'-coordinate readings for the third point. 

A great number of points are read and automatically tabulated on star plates. Here we have chosen a 
very small sample of these points. In actual practice the tabulations would probably be scanned quickly 
for very large errors, such as tabulator errors; then some rule-of-thumb, such as +3 standard deviations 
of reader's error, might be used to scan for outliers caused by operator error. (Note that the values of 
Table 3-19 vary between about \AOa and 3.50a.) In other words, the data are probably too extensive to 
allow repeated use of precise tests, such as those described heretofore in this chapter (especially for vary- 
ing sample size), but this example does illustrate the case where a is known with sufficient accuracy from 
past information. Therefore, if gross disagreement is found in the two readings of a coordinate, the read- 
ing could be omitted or reread before further computations are made. 

The tracking data analysis-type problem we have just discussed brings up a whole new area of testing, 
recording data, analyzing information, and investigating implications because data become very numer- 
ous indeed and lead to formidable volumes of observations to treat or process. In fact, with such large 
amounts of information there is hardly time to detect and search for the actual causes of aberrant obser- 
vations i e., their physical cause, and such irregularities occur frequently. Thus the prime or pressing ob- 
ject in such applications may be that of developing a suitable measure of central tendency, and conse- 
quently there might be many smoothing procedures that could be satisfactorily applied in addition to 
least squares discussed in Chapter 6. For small samples and especially in research and development, many 
investigators do not like to discard any data at all, so that one of our prime purposes in this chapter has 
been to indicate just when the scientist or engineer should probably stop and look for causes of aberrant 
sample values. However, for the tracking data analysis-type problem or for cases in which the investigator 
really has no real or deep interest in detecting outliers, he may well consider pther methods of estimation. 
As a matter of fact, there is now such a proliferation of computers that many investigators may even pro- 
gram almost any analytical techniques they desire irrespective of any statistical or mathematical complica- 
tions In addition, there is always the concern on the part of the statistician and others about the usual or 
required assumption of normality. In recent years, there has been very wide interest and much statistical 
research on robust estimation procedures, and the interested reader might study these new areas for possi- 
ble application of other statistical techniques. He might, for example, first examine the survey articles by 
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Huber (Ref. 32) and Hogg (Ref. 33) to acquire interest in that direction. Thus we are cautioning the in- 
vestigator or applied statistician that as a result of much statistical research and the various accomplish- 
ments during the past ten years or so, there now exist many suitable procedures for the analysis of experi- 
mental data; accordingly, one may have to compare possibly applicable techniques on a rather extensive 
basis to determine the best methods of analysis for his particular problem. 

3-8    THE WILK-SHAPIRO STATISTICAL TEST FOR NONNORMALITY 

•Earlier in the chapter we remarked about the somewhat close relation between tests for outliers on the 
one hand versus tests for normality on the other for the data presented to us for analysis. In this connec- 
tion, therefore, we should include in our discussion something concerning an appropriate test for nor- 
mality. Of course, there exist many, many different statistical tests for determining whether the informa- 
tion available in our sample of interest does indeed get a go-ahead insofar as normality is concerned. 
However, it is not our purpose to delve very extensively into tests or procedures for detecting departures 
from the assumption of normality. We will nevertheless include one of the procedures that has been found 
to be quite useful and sensitive toward detecting trends away from normality—i.e., the Wilk-Shapiro test 
(Refs. 34, 35, 36). Thus a sample test criterion for nonnormality, and hence possibly for outliers, not 
covered previously is the Wilk-Shapiro W statistic for a sample of size n given by 

W=[ X a„-i+i{xn-i+i - Xi)y/ Xixi — x) (3-67) 

where 

X]<X2<X3<---<Xn 

n 

x= X Xijn 
/=i   

[A7/2] = the greatest integer in A7/2. 

The coefficients, a„-,+,, of the order statistics for « = 2( 1 )50 are given in Ref. 34 as is a table of percentage points 
of the statistic Wior n = 3(1)50.* 

The Wilk-Shapiro W statistic has been found to be quite sensitive to departures from normality and 
may compare most favorably with the /57and hj tests discussed in par. 3-5.5.4. In addition, therefore, the 
W statistic may be used also as a test for outliers or otherwise general heterogeneity of sample values. The 
significance tests given here have been selected and recommended because they generally point out par- 
ticular suspected outliers in the sample, so that perhaps worthwhile investigations may be pursued to find 
causes. Indeed, it is through such investigations that progress is made in research and development. Hence 
we have recorded the Wilk-Shapiro test to indicate further avenues of approach to the problems of out- 
liers and nonnormality. 

3-9    PROBABILITY PLOTS AND GRAPHICAL TECHNIQUES 

With the advent of the high-speed digital computer and peripheral plotting equipment—along with the 
generation of huge amounts of experimental- or simulation-type data in so many fields of endeavor- 
there has been an increasing amount of applied interest in probability plots of all kinds. For example, the 
sample data may be plotted on normal probability papers to determine whether the data perhaps exhibit 
the possible existence of a normal universe, thereby meeting this assumption. There is also probability 
paper or graphs to determine whether reliability or life testing-type data follow a Weibull distribution or 
an exponential distribution, and graphical means incorporated therewith even to estimate the population 
parameters of the larger category sampled. Hence, a quick and often very suitable type of statistical 
analysis can be made by means of using probability paper plots of data. 

♦Another pertinent reference, probably more readily available, is the book by G. J. Hahn and S. S. Shapiro, Statistical Models in 
Engineering, John Wiley & Sons, Inc., New York, NY, 1967 (pp. 294-302). 
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Daniel (Ref. 37) has used half-normal probability plots for interpreting two-level factorial experiments. 
Chernoff and Lieberman (Ref. 38), for example, discuss the uses of normal probability paper, and they 
give an account of the uses of generalized probabihty paper for continuous distributions in Ref. 39. D. M. 
Sparks (Ref. 40) discusses an account of half-normal plotting and also gives the printed computer pro- 
gram required for use. Zahn (Ref. 41) indicates that some modifications and revisions of percentage 
points or critical values used in connection with half-normal plots are required. Wilk, Gnanadesikan, and 
Huyett (Ref. 42) cover a discussion of probability plots for the gamma distribution. Thus these remarks 
should at least indicate that a growing and useful area of applications for probability plotting does indeed 
exist, and the reader might well study these techniques for his own applications. In fact, and in addition to 
other uses, it becomes clear that probability plots may be used also for detecting possible outliers in 
samples since any departures from the hypothesized lines on probability papers would indicate that the 
assumptions are probably violated. Also it is easy to see that large individual deviations might well point 
to outliers. We therefore suggest that interested readers might well consider the use of probability plots to 
detect outliers or otherwise abnormal conditions since "a picture is worth a thousand words" also in this 
area of investigation or analysis. 

A general discussion of probability plotting methods for the analysis of data is presented by Wilk and 
Gnanadesikan (Ref. 43). 

Along with the use of probability plots, we should mention also graphical methods or plots in con- 
nection with outlier examinations. Prescott (Ref. 44), reporting at the 1977 Sheffield (England) Confer- 
ence on Graphical Methods in Statistics, presented some results on graphical examinations concerning the 
behavior of outlier tests when more than a single outlier is present. Prescott's graphs show rather strik- 
ingly the effect of masking, which we discussed in par. 3-2.3, along with the basic work of Pearson and 
Chandra Sekar (Ref. 3). 

3-10   ADDITIONAL COMMENTS AND GUIDELINES 

With this introductory account of the problem concerning statistical tests of significance for detecting 
outlying observations, the reader will likely want to extend his knowledge of the general subject matter 
and perhaps delve more fully into all aspects of this important topic. In fact, the detection and proper 
treatment of outliers or aberrant values in samples probably represents one of the central problems of-sta- 
tistics. Outliers cannot be ignored since in many cases they have a decided effect on inferences from the 
sample data. Moreover, once we have detected outliers, some action should be taken to locate causes. 
Corrections for these anomalous observations should follow in order that we acquire a set of data that 
truly represents the process or physical situation we are studying. Although investigators generally do not 
like to reject any observations, sometimes it may become necessary. In fact, the use of "trimmed" means, 
variances, etc., may lead to robustness of estimation in any further data processing. A discussion and 
treatment of trimmed means and outer means, and their variances is available in a paper by Prescott and 
Hogg (Ref. 45). 

Anscombe (Ref. 46) discusses the problem and treatment of outlying observations from a different 
point of view than that presented in this chapter; the reader may also have some interest in his "insur- 
ance-type risk" ideas. 

Many investigators will want to give less weight to outliers than the other sample values, and others 
would like to, and actually do, conduct additional experiments to replace aberrant observations. Also 
there is the school of thought that outliers should be "Winsorized" or replaced with the sample values 
closest to them. Others may want to use the sample median instead of the sample mean, and so on. Con- 
cerning the treatment of outliers, we also want to point out that order statistics are treated in Chapter 7 
and represent a subject area of allied interest, especially in view of the fact that sample values may be 
truncated or censored from analysis. In this connection, see also Chapter 21 of the Army Weapon Systems 
Analysis Handbook. Part One, DARCOM-P 706-101. 

The principles of least squares for Army investigators are covered in Chapter 6 of this handbook. The 
detection and treatment of outliers in regression studies, especially including an analysis of residuals from 
the fitted line or curve, represent another area for processing data containing anomalous sample values. 
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This topic will be discussed in Chapter 6. In this connection, Elashoff (Ref. 47) presents a study of a 
model for quadratic outliers in linear regression. In other words, the Elashoff (Ref. 47) paper covers situa- 
tions in which the data appear to veer off above or below the fitted regression line and some further spe- 
cial analysis seems necessary compared to the discussion of this chapter. 

Ellenberg (Ref. 48), in a study of the joint distribution of the standardized least squares residuals from 
a general linear regression relation, also gives some criteria for tests of outliers in the multiparameter 
linear least squares-type of fit, and hence his tests may be of interest in various Army applications 

Fmally, we draw the reader's attention to some recent work by Green (Ref. 49) on outlier-prone and 
outher-resistant types of distributions. In his interesting paper Green (Ref. 49) indicates that the normal 
distribution, for example, is "absolutely outlier resistant". Some distributions, such as the Poisson distri- 
bution, are relatively outlier resistant but are neither absolutely outlier resistant nor absolutely outlier 
prone. A distribution that is absolutely oulier prone and relatively outlier resistant is the gamma distri- 
bution. The Cauchy distribution is branded as being absolutely outlier prone and one that cannot be rela- 
tively outlier resistant. 

A new book on outliers is that of Barnett and Lewis (Ref. 50). 

3-11    SUMMARY 

In this chapter we have introduced the Army investigator or analyst to many procedures and techniques 
relative to the problem of examining samples for outlying observations. The topics covered include tests 
for detecting single aberrant sample observations, the possibility of two outliers on either the high or low 
side of the sample, the situation in which the highest and lowest sample values may be different from 
other sample values, and finally the use of detection procedures for any number of outliers Thus the user 
of this chapter has readily available many tests of significance to apply to almost any problem he faces 
concerning outlying observations in his daily experimental work. 

Many examples have been given to illustrate the applications of the theory or methodology and the ac- 
companying tables of critical values for the sample statistics recommended and included for general use. 
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CHAPTER 4 

SELECTED TOPICS IN ESTIMATION, THE COMMON STATISTICAL TESTS 
OF SIGNIFICANCE, AND THE CHOICE OF PERCENTAGE POINTS 

Some specially selected topics for the practicing statistician are discussed in this chapter. These include 
1. Unbiased estimation of the normal population standard deviation 
2. The sample range 
3. The sample mean deviation '    , 
4. The concept of mean square error ., , 
5. Some moment properties of distributions 
6. The chi-square distribution and its relation to the binomial and Poisson distributions 
7. Confidence bounds on the unknown normal population standard deviation (sigma) 
8. The approximate chi-square distribution 
9. The Snedecor-Fisher variance ratio distribution 

10. Tests for homogeneity of population variances or homoscedasticity 
11. Student's t distribution for a single sample and for two samples 
12. Special approximations to Student's t 
13. The Behrens-Fisher problem 
14. Special use of an experimental design to rate or rank proposals 
15. Combination of probabilities from independent experiments 
16. Choice of significance levels for multiple tests 
17. Brief introduction to the field of muhiple comparison procedures. 

Statistical tables of percentage points that the analyst will often use are included, and a variety of examples 
illustrating the theory presented is recorded. 

4-0 LIST OF SYMBOLS 

Ai = designation for the /th event 
y4,; = score or rating by the/th rater on the yth proposal 

Ai. = summation with respect toy 
Ax = «2x'- (Sx)' 
A.j = summation with respect to / . .„ 
A.. = summation of ratings over both / and7 
Ai. = mean of ratings given by the /th rater on all proposals 
A.J = mean of ratings by all raters onyth proposal 
/4.. = mean of ratings by all raters on all proposals 

fli = constant in Eq. 4-10 
02 = constant in Eq. 4-11 = 1/c 
C = denominator of Bartlett's F 
c = constant in Eq. 4-6 

Cn = constant in Eq. 4-5 
d„ = mean value of sample range divided by a 
ds = special form of Student's t for the Behrens-Fisher problem in Eq. 4-124 

E(   ) = expected value of (   ) 
F = Snedecor-Fisher F statistic: a ratio of variances 
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FB — Bartlett's F (or Bartlett's statistic) 
FBA: = Bartlett-Kendall "log ANOVA" F statistic 

Fc = Cochran's For statistic 

FH — Fmax = Hartley's maximum F ratio or statistic 

Faivuvi) = lower a probability level of F with ui and ui degrees of freedom 

Fi,a(i'i,i'2) = \l Fo(v2,Pi) = upper a probability level of Fwith P] and vi degrees of freedom 
FP = F ratio of mean square for proposals to mean square error or residual variance 

FR = F ratio of raters to the residual mean square 
/(    ) = probability density function (pdf) of (    ) i 
/(F) = probability density function of Snedecor-Fisher F 

f{t) = probability density function of variable t 
g = tabular value to use Duncan's Multiple Range test 

/ = confidence interval • ; 

IML — confidence interval of minimum length . r^, 
/it/= Neyman's shortest unbiased confidence interval ".^ 

/x(p,^) = incomplete beta function 

K = constant 
k = constant due to Cureton in Eq. 4-9 
A: = number of proposals .,  ■■, 

A:„ = standard error of sample range divided by a 
L = length of confidence interval in Eq. 4-65 ... 

L* = form of Bartlett's statistic %-     •. 

Af = numerator of Bartlett's F ■ 
MD = mean deviation from mean in Eq. 4-15 

ML = maximum Hkelihood (estimate) . ,      , 
MS = mean square 

Af5F = mean square error   ■ 
MSB = mean square for the error or residual variance term ("error of measurement" for the 

experiment) , 
Af5F (AfD) = mean square error of the sample mean deviation 

MSB (w) = mean square error of the sample range ; 
MSP = mean square for the different proposals . 
Af5/? = mean square for the raters     'i       '■    '' ' ■ 

m = designates the number of independent tests carried out 

m — mean value of g • 
W7, = number of sample variances from /th population .: 

max (    ) = maximum of (    ) 
A^(0,1) = indicates a normal distribution with zero mean and unit variance 

n = sample size 
n — number of raters 

«i = sample size of "first" sample (drawn from first population) 
«2 = sample size of "second" sample (drawn from second population) 

F; = the/th proposal :"*: 
Fr [   ] = probability that or of [   ] 

Pr\x>s\ — chance that x attains s or more successes 
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p = number of populations sampled 
p = chance of success in a single trial 

p* = actual probability attained with use of t* instead of Student's / 
Pi = left area of a probability distribution up to /, 

/7i = first left tail area 
/72 = second left tail area 
Q — Qix,y) = quadratic form in x and y 
q = designates the "Studentized" range, i.e., the range of a sample of observations divided by 

the standard deviation 
q = I — p = chance of failure in a single trial 

Ri = ith rater .. . 
r, = sample range of/th sample ,, 

(/) = combination of r things taken / at a time 

5'? = S (Xii — xi)' = sum of squares about the first sample mean 
/ = 1 

Sl = i" (x,2 — xj)^ = sum of squares about the second sample mean 
5S = sum of squares (about proper mean value) 

SSE = sum of squares due to residual or error variance 

SSP = sum of squares due to proposals 
SSR = sum of squares due to raters ' 
SST = total sum of squares 

s = number of successes in n trials 
s = sample standard deviation 

Sx — sample standard deviation in x-direction / 
Sy = sample standard deviation in j^-direction 
s^ = 2(x, — xfl{n—l) = sample variance based on {n — 1) degrees of freedom 

n{n — 1) 
s^= i i (xi - Xjf l[2n(n - !)] . 

(^y = 2(x, — 3c)^/« = sample variance with divisor « 
s] = sample variance for sample of size «, from /th normal population 
5^ =7th sample variance from/th population 

5^    = maximum sample variance max ^ 
s^-  = minimum sample variance min ^ 

si = Sil(ni — 1) = sample variance of first sample based on (rii — 1) degrees of freedom 
s\ = S\\(ni — 1) = sample variance of second sample based on («2 — 2) degrees of freedom 

r== a general sample statistic in Eq. 4-23 
; = Wilson-Hilferty transformation or Student's t statistic 

ts = special form of Student's / in Eq. 4-123 
/* = Scott and Smith's modified Student's / in Eq. 4-105 .   . 

/* 5 = 95% value or probability level of / ■K 

t\ = upper a/2 percentage point for («i — 1) degrees of freedom in Eq. 4-125 
/2 = upper a/2 percentage point for («2 ~ 1) degrees of freedom in Eq. 4-125 
/„ = upper a probability level of Student's / 

UAi = designates the occurrence of at least one of the events Ai 

4-3 



DARCOM-P 706-103 

Var (    ) = variance of (    ) 
V = variance of Q 
w = sample range = x„„ — xm 
Xi = /th observation 

Xin = iih ordered value or observation in a sample of size n 

X — Xxijn — sample mean 

3ci = sample mean of first sample 

X2 = sample mean of second sample 
y = general statistical variable '■ 
z = (lnF)/2 = Fisher's transformation of F 

z = standard or unit normal deviate 
Zij = Insl = logarithm of/th sample variance from rth population 

z„ = /th average of Zi/s in Eq. 4-96 
z.. = grand average of Zi/s in Eq. 4-97 

2o,5 = 1.96 = 95% probability level of normal deviate z 

a = probability level < 0.5 
1 — a = confidence level or probability 

as = MS/MP — coefficient of skewness = \/Pi 
04 = M4/Mi ~ coefficient of kurtosis = ^2 
fi = amount of bias in an estimate 

Pip.q) = beta function of p and q 

r(    ) = gamma function of (    ) 
8 — divisor to obtain an unbiased estimate 

y ■ 
6 = population parameter 
\ = np — Poisson expectation parameter 

fx = true mean 
Hij = true unknown grade or rating for /th rater on/th proposal 
jjir = rth central moment, or rth moment about the mean 
^; = )Ur' (    ) = ''th moment about the origin of (    ) 

ju   = true unknown mean grade or rating for the 7th proposal 
Hi = population mean of first normal population 
1x2 = population mean of second normal population 

/X2 = cr^ = variance 
V = degrees of freedom (df) 
Vi = «,— !=: number of degrees of freedom for /th sample 

vi = degrees of freedom for first sample 
V2 — degrees of freedom for second sample 

OMD = standard deviation of the MD 
Ow = standard deviation of the sample range 

Ox = population standard deviation in x-direction 

Ox -X = standard deviation of the difference in means 
1   2 

Oy = population standard deviation in j'-direction 
Oo = hypothesized value of o (for the null hypothesis) 

4-4 



DARCOM-P 706-103 

ai = population standard deviation of first normal population 

02 = population standard deviation of second normal population 

a^ = population variance 

a^(    ) = variance of (    ) 
a = estimate of o (usually the optimum estimate) 

CT^ = estimate of the population variance 
X^(2mVv) = approximate chi-square variate with 2wVv degrees of freedom 

X^(i^) = chi-square using j'degrees of freedom 

Xa = a lower limit of chi-squared distribution 
Xfc = an upper limit of chi-squared distribution 
X^ = ath probability level or percentage point of chi-square 

^f_„ = (1 — Q;)th probability level or percentage point of chi-square 

4-1 INTRODUCTION 

The fundamental problem of statistics is to improve upon or to develop the most powerful and useful 
methods for the analysis and interpretation of data of all kinds. In Chapter 2 we developed some of the most 
up-to-date techniques for determining the precision and accuracy of our measuring instruments and for 
defining these concepts in useful analytical terms. If our measurements are faulty, the correct interpretation or 
sound inferences from samples become difficult or impossible; this is the reason for studying the precision and 
accuracy of measurements. In a like manner, it seems logical and basically sound to examine samples (often 
expensively taken) for outliers, which also may lead to erroneous conclusions or inferences, before we address 
the problem of refined methods of statistical analyses. It is true that we applied many of the common statistical 
tests of significance in Chapters 2 and 3 because they were, in fact, necessary to test various hypotheses of 
importance. Many of the more common statistical tests of significance are found in standard textbooks on 
statistics. Nevertheless, we must examine more critically many of the problems related to statistical tests of 
significance, some problems of confidence interval estimation, and the problem of statistical hypothesis 
testing generally in order to update techniques for the current practicing Army analyst—especially since the 
five sections of the Engineering Design Handbooks on experimental statistics (Refs. 1-5) appeared in 1962. 

Refs. 1-5 contain a wealth of general and specific information concerning statistical techniques—current to 
1962—of interest to the practicing Army analyst. These include, for example, 

1. Snedecor's F ratio of sample variances to test the equality of normal population variances 
2. Student's / statistic for testing the hypothesis concerning whether the population mean for a normal 

sample has a specified value or the two-sample Student's t for comparing population means 
3. Contingency tables and other statistical tests for comparing the true unknown proportions of 

binomial-or multinominal-type populations 
4. Analysis of scientific experiments including factorial experiments 
5. Completely randomized blocks and incomplete block designs, Latin squares, Youden squares and 

other special designs . • •     , 
6. Transformations of data to stabilize variances or to assure normality 
7. Some topics in least squares, regression, and curve fitting 
8. Confidence intervals 
9. Many other useful statistical techniques or procedures for either the new or experienced statistical 

analyst. 
In addition. Section 5 of the Experimental Statistics Handbook (Ref. 5) contains many very valuable 

statistical tables, including some not ordinarily found in standard statistical textbooks. Since this valuable set 
of statistical methods is already available to the Army statistician, it becomes our main purpose to carry 
forward some of the more useful and important topics that have been developed during the past 16 yr and to 
cover some particular topics of current interest as now envisioned for Army applications. Although there will 
be a minimal amount of repetition with regard to Refs. 1-5, this will be presented and discussed only as 
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necessary background and as deemed necessary to introduce or carry forward our suggested applications. We 
will start with some preliminaries concerning the drawing of random samples from a single normal population 
and will give some results of interest that have either appeared in the statistical literature since about 1962, i.e., 
the appearance of Refs. 1-5, or at least have not been covered in these handbooks. Ref. 1 gives a good account 
of elementary concepts. 

4-2 PRELIMINARY REMARKS ON SAMPLING A SINGLE NORMAL POPULATION 

4-2.1 THE SAMPLE MEAN AND STANDARD DEVIATION 

We start with the concept of drawing a single random sample of size n from a normal or Gaussian population 
with true mean ij, and standard deviation a, or variance o^. The observations come in a random and unordered 
sequence as contrasted to that discussed in Chapter 2, and we designate them as Xi, X2,.. ., Xi,. . . x„. For the 
present, we will be primarily interested in the sample mean x, or 

n 

X =X Xijn (4-1) 
1 = 1 

and the sample variance s based on (« — 1) degrees of freedom (df), or 

s       z^(x,    X) i^n     u        n{n~-\) n{n-\) 

^ii{xi-Xj)'lYln{n-\)l 

We might on some occasions have interest in the sample standard deviation s', which uses the total sample size 
n instead of the number of df = (« — 1), i.e., 

s' = [S(x, - xflri]''^ -^^/{n-\)lns. (4-3) 

It is well-known, e.g., from standard textbooks on statistics, that 3c is the maximum likehhood (ML) 
unbiased [E{x) — /n], minimum variance, most efficient estimator of fi the normal population true mean and 
that the variance of x is simply 

Var(J) = a\x) ^o^jn. ■ (4-4) 

The sample variance s^ based on (« — 1) df is the unbiased estimate of the population variance a', or E{s^) = 
a\ although the maximum likelihood estimate of a^ is s'^, but it is biased or E{s'^) = {n— \)a'ln. Concerning 
estimates of the population standard deviation a, both s and s' are biased, unfortunately, and involve a ratio of 
gamma functions. That is to say 

E{s')^^f{^i^^^E(_s) = ^l2fnT(^alV[_{n-\)|2^ = Cr,o (4-5) 

where 
r(   ) = gamma function of (    ) 

c„ = constant depending on the sample size n. 

Many writers have used "f 2" instead of "c„". Here we take 

E{s) = CO ox c = \/ri Cnlyn — \ (4-6) 
where 

c = constant. 

4-6 



DARCOM-P 706-103 

For a discussion of many of the more elementary statistics and their properties—especially as related to the 
military sciences and the delivery accuracy of weapons, etc.—the reader may consult Ref. 6 and the appendix 
of it. 

The fact that both s and s' are biased estimates of the normal population standard deviation, or parameter a, 
has stimulated much thought and study of this problem, especially toward providing simple, accurate 
approximations of the involved quantity c„, or ratio of gamma functions in Eq. 4-5. Is there really a simple and 
accurate approximation of c„ that the statistician can easily remember? This is the kind of problem that may be 
dormant for many, many years and then sudden interest may cause much investigation. Precisely this 
happened as late as 1968 when Cureton (Ref. 7) published, as a teaching aid, a table of values for obtaining the 
unbiased estimate of the normal population sigma in "The Teacher's Corner" of the American Statistician. 
Cureton (Ref. 7) apparently was interested in taking the sum of squares about the sample mean, dividing it by 
a quantity he calls "/c", and then taking the square root to obtain an unbiased estimate of the normal 
population o. That is to say, 

Unbiased Est o = a = \JX{xi — 3cflk (4-7) 

so that the expected value E is truly unbiased, or 

E{a) = o (4-8) 

for a normal population. We note also that the relations between our c„, or our c, and Cureton's k are 

Cn = \/k I \/n or c = \Jk / \/n — 1 . (4-9) 

Cureton gives a very compact table of values for k, presented here as Table 4-1, which, with only 26 line 
entries, covers all sample sizes up to and beyond n = 252. Note that for « > 21 and for three decimal places the 
values of ^ change very slowly and approach the value {n — 1.5). This suggests that (« — 1.5) would be a better 
divisor than the {n— \) df, insofar as unbiasedness is concerned; although for n = 2 we have that« — 1.5 = 0.5 
instead of the correct value 0.6366. More will be said of this in the sequel. 

TABLE 4-1 

VALUES OF k IN y/l{xi-x)'lk JO OBTAIN UNBIASED ESTIMATES OF 
NORMAL POPULATION o (Ref. 7) 

2 0.636( 
3 1.571 
4 2.546 
5 3.534 
6 4.527 
7 5.522 
8 6.519 
9 7.517 
10 8.515 
11 9.513 
12 10.512 
13 11.511 
14 12.510 

15 13.509 
16 14.509 
17 15.508 
18 16.508 
19 17.507 
20 18.507 

21-24 n - 1.494 
25-29 n - 1.495 
30-37 n - 1.496 
38-51 n - 1.497 
52-83 n - 1.498 

84-251 n - 1.499 
252 up n - 1.500 

Reprinted with permission. Copyright © by the American Statistical Association. 
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Following Cureton's letter (Ref. 7) by four months, Bolch (Ref. 8) gives a five-decimal place table of values 
of multipliers, a\ and ai, by which to multiply s' and s, respectively, to obtain the unbiased estimate for various 
sample sizes n of the normal population sigma. Bolch's table (Ref. 8) is included as Table 4-2, and we see that 

,     E{axs') = E{s'lcn) = a* (4-10) 

•and 

E{a2s) = o. (4-11) 

Thus Bolch's table, covering many sample sizes, will be useful to analysts or statisticians to obtain unbiased 
estimates of a in their work. 

Although the rash of letters to the editor of The American Statistician on unbiased estimation of the normal 
population standard deviation continued for some years, Gurland and Tripathi (Ref. 9) showed that a good 
approximation of Cureton's k, instead of the {n — 1.5), is simply 

k = nla\--n-\.5+\l\%{n-\)] (4-12) 

and that the quantity 1 /c is nearly 

l/6=fl2-=(4«-3)/[4(«-l)]. (4-13) 

And from Eq. 4-11, E{a2s) = a. Even for « = 2, the exact value of Cureton's/: is 0.6366, whereas Eq. 4-12 gives 
0.6250, and for larger n Eq. 4-12 approaches the exact value of k very rapidly. 

When n = 2, the exact value of 1 / c is 1.2533, whereas Eq. 4-13 gives 1 / f = 1.2500, and again the differences 
disappear rapidly with larger sample sizes n. ^^ 

With reference to Eq. 4-12, Bhoj (Ref. 10) indicates that an improvement in the accuracy of k may be      ^^W' 
obtained by using 

A:««- 1.5+l/[8(«- 1.45)].    ' (4-14) 

The sample variance, s^ of Eq. 4-2, is an unbiased estimate of the population variance a^ of any continuous 
distribution having finite a^ whereas the bias in s and s' depends on the distribution of individuals in the 
population sampled. 

■ With this updating of accomplishments on the sample standard deviation for the normal population, for 
biir purposes we will record only two other measures of dispersion for univariate samples—the sample mean 
deviation (MD) and the sample range. A good coverage of both univariate and bivariate measures of 
dispersion for the Army analyst, including quantification of their relative efficiencies and other properties, 
may be found in Ref. 6. 

4-2.2 THE SAMPLE MEAN DEVIATION 

The mean deviation MD of the sample, or the mean absolute deviation as it is often called, is defined by 

MD^ i \x,-x\ln. (4-15) 
1 = 1 

Thus the MD is simply the average of the unsigned (all positive) deviations of the observations from the 
sample mean. 

(n-0.25) 
*E(s') « a [1 - 3/(4«) - 7/(32«') - 9 (I28«')], a, «=  

(n - 1) 

a,'«[a^/(2«)][l- 1/(4^)-3/(8«')] 
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TABLE 4-2 

VALUES OF a^ AND oj SUCH THAT a^s' AND ^2^ ARE UNBIASED ESTIMATES OF THE 
NORMAL POPULATION STANDARD DEVIATION (Ref. 8) 

ai 
2 1.77245 1.25331 
3 1.38198 1.12838 
4 1.25331 1.08540 
5 1.18942 1.06385 
6 1.15124 1.05094 
7 1.12587 1.04235 
8 1.10778 1.03624 
9 1.09424 1.03166 
10 1.08372 1.02811 
11 1.07532 1.02527 
12 1.06844 1.02296 
13 1.06272 1.02103 
14 1.05788 1.01940 
15 1.05373 1.01800 
16 1.05014 1.01679 
17 1.04700 1.01574 
18 1.04423 1.01481 
m 1.04176 1.01398 
20 1.03956 1.01324 
21 1.03758 1.01257 
22 1.03579 1.01197 
23 1.03416 1.01142 
24 1.03267 1.01093 
25 1.03130 1.01047 
26 1.03005 1.01005 
27 1.02888 1.00965 
28 1.02783 1.00931 
29 1.02682 1.00897 
30 1.02590 1.00866 
31 1.02503 1.00836 
32 1.02423 1.00810 
33 1.02347 1.00784 

a\ 02 

34 1.02275 1.00760 
35 1.02209 1.00738 
36 1.02145 1.00717 
37 1.02086 1.00697 
38 1.02029 1.00678 
39 1.01976 1.00660 
40 1.01925 1.00643 
41 1.01877 1.00627 
42 1.01831 1.00612 
43 1.01788 1.00597 
44 1.01746 1.00583 
45 1.01706 1.00570 
46 1.01668 1.00557 
47 1.01632 1.00545 
48 1.01597 1.00533 
49 1.01564 1.00522 
50 1.01532 1.00511 
60 1.01272 1.00425 
70 1.01088 1.00363 
80 1.00950 1.00317 
90 1.00843 1.00281 
100 1.00758 1.00253 
110 1.00688 1.00230 
120 1.00630 1.00210 
130 1.00582 1.00194 
140 1.00540 1.00180 
150 1.00503 1.00168 
160 1.00472 1.00158 
170 1.00445 1.00149 
180 1.00420 1.00141 
190 1.00395 1.00130 
200 1.00378 1.00127 

Reprinted with permission. Copyright © by the American Statistical Association. 

For a normal population, the expected, or mean, value of the MD is 

E{MD) = yj2{n - \)l{mv) a - 0.7979a (4-16) 

and, as indicated for large sample size n, approaches sjlfna = 0.1919a. Thus the MD is also a biased estimate 
of a for a normal distribution, and approaches a value about 0.2a less than the normal population sigma. 

It has been shown by Fisher (Ref. 11) that the standard error OMD of the MD in samples of size n from a 
normal universe is ■ 

aMD={ 2{n-\){ (TT/I) + ^ nin - 2) - n + Sin"' [l/{n - I)]}/(«V) V^V       (4-17) 

In Table 4-3 we give the mean values and standard deviations of the MD for samples of size « = 2 (1) 20 and 
also the 95% probabihty level or percentage points of the MD. More details on the MD may be found in Ref. 6. 
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TABLE 4-3 

MEAN VALUES AND STANDARD DEVIATIONS 
OF THE SAMPLE MEAN DEVIATION (Ref. 6) 

Standard 

Sample Mean Value Reciprocal of Deviation 95% 

Size ofMD Mean Value of MD Probability 

n E(MD)/a Coefficient OUDIO Limit 

2 0.5642 1.772 0.4263 1.39 

3 0.6515 1.535 0.3419 1.28 

4 0.6910 1.447 0.2970 1.22 

5 0.7137 1.401 0.2663 1.19 

6 0.7284 1.373 0.2436 1.16 

7 0.7387 1.354 0.2258 1.14 

g 0.7464 1.340 0.2115 1.12 

9 0.7523 1.329 0.1996 LIO 

10 0.7569 1.321 0.1894 1.09 

11 0.7608 1.314 0.1807     . 1.07 

12 0.7639 1.309 0.1731 1.06 

13 0.7666 1.304 0.1664 1.05 

14 0.7689 1.301 0.1604 1.04 

15 0.7708 1.297 0.1550 1.04 

16 0.7725 1.294 0.1501 1.03 

17 0.7741 1.292 0.1457 1.02 

18 0.7754 1.290 0.1416 1.02 

19 0.7766 1.288 0.1378 1.01 

20 0.7777 1.286 0.1344 1.01 

4-2.3    THE SAMPLE RANGE 

We made use of the sample range in discussing bounds and as a test of the lowest and highest sample 
observations in pars. 3-2.1, 3-2.2, and 3-5.3. If we now designate the ordered sample observations as 

Xin <X2n < ■" < Xin < ■" ^ Xn 

where 
Xin = /th ordered value or observation is a sample size n 

the sample range w becomes 
W — Xnn        Xin- 

(4-18) 

(4-19) 

Clearly, the sample range depends markedly on the sample size n, and w increases with increasing n. 
It has been customary by many writers to designate the expected or mean value of the sample range by 

E{w) = dnO (4-20) 

showing that the factor or coefficient d„, the multiplier of the normal population sigma, depends on the sample 
size n. Moreover, it has been statistical practice to designate the variance of w as 

(4-21) 2 _ 7 2   2 
Var(w) = o^{w) = E{w — d„o) — k„o 

whereas the standard error of w is 

4-10 0{W) = knO (4-22) 
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where 
kn — Standard error of sample range divided by a. 

In Table 4-4 we give the quantities dn, lld„, and kn for the range constants and samples of size 2( 1)20 drawn 
from a normal population. One may note that dn increases rather rapidly with increasing sample size and that 
k„ decreases slowly, which indicates a moderate improvement in precision with increasing n. In Table 4-4 we 
also give the 95% probability values for the sample range in case this might be of some use to the analyst. 

Let us now turn to Example 4-1 concerning the sample standard deviation, the sample mean deviation, and 
the sample range. 

Example 4-1: 
Given the 11 muzzle velocities: 1480, 1501, 1510, 1499, 1492, 1509, 1500, 1502, 1498, 1479, and 1490inft/s 

for rounds fired from a 155-mm Howitzer, calculate the expected muzzle velocity of the weapon and the 
unbiased estimate of the population sigma using (1) the sample standard deviation, (2) the sample MD, and (3) 
the sample range. 

The sample standard deviation based on (« — 1) = 10 df is from Eq. 4-2 

s = 10.25. 

By using Eq. 4-11 and Table 4-2 from n = 11, the unbiased estimate of o is 

esta = (1.02527) (10.25) = 10.51 ft/s. 

TABLE 4-4 

MEAN VALUES AND STANDARD DEVIATIONS OF THE SAMPLE RANGE w (Ref. 6) 

Sample Reciprocal of Standard 95% 
Size Mean Value Mean Value Deviadon Probability 

n dfj = E(w)/a Coefficient ^/z = "w/'' Limit 

2 1.128 0.8862 0.8525 2.77 
3 1.693 0.5908 0.8884 3.31 
4 2.059 0.4857 0.8798 3.63 
5 2.326 0.4299 0.8641 3.86 

6 2.534 0.3946 0.8480 4.03 
7 2.704 0.3698 0.8332 4.17 
8 2.847 0.3512 0.8198 4.29 
9 2.970 0.3367 0.8078 4.39 

10 3.078 0.3249 0.7971 4.49 

11 3.173 0.3152 0.7873 4.55 
12 3.258 0.3069 0.7785 4.62 
13 3.336 0.2998 0.7704 4.69 
14 3.407 0.2935 0.7630 4.74 
15 3.472 0.2880 0.7562 4.80 

16 3.532 0.2831 0.7499 4.85 
17 3.588 0.2787 0.7441 4.89 
18 3.640 0.2747 0.7386 4.93 
19 3.689 0.2711 0.7335 4.97 
20 3.735 0.2677 0.7287 5.01 

4-11 
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The expected muzzle velocity is x = 1496.36 ft/s. 
From Eq. 4-15 the sample MD is 

MD = X\xi-x\III = 8.083. 

By using the reciprocal of the mean value coefficient for n = 11 from Table 4-3, we get 

esta = (1.314) (8.083) = 10.62 ft/s 

a slightly larger value. 
Finally, the sample range is 

w= 1510- 1479 = 31 ft/s 

and by multiplying this by the value of 0.3152 for «= 11 in Table 4-4 or by dividing 31 by 3.173, we obtain (Eq. 
4-20) 

esta = 9.77 ft/s 

which turns out to be the smallest of the estimates of o. 
The sample range, of course, is the easiest and quickest sample statistic from which to calculate and to 

estimate the normal population sigma, whereas the sample standard deviation results in a more complex type 
of calculation. It can be said, however, that with modern pocket electronic calculators the striking difference 
in effort nearly disappears—especially if we also consider the matter of efficiency of estimators. We discuss 
this next along with the evercontinuing controversy concerning the use of biased or unbiased estimators in 
practice. 

4-2.4    BIASED OR UNBIASED ESTIMATORS AND EFFICIENCY 

The differences in unbiased estimators due to sample size, also differences in ease of computation of the 
sample range, and even the sample mean deviation having been noted, it certainly becomes of interest to 
discuss biased versus unbiased estimates further. Also we would like to get some idea as to the relative 
efficiency of different estimators of the same population parameter, in this case the standard deviation. 

Generally, if we are interested in estimating a population parameter, for example, 6—which may be a mean, 
standard deviation, variance, or other parameter—and we use a sample statistic T, then Twill be an unbiased 
estimator of 0 if 

E{T) = d. (4-23) 

On the other hand, if 

E{T) = d + P = dd (4-24) 
where ■. 

j8 = amount of bias in an estimate, )3 5^ 0 
8 = divisor to obtain an unbiased estimate, 5 5^ 1 

= \ + Pld,d¥^o 

then it is said that Tis a /^/a^erf estimate of the parameter 6. Should we really worry about biased estimators, 
especially in practice? The answer would seem to be yes, and we cite an example. Examining Table 4-4, we see 
that the sample statistic w, or the range, is a very biased estimate of the normal population a. For a sample of 

4-12 
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size « = 2 it is about 13% higher than the true a on the average, and for a sample of size n = 20 the sample range 
averages to be about 3.74 times a! This would seem to be rather intolerable. 

If we examine the sample standard deviations s and s', then—by means of Eqs. 4-10 and 4-11 and Table 
4-2—we see that they converge rather rapidly to the true population sigma with increasing sample size, i.e., 
both becoming unbiased. As showp by Eq. 4-16, the sample MD, however, never gets larger than about 0.8a! 
Why not then account for and correct for such differences in practice since the bias usually depends on sample 
size? 

If we have several sample statistics that may be used to estimate the same population parameter, some 
criterion has to be decided upon to select the "best" estimator. We could use the sample statistic that has the 
least bias, for example, or we could recommend that one having the smallest variance, or the one having the 
smaller "mean square error" (MSB) (see Eq. 4-26), etc. If we refer to the MD for « = 10, we see from Table 4-3 
that it has a standard error of 0.1894a, whereas for the same sample size we have from Table 4-4 that the range 
has a standard error of 0.7971a, so that the sample range seems "four times as bad as the sample MD"! 
However, is this really an accurate analysis since we have not corrected for biases? This type of problem leads 
us to the concept of MSE. The MSE of a biased estimate Toid, a population parameter whose expected value 
is 

EiD = d + p (4-25) 
where /8 is the bias, is 

MSE =E{T-ef = Var( T) + fi\ (4-26) 

The MSE of the sample MD or MSE {MD) is 

MSE{MD) = V2iX{MD) + [E{MD)-af (4-27) 
where 

E{MD) = mean value of the sample mean deviation 

and the MSE of the sample range Af5'£'(H') is 

MSE{w) = [{knf + (dn - If] a\ (4-28) 

To amplify further the concept of MSE, consider a normal population and the problem of determining the 
best constant K in 

l.{xi-xflK (4-29) 

to obtain a very efficient estimate of the population variance o^. We already know that if A^ = « — 1, Eq. 4-29 
becomes the unbiased estimate of al However, if we were to choose K so that the MSE (Eq. 4-26) is a 
minimum, it can be shown that 

K=n+\ (4-30) 

which certainly makes Eq. 4-29 a biased estimate of a^. 
We will apply the MSE concept in Example 4-2 to the sample range and the sample mean deviation and will 

show numerically that its worth is questionable for large biases. 

Example 4-2: 
For a sample of size n = 11, determine the MSE of the MD and also the MSE of the sample range. Discuss 

whether this numerical comparison provides a satisfactory way to select the superior estimator of sigma. 
From Eq. 4-27 and Table 4-3, we see the MSE of the MD is 

MSE{MD) = [(0.1807)' + (0.2392)']a' = 0.0899a' 

4-13 
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where CT^ is the normal population variance. 
From Eq. 4-28 and Table 4-4, however, we have for the range w that 

M^^-Cw) = [(0.7873)'+ (3.173 - 1.000)^]/a^ = 5.342a'! 

Hence for the sample range we obtain an unusually large MSE relatively speaking, but this is due primarily to 
the large bias in the expected value of the sample range. Admittedly, we have chosen a rather severe example 
concerning the usefulness of the MSE criterion, but it does show that the MSEmay leave much to be desired. 
This brings us to a much more reasonable and perfectly satisfactory technique for comparing sample statistic 
efficiencies on practical grounds. 

A way out of this dilemma is to make the competitive estimates unbiased so they will have the same mean 
value and then to compare the variances, or precisions, of the different estimators and select the one with the 
smallest variance. In other words, for any general estimator T, which is a a biased estimate of 9 as indicated by 
6 # ! in Eq. 4-24, then obviously 

EiT/8) = d (4-31) 

precisely, and the variance of r/5 is therefore 

Var(r/6) = (l/6')Var(r) = O\T)/8\ (4-32) 

Thus we see that the standard error of T/ 8, the unbiased estimator, is simply the usual standard deviation of T, 
the biased estimator, divided by its mean value. 

Returning to Example 4-2, we may now compare the relative precisions, or "efficiencies", of the MD and 
the sample range. Thus for n = 11 the relative precision of the MD is simply 

a(MZ)/mean value) = 0.1807/0.7608 = 0.2375 

and that for the sample range is 

a(w/fif„) = yt„/^„ = 0.7873/3.173 = 0.2481. 

In other words, there is practically no difference whatever in the relative efficiencies of the MD and range for 
77 = 11 and, hence, little choice unless the range is inflated by outliers (Chapter 3). 

The interested reader will find a large number of comparisons of relative precision of unbiased estimates of 
both univariate and bivariate dispersion population parameters in Table 9 of Ref. 6. For example, it is shown 
there that, when using the range, a sample of size of n = 17 is required to obtain the same precision for 
estimating the normal population sigma as for a sample of size « = 13 when the sample standard deviation is 
used.* It is only for samples of size two that the standard deviation, the range, and the MD all have equal 
precision. 

In summary, there is no reason why we cannot always deal with unbiased estimators by simply correcting 
for bias and then use the estimator that is the more precise one. In fact, for nearly all of the sample statistics, 
the amount of bias will depend on the sample size itself and thereby will bring in an additional complication 
unless an adjustment is made. Finally, on practical grounds we will usually desire to correct for any sample 
bias since we are almost always dealing with small size samples. 

4-3    SOME MOMENT PROPERTIES 

In dealing with the distributional properties of sample statistics, it is quite natural to obtain moments about 
the origin. However, once the mean of the distribution is determined or estimated, it is the central moments in 

*Note that i' based on (« — 1) df and s'—both of which use the sample size n—are equivalent in relative precision. 
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which we are primarily interested. In fact, the second, third, and fourth central moments lead to the variance, 
the skewness (nonsymmetrical), and kurtosis (peakedness), respectively—properties of the distribution. It is 
for this reason that we must record the relations between certain of the central moments and the correspond- 
ing moments about the origin. 

If we define the rth moment about the mean of any general statistical variable y as Hr, we have the 
computational equation 

fxr = E[y - E(y)Y 

= 2(-1)'(;)(MO'(M;-0 (4-33) (=0 . ^ ' 

where 
^jLr = rth moment about the origin 
(/) = combination of r things taken / at a time 

which gives central moments in terms of moments about the origin. 
The second, third, and fourth central moments in terms of moments about the origin from Eq. 4-33 are, 

respectively, 

M2 = M2 (y) = Variance = M2 - (MO^ (4-34) 

M3 = /X3-3(M2)(MO + 2(MI')' (4-35) 

M4 = Mi-4(M3)(M0 + 6(/i2')(Mif-3(M.')'. (4-36) 

Finally, and as a matter of record, Eq. 4-33 may be inverted to give moments about the origin in terms of 
moments about the mean; the general equation is 

^ir = E{[y-Eiy)] + Eiy)Y (4-37) 

I =0 

The coefficient of skewness a^ of any distribution is defined as 

a3 = M3/Mp = M3/a^ (4-38) 

and the kurtosis, or degree of peakedness, coefficient 04 by 

a4 = M4/M2 = ^4/(7" (4-39) 

4-4    THE CHI-SQUARE DISTRIBUTION AND SOME OF ITS USES 

4-4.1    THE CHI-SQUARE DISTRIBUTION 

Although the normal or Gaussian distribution has long taken the central role in much of the entire field of 
statistics, the chi-square distribution is perhaps next in importance. In fact, the chi-square distribution may be 
derived from many standpoints and for both continuous or discrete random variables. Here we will make use 
of chi-square primarily in terms of the observational sum of squares about the sample mean, especially since 
we will be interested in testing hypotheses about the size of the normal population variance and in placing 
confidence intervals on it. Chapter 4, Ref. 1, discusses the problem of comparing the variability of perfor- 
mance of different processes, products or sources, and gives some examples on uses of the theory covered 
therein. Here we will consider first the sampling of a single normal population and proceed in the direction of 
updating or expanding the coverage of Ref. 1. 
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It is well-known for a single random sample taken from a normal population that the SS about the sample 
mean follows the chi-square distribution with df equal to one less than the sample size. That is, 

XiXi-^'lo' = x'{n-l). (4-40) 

The probability density function (pdf) for the random variable x^ with v df is given by 

Ax') = {ll[r"r{vl2)]}ixY-'^^'e-^''^'^ (4-41) 

and X has a lower limit of zero and an upper limit of plus infinity. The pdf of x^ is skewed to the right, 
especially for small numbers of df u. When p becomes large {p > about 30), the curve becomes more bell 
shaped and finally approaches the normal, or Gaussian, form. 

The mean, variance, and all of the moments of x^ (v) are easily found. In fact, the rth moment Hr about the 
origin of x^ is simply 

tJir = E[ix'n = 2T[r + {p/2)]/r{p/2) (4-42) 

from which all of the central moments, or moments about the mean, are determined. The mean of x^ is the 
number of df or 

fx( = Eix^) = v (4-43) 

and the variance of x^ is simply twice the number of df, i.e., 

Var(x') = E{x^ - vf = 2v. (4-44) 

For the chi-square distribution the coefficient of skewness is 

a3 = a3(x^) = 2^^VV^- (4-45) 

Eq. 4-45 shows that, as the number of df p increases, aa—0 and the skewness disappears, thus bringing about 
symmetry of the ultimate or large sample chi-square distribution. 

For the chi-square distribution the kurtosis coefficient a^ is given by 

a4 = a4(x') = 3+ 12/v (4-46) 

showing that for large numbers of df p, a4^3, which is the value for the normal distribution. 
Our primary interest at this point is to discuss and to illustrate some of the special uses of the chi-square 

distribution based on sampling a single normal distribution, especially the identical quantities 

{n - \)s^la^ = ns'^jo' = S(x, - xf j a^ = x\n - 1) (4-47) 

all of which follow the chi-square distribution with p = {n — 1) df. 
Since we know the moments of x^ from Eq. 4-42, we may obtain the important moments of 5^ and {s'Y. For 

example, referring to Eqs. 4-40 and 4-43, we see that 

E{s^) = {n-\Wl{n-\) = o^ (4-48) 

or s^ is unbiased, and from Eq. 4-44 

Var(5') = 2 (« - 1) [o^lin - \)f = 2a'I(n - 1) (4-49) 
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which was used in Chapter 2. 
Since the chi-square distribution is of the form given by Eq. 4-41, then it is seen that the pdf of chi (x) is 

easily obtained by a transformation of variables or by correcting the differential element. This leads to any 
moment of s or s'. In fact, the rth moment of s', for example, about the origin is 

Ejsy = i2a'/nf'r(rr +^r - l\ /rCZLHJ) . (4.5O) 

For the mean of 5' we put r = 1 and obtain 

Eis') = ^r{nl2)/{y/^r[in-l)/2]} = CnO (4-51) 

^[l-3/{4n)-7l(32n')-9/i\2Sn')]o. 

The variance of 5'is easily found to be - 

VarC^O = [{n - l)/n - d]a\ (4-52) 

4-4.2    CHI-SQUARE, BINOMIAL, AND POISSON DISTRIBUTION RELATIONSHIPS 

It is well-known that for a discrete binomial random variable x = 0, 1, 2,. . ., n successes (or failures) and 
also for the chance of success (failure) in a single trial equal top, the chance of s* or more successes in n preset, 
fixed trials is given by 

Pr[x>s]=  ippV -pr\ (4-53) 

This binomial sum is tabulated in many available publications, including the very useful tables in Ref. 12. 
For reference purposes the useful moment properties of a binomial random variable are 

Mean = E{x) = np (4-54) 
Variance = o\x) = npq,    {q=\-p) (4-55) 

Skewness ^ai = {q -p)l\fnpq). •      (4-56) 
Kurtosis = a4 = 3 + (1 - 6pq)/{npq). (4-57) 

For smallp < about 0.10 and np approaching a fixed limit X = np, the binomial distribution sum of Eq. 4-53 
may be approximated by the Poisson sum 

00 " • 

Pr[x>s]^  Xe-^k'lxl. (4-58) 

Furthermore, the mean and variance of the Poisson distribution are, respectively 

Mean = E{x) = X 
(4-59) 

which also is equal to the variance, i.e.. 

Variance = o^{x) — k 

as evidenced by replacing np by X and 9 « 1 in Eqs. 4-54 and 4-55. Thus and in summary, the binomial 
approaches its Poisson limit when the chance of success (failure) in a single trial is very small. 

The very useful relationship between the Poisson and the chi-square distributions for u df is expressed as 

*This 5 for the number of "successes" in n trials is not to be confused with the sample standard deviation s used previously. 
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5-1 

, s = v/2 (4-61) 

Srexp(-X)/x!=/,2 exp(-x^/2)(x')'^^^'-'^x'/[2"'^''r(W2)]    , (4-60) 
where 

^ = x'/2. (4-62) 

It is due to the relationship in Eq. 4-60 that the probabihty integral of the chi-square distribution and that of 
the Poisson are often tabulated together, as in Ref. 13, Table 7, p. 122-9. 

4-4.3    SIGNIFICANCE TEST FOR THE SIZE OF A NORMAL POPULATION VARIANCE 

Since in the form used here chi-square is expressible as the ratio of the sample sum of squares to the normal 
population variance, one may test the hypothesis concerning the actual size of the unknown population 
variance a^. This is done by calculating the sum of squares about the sample mean, dividing the result by the 
hypothesized value of the normal population variance, and then referring this ratio to a table of percentage 
points of the chi-square distribution. We illustrate this by Example 4-3. 

Example 4-3: 
Refer to the data on the sample of 11 muzzle velocities (MV) for the 155-mm Howitzer of Example 4-1; 

make a judgment concerning whether the unknown normal population a is 15 ft/s. 
The sample SS about the sample mean is 

XiXi-xf= 1050.55 

and taking a = 15, the observed value of x^ for 10 df is 

x'= 1050.55/(15)'= 4.67. 

To test whether a = 15, let us adopt the two-sided test (5% in each tail) or 10% level of significance, and we see 
that 

Xo.o5(10) = 3.94 

X0.95(10)= 18.31 

from, for example, Table A-3 of Ref. 5, which we include here as Table 4-5. Thus the observed value of the 
sample SS is not quite small enough to reach the X0.05 of 3.94, or large enough to reach the X0.95 = 18.31, and 
hence to conclude that the population sigma is not a = 15 ft/s. We therefore accept that CT = 15 ft/s. Note in this 
example that our interest centered around whether the unknown a = 15 ft/s, so we used the two-sided or 
two-tailed test. Had we raised the question concerning whether o were as large as, say, 20 ft/s, or perhaps as 
low as, say, 10 ft/s, the upper or lower percentage point, respectively, would have been used. 

4-4.4    CONFIDENCE BOUNDS ON THE UNKNOWN POPULATION VARIANCE OR 
STANDARD DEVIATION 

Clearly the chance that chi-square will lie between the lower and upper a{< 0.5) probability levels of its 
distribution for i^ df is 

Pr[xl{p) < liXi - xflo' < xi-a (v)] = 1 - 2a (4-63) 
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TABLE 4-5 

PERCENTILES OF THE X^ DISTRIBUTION (Ref. 5) 
■P 

Values of XF corresponding to P 

V 

df X 0.005 X  P.Ol X 0.025 X 0.05 X 0.10 X  0.90 X 0.95 X 0.975 X 0.99 X  0.995 

1 0.000039 0.00016 0.00098 0.0039 0.0158 2.71 3.84 5.02 6.63 7.88 
2 0.0100 0.0201 0.0506 0.1026 0.2107 4.61 5.99 7.38 9.21 10.60 
3 0.0717 0.115 0.216 0.352 0.584 6.25 7.81 9.35 11.34 12.84 
4 0.207 0.297 0.484 0.711 1.064 7.78 9.49 11.14 13.28 14.86 
5 0.412 0.554 0.831 1.15 1.61 9.24 11.07 12.83 15.09 16.75 

6 0.676 0.872 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55 
7 0.989 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28 
8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.96 
9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59 

10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19 

11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.73 26.76 
12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30 
13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82 
14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32 
15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80 

16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27 
18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16 
20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00 
24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56 
30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67 

40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77 
60 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95 

120 83.85 86.92 91.58 95.70 100.62 140.23 146.57 152.21 158.95 163.64 

For large degrees of freedom 

where 

x;'=-{\|2){z,+ ^J2v^\y 

zp = a unit normal variate at probability p 

From Intrucluclionio Slalislical Analysis by W. J. Dixonand F. J. Massey. Copyright© 1957by McGraw-Hill Book Company. Used 
by permission of McGraw-Hill Book Company. 

where 
a — probability level 

ath probability level or percentage point of chi-square 

(1 — Q!)th probability level or percentage point of chi-square. 

2 _ 

2       _ 
Xl-a- 

This confidence statement may easily be transformed to obtain a (1 — 2a) confidence bound on or about o or 
a, i.e., 
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Pr[XiXi-x)'/xl,<o'<XiXi-x)'/xl] 
(4-64) 

= Pr{[Xixi - x)']'''/Xr-a < a < [S(x, - 3^']'^'/X„} = 1 - 2a. 

The upper and lower confidence bounds of Eq. 4-64 are called the equal-tail confidence bounds for a^ or a, 
respectively. The equal-tail confidence bounds in Eq. 4-64, however, do not give the shortest confidence 
interval about the unknown a^ or a. In fact, to obtain the shortest confidence interval on o^, at confidence level 
(1 - a), instead of using Xa/i and x (i-a/2) as divisors of the SS about the sample mean, one must find numbers 
Xa < Xb such that the length L of the obtained confidence interval given generally by 

/. = 2(*-J)^(i,-i^ (4-65) 

is a minimum, subject to, the degree of confidence (1 — a) obtained by the condition 

2 .  . ■ 
f Xb 

I  Ax')dx'= 1 -a (4-66) Xa 

where 
Xa = lower limit of chi-squared distribution 

Xb = upper limit of chi-squared distribution. 

The minimum length confidence bounds for a^ have been calculated in accordance with Eqs. 4-65 and 4-66 
by Tate and Klett (Ref. 14), and their bounds are given in Table 4-6. 

It is of interest at this point to cite a comparison of the differences in (relative) lengths of confidence bounds 
for the equal-tail interval as compared to that of the minimum length interval. For example, refer to Table 4-5 
(oTu = 5 df and the 0.005 and 0.995 probability levels, which amount to a confidence level of 99%. Here we see 
that 1/0.412- 1/16.75 = 2.367, ignoring for the moment the sum of squares about the sample mean. On the 
other hand, if we refer to Table 4-6 for the minimum length 99% confidence levels for j' = 5, we have, for the 
similar calculation, that 1/0.5534 - 1/28.0269 = 1.771. Thus the difference is of practical significance and 
would magnify considerably for relatively large sums of squares. It can be expected, therefore, that for 
unsymmetrical distributions there will clearly be some important differences between the equal-tail area 
confidence bounds and those of minimum length. On the other hand, one can actually find some cases where 
the equal-tail area bounds are nearly the same as the minimum bounds in length. For example, consider a 
comparison of the 99% confidence bounds for j^ = 24 df. In this case for the equal-tail area confidence bounds, 
we have the relative length (ignoring SS) of 1/9.89 - 1/45.56 = 0.079 from Table 4-5, whereas for the 99% 
minimum length bounds from Table 4-6, we get 1 /10.7169 - 1 /51.5619 = 0.074, or equal intervals. One would 
expect, of course, that for a large number of df v the lengths become equivalent due to symmetry. 

Another method for determining a confidence interval on the normal population variance is that due to 
Neyman (Ref. 15). If we use a confidence level of (1 - a), say, and consider intervals that cover some 
hypothesized value, call it ol of a^ then Neyman (Ref. 15) defines that interval /to be unbiased if 

Pr [(/ covers ol) \IJL, o^]> \ - a if oo = o (4-67) 
and 

Pr [(/ covers ol) \IJL, o^'lK I — aif oo^ o. (4-68) 

(In other words, the chance of coverage has a maximum when ao = o.) Then the shortest unbiased Neyman 
interval, which is labeled as hu, is that interval which satisfies Eqs. 4-67 and 4-68 and for which the left 
member of Eq. 4-68 is a minimum uniformly for all values of n, a^, and ol. Tate and Klett (Ref. 14) have also 
calculated the shortest unbiased Neyman confidence intervals for the normal population variance, and we 
give their tables as Table 4-7. 
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TABLE 4-6 

DIVISORS FOR THE CONFIDENCE INTERVAL ABOUT NORMAL 
POPULATION VARIANCE OF MINIMUM LENGTH (Ref. 14) 

I ML = [S(X, - Xflxl  S(X, - ^'IXIY 

Confidence Coefficient {\ — a), v — {n — \) di usually 

xl = lower limit of chi-squared distribution and 

xl = upper limit of chi-squared distribution. 

"^^^^ " "     0.900 0.950 0.990 0.995 0.999 

2 0.2104 0.1025 0.0201 0.0100 0.0020 
18.0077 21.4812 29.1362 32.3240 39.5708 

3 0.5821 0.3513 0.1148 0.0717 0.0244 

17.6381 20.7437 27.5102 30.3027 36.5959 

4 1.0561 0.7082 0.2969 0.2069 0.0908 
18.1062 21.0632 27.4603 30.0848 35.9845 

5 1.5938 1.1392 0.5534 0.4113 0.2102 
18.9081 21.8001 28.0269 30.5697 36.2654 

6 2.1750 1.6233 0.8700 0.6747 0.3806 
19.8739 22.7410 28.8928 31.3966 36.9947 

7 2.7883 2.1473 1.2350 0.9871 0.5979 
20.9303 23.7944 29.9229 32.4106 37.9541 

8 3.4262 2.7027 1.6397 1.3406 0.8560 
22.0405 24.9147 31.0507 33.5358 39.0631 

9 4.0840 3.2836 2.0775 1.7288 1.1499 
23.1844 26.0769 32.2397 34.7308 40.2631 

10 4.7584 3.8855 2.5434 2.1469 1.4755 
24.3498 27.2662 33.4685 35.9714 41.5223 

11 5.4467 4.5054 3.0334 2.5906 1.8287 
25.5294 28.4733 34.7240 37.2430 42.8238 

12 6.1472 5.1409 3.5447 3.0573 2.2078 
26.7180 29.6920 35.9963 38.5330 44.1445 

13 6.8583 5.7899 4.0744 3.5439 2.6086 
27.9126 30.9184 37.2809 39.8378 45.4880 

14 7.5788 6.4510 4.6205 4.0483 3.0296 
29.1109 32.1497 38.5733 41.1517 46.8441 

15 8.3078 7.1227 5.1813 4.5685 3.4676 
30.3113 33.3842 39.8715 42.4732 48.2150 

16 9.0446 7.8043 5.7559 5.1040 3.9248 
31.5125 34.6197 41.1710 43.7951 49.5766 

17 ' 9.7883 8.4947 6.3425 5.6523 4.3954 
32.7139 35.8560 42.4728 45.1206 50.9511 

*IML = confidence interval of minimum length (cont'd on next page) 
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TABLE 4-6 (cont'd) 

><-« 0.900 0.950 0.990 0.995 0.999 

18 10.5385 9.1932 6.9402 6.2128 4.8806 
33.9148 37.0919 43.7748 46.4465 52.3245 

19 11.2947 9.8991 7.5481  ■ 6.7846 5.3786 
35.1148 38.3271 45.0765 47.7723 53.6990 

20 12.0563 10.6119 8.1654 7.3666 5.8882 
36.3137 39.5611 46.3772 49.0974 55.0743 

21 12.8230 11.3310 8.7915 7.9580 6.4085 
37.5112 40.7936 47.6767 50.4216 56.4507 

22 13.5946 12.0561 9.4259 8.5588 6.9406 
38.7070 42.0243 48.9736 51,7426 57.8190 

23 14.3706 12.7868 10.0679 9.1679 7.4824 
39.9011 43.2532 50.2686 53.0616 59.1857 

24 15.1508 13.5227 10.7169 9.7845 8.0322 
41.0935 44.4802 51.5619 54.3793 60.5545 

25 15.9351 14.2636 11.3728 10.4088 8.5919 
42.2840 45.7051 52.8521 55.6935 61.9157 

26 16.7230 15.0090 12.0348 11.0396 9.1580 
43.4728 46.9281 54.1407 57.0065 63.2808 

27 17.5145 15.7587 12.7024 11.6764 9.7293 
44.6598 48.1491 55.4277 58.3186 64.6514 

28 18.3095 16.5128 13.3767 12.3211 10.3146 
45.8446 49.3675 56.7096 59.6230 65.9955 

29 19.1076 17.2706 14.0554 12.9699 10.9003 
47.0279 50.5843 57.9914 60.9295 67.3589 

Reprinted with permission. Copyright © by the American Statistical Association. 

In their paper of 1959 Tate and Klett (Ref. 14) raised two questions of interest concerning confidence 
bounds on the normal population variance: 

1. "Does the interval of shortest length based on the sample mean and sample SS depend only on the 
sample SS?" 

2. "Among those intervals based only on the sample SS, is the interval of shortest length necessarily of the 
form given by the SS divided by two numbers, say a and b, which depend on the sample size «?". 

In 1972 these two questions were answered by Cohen (Ref. 16), who determined that the answer to Question 
No. 1 is "no", for Cohen determined intervals of the proper length whose chance of coverage uniformly in yt 
and a was found to be greater than (1 —a). However, Cohen (Ref. 16) found that the answer to Question No. 2 
is "yes" since he showed that, if one only observes the sample SS about the mean and notes that it divided by 
the population a^ follows the chi-square distribution, there is no other confidence interval with probability of 
coverage greater than or equal to the confidence level (1 — a). Thus it would seem that at least the more 
important practical questions concerning confidence bounds on any normal population variance are settled. 

We conclude our discussion of the normal population variance and its related chi-square distribution with 
Example 4-4 involving all three types of confidence bounds on the unknown population standard deviation 
sigma. 
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TABLE 4-7 

DIVISORS FOR NEYMAN'S "SHORTEST" UNBIASED CONFIDENCE 
INTERVAL FOR NORMAL POPULATION VARIANCE (Ref. 14) 

2 ;       2- Isu = [S(x/ - x) /Xfc, t{Xi -x) /x«] 

Confidence Coefficient (1 — a), i^ = (« — 1) df usually 

xl — lower limit of chi-squared distribution and 

xl = upper limit of chi-squared distribution. 

^VJ^" 0.900 0.950 0.990 0,995 0.999 

2 0.1676 0.0847 0.0175 0.0088 0.0018 

7.8643 9.5303 13.2855 14.8647 18.4677 

3 0.4764 0.2962 0.1010 0.0639 0.0221 
: 9.4338 11.1915 15.1270 16.7754 20.5244 

4 0.8827 0.6070 0.2640 0.1859 0.0831 

10.9583 12.8024 16.9014 18.6106 22.4855 

5 1.3547 0.9892 0.4962 0.3723 0.1933 

12.4424 14.3686 18.6214 20.3866 24.3799 

6 1.8746 1.4250 0.7856 0.6144 0.3519 

13.8922 15.8966 20.2956 22.1139 26.2160 

7 2.4313 1.9026 1.1221 0.9037 0.5548 

15.3136 17.3923 21.9310 23.8001 28.0053 

8 3.0173 2.4139 1.4978 1.2331 0.7972 

16.7108 18.8604 23.5328 25.4506 29.7547 

9 3.6276 2.9532 1.9068 1.5969 1.0743 

18.0874 20.3050 25.1058  . 27.0705 31.4709 

10 4.2582 3.5162 2.3444 - 1.9905 1.3827 

19.4463 21.7289 26.6531 28.6628 33.1543 

11 4.9063 4.0995 2.8069 2.4102 1.7188 

20.7895 23.1347 28.1779 30.2309 34.8097 

12 5.5696 4.7005 3.2912 2.8528 2.0790 

22.1190 24.5247 29.6833 31.7786 36.4463 

13 6.2462 5.3171 3.7948 ■ 3.3158 2.4609 

23.4362 25.9004 31.1710 33.3080 38.0646 

14 6.9347 5.9477 4.3161 3.7979 2.8650 

24.7423 27.2630 32.6414 34.8174 39.6507 

15 7.6340 6.5909 4.8531 4.2965 3.2872 

26.0385 28.6141 34.0970 • 36.3114 41.2209 

16 8.3427 7.2453 5.4041 4.8100 3.7248 

27.3257 29.9546 35.5402 37.7927 42.7826 

17 9.0603 7.9099 5.9681 5.3373 4.1775 

28.6047 31.2855 36.9711 39.2609 44.3309 

*/.(/ = = Neyman's shortest unbiased confidence interval (cont'd on next page) 
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TABLE 4-7 (cont 'd) 

">xl^« 0.900 0.950 0.990 0.995 0.999 

18 9.7859 8.5842 6.5444 5.8780 4.6467 
29.8759 32.6072 38.3896 40.7147 45.8546 

19 10.5188 9.2670 7.1314 6.4300 5.1272 
31.1401 33.9209 39.7984 42.1590 47.3738 

20 11.2586 9.9579 7.7290 6.9938 5.6218 
32.3978 35.2267 41.1966 43.5912 48.8733 

21 12.0046 10.6562 8.3360 7.5671 6.1281 
33.6494 36.5253 42.5856 45.0132 50.3610 

22 12.7565 11.3614 8.9515 8.1496 6.6428 
34.8954 37.8176 43.9672 46.4282 51.8481 

23 13.5138 12.0730 9.5752 8.7410 7.1671 
36.1362 39.1036 45.3409 47.8348 53.3266 

24 14.2764 12.7908 10.2072 9.3416 7.7043 
37.3719 40.3835 46.7057 49.2305 54.7826 

25 15.0437 13.5142 10.8462 9.9493 8.2475 
3.6030 41.6581 48.0645 50.620 56.2408 

26 15.8155 14.2430 11.4923 10.5649 8.8015 
39.8296 42.9273 49.4157 52.0024 57.6820 

.27 16.5917 14.9769 12.1447 11.1874 9.3624 
41.0521 44.1916 50.7610 53.3778 59.1196 

28 17.3718 15.7155 12.8033 11.8165 9.9309 
42.2706 45.4514 52.1004 54.7466 60.5496 

29 18.1558 16.4586 13.4674 12.4511 10.5035 
43.4855 46.7069 53.4350 56.1114 61.9829 

Reprinted with permission. Copyright © by the American Statistical Association. 

Example A-A: 
Use the data of Example 4-1 to determine and to compare the lengths of the 95% confidence bounds on the 

unknown population standard deviation a for (1) the equal tails case, (2) the minimum length confidence 
bounds, and (3) the Neyman shortest unbiased confidence bounds. 

For the 95% confidence bounds, we find, from Table 4-5, for ^' = 10 df and the second form of Eq. 4-62 that 

Pr [vl050.55/20.48 < a < V1050.55/3.25] 

= Pr [7.16 < a (equal tails) < 17.98] = 0.95 

the length of which is 

17.98-7.16= 10.82 ft/s. 

For the minimum length 95% confidence bounds about a, we determine with the aid of Table 4-6 that 
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Pr[v 1050.55/27.2662 < OML < 71050.55/3.8855] 

= Pr[6.21 < OML < 16.44] = 0.95 

the length of which is 

16.44-6.21 = 10.23 ft/s. 

For the shortest unbiased Neyman 95% confidence bounds, we see using Table 4-7 that 

'     Pr[Vl050.55/21.7289 < a5c/< V1050.55/3.5162j 

=/V[6.95 < osu < 17.29] = 0.95 

the length of which is 

17.29-6.95= 10.34 ft/s. 

Finally, we note that although there is not a great deal of difference in confidence bound lengths, the end 
points are nevertheless shifted. 

4-4.5    THE APPROXIMATE CHI-SQUARE DISTRIBUTION 

There are a rather large number of distributional problems in many Army applications for which one can 
find a chi-square type of approximation or fit. The "approximate chi-square" involves a two-moment 
approximation, i.e., the use of the mean and the variance of the statistic of interest. Generally speaking, the 
approximate chi-square involves the fitting of a new random variable to a quadratic form, of which we desire 
the probability distribution, or an approximation of some other distribution that is sufficiently accurate for 
practical applications. It is easy to apply the suggested technique, of which we will give only a schematic view 
since the principles are thoroughly covered in Ref. 17. 

Quite generally, we may deal with two (or more) random variables x and y, which are normally distributed 
withevendifferentmeansand variances, and consider a quadratic form Q= Q(x,>')ofthe variates. Since for 
normally distributed variables x and y we can find means and variances individually, it is often easy to find the 
mean m and variance v of the quadratic form Q. Thus in a straightforward manner we have that 

E{Q) = EiQ{x,y)-\ = m (4-69) 
and 

Var(0 = Var[e(x,j)] = V. (4-70) 

Then it can be shown (Ref. 17) that to a good approximation 

2mQlv^x\2m^lv) (4-71) 

or that the random variable ImQjv is approximately distributed as X^ with Irn^jv df. One can see that some 
difficulty may be involved in using the chi-square approximation (Eq. 4-71) because the number of df 2m / v 
will usually be fractional. However, this problem can always be circumvented by using the Wilson-Hilferty 
transformation (Ref. 18) of chi-square to a normal variate. 

We will illustrate the approximate chi-square technique briefly by using the sample variance s^, i.e., the 
quadratic form of Eq. 4-2, which should reproduce X^ exactly with {n — 1) df if the approximation has merit. 
In this case, as previously indicated. 
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m — L{s ) — o 

V = Var(5^) = lo'lin - 1). 
Thus 

2mQ/v = 2(aV/[2a'/(« - 1)] 
= x\2m'/v) = x' {2o,l[2o,l{n - 1)]} = x\n - 1) 

precisely with (« — 1) df as it should. 
Many applications of the approximate chi-square and its accuracy are given in connection with the 

probability of hitting problems in Ref. 17 and Chapters 14and 20 of Ref. 19. Moreover, excellent use of the 
technique extends easily to confidence bounds on system reliability as covered in Chapter 21 of Ref. 19 also. 

In terms of the mean m and variance v of the quadratic form Q{x,y) and the fractional number of df, the 
Wilson-Hilferty transformation t (Ref. 18) becomes 

/«-{3e'/V/'-[3m-v/(3m)]}/V^ (4-72) 

where t is approximately 7V(0,1), i.e., normally distributed with mean zero and sigma equal to unity. 

4-5    THE SNEDECOR-FISHER VARIANCE RATIO OR F DISTRIBUTION 

While the chi-square distribution of Eq. 4-41 is very useful in determining confidence bounds on the 
unknown normal population variance or sigma—as in Eqs. 4-64, 4-65, and 4-66—it is not very often that we 
have a sufficiently large sample to estimate the population variance or sigma with great precision. In fact, we 
are often interested in testing a new product, type of ammunition, or new weapon against an old one, or 
equivalently in "comparing two normal populaions" sampled for the purpose. It is frequently for such reasons 
that the statistician is faced with the problem of determining whether two unknown normal population 
standard deviations are equal on the basis of relatively small samples drawn therefrom. This type of 
comparison is made possible through the use of the well-known Snedecor-Fisher variance ratio statistic, or, as 
it is often called, the Snedecor Ftest. 

First, we consider two distinct normal populations that generally may have unknown true means and 
unknown population standard deviations or variances. Thus we have, quite generally, one normal population 
with unknown mean /xi and standard deviation ai, designated by N{^\,a{) and another one with unknown 
mean and standard deviation given by ni and ai and designated by N{ji2,a2). In practice, we draw a sample of 
size «i from the first normal population and a sample of size rij from the second one. This leads to two sample 
variances—one from each of the two normal populations—which we will designate by s\ and ^2 as follows: 

and 
5f = S(x„-x,)7(«i- 1) (4-73) 

52=  f(X2,-X2)'/(«2- 1) (4-74) 
where 

x\ = sample mean of first sample 
X2 = sample mean of second sample. 

The Snedecor-Fisher F ratio for testing equality of sigmas, i.e., ai = 02, is simply 

F=s^/S2. (4-75) 

Quite generally, however, if we have two independent chi-squares, or X f with i^ 1 df and X2 with V2 df, the ratio 

F={x'l^i)/ixll^2) (4-76) 

4-26 



DARCOM-P 706-103 

follows the Snedecor /"distribution with vi and vj df, respectively. Note that vi is taken as the numerator 
number of df. 

The pdf of the random variable F is given by 

^^._      r{vil2 + V2l2){vilv2)'"^ F-"'' (4_77) 

r{v,l2)r{v2l2)[l + v.FIPif'^"'^" 

The rth moment n'r of F about the origin is easily found (by taking the ratio of moments of the two 
independent chi-squares) to be 

n'r = tx'r{F) = {v2lp0rr{r + v,l2)Ti-r + P2l2)ir{u,/2)r{v2l2). (4-78) 

The mean value of F depends only on the denominator df and is 

E{F) = V2l{v2-2),V2>2 (4-79) 

which clearly approaches unity for large Pi- 
The variance of the statistic F is 

\ar{F) = o\F) = 2pl{vi + i'2-2)l[vi{P2-2)\v2-4)],U2>4. (4-80) 

Whereas the mean of /^approaches the limit of unity for large vi, the variance of the Ffor large vi and vi 
does indeed approach zero as can be seen from Eq. 4-80. 

The skewness 03 and kurtosis 04 coefficients for Fare rather complicated, i.e., 

\/{v\ -\- V2 — 2)v\ {y2 — 6) 

12[(V2 - 2)^(t^2 - 4) + v,{v, + »^2 - 2) (51^2 - 22)] 
Ui = a4{F) = 3 +  —  (4-»Zj 

v\ iv2 — 6) {^2 — 8) (l^l + 1^2 — 2) 

Note that for large numbers of df u\ and vi the skewness does approach zero and 04 approaches 3 as for the 
normal distribution. 

The Snedecor F is related to R. A. Fisher's z by the equality 

z = (l/2)lnF. (4-83) 

Also one may note from Eq. 4-77 that there is a definite relation between the random variable Fand Karl 
Pearson's incomplete beta function (Ref. 20). In fact, if x is a beta variate and x^ is the a probability level or 
percentage point, then 

Pr[F>FJ = /.>i/2, ,.2/2) (4-84) 

where Fa is the a probability level of F and 

Fa=V2xJ[pi{l-Xa)] (4-85) 

(The right-hand side (RHS) of Eq. 4-84 is Karl Pearson's incomplete beta function (Ref. 20).) 
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The 90%, 95%, 97.5%, and 99%, or probability, levels of F(i'i,j'2) are given in Table 4-8 and were reproduced 
from Ref. 5. If we designate Fi-aiPuVi) as the upper a significance level, the lower probabihty levels are found 
from 

FaiVuVl) = 11Fl-aiV2,Ui). (4-86) 

Example 4-5: 
Some difficulty was being experienced with the MV dispersion of a 20-mm high-velocity projectile. In fact, 

for firings at a vertical target the relatively large dispersion in the vertical direction was attributable to MV 
dispersion. A new propellant was developed and rotating bands were applied more uniformly with the result 
that the designers indicated the bivariate dispersion pattern should be "absolutely circular". Ten sample 
rounds of the new or improved 20-mm projectile were fired for impact on a vertical target placed at 200 m. The 
horizontal impact points from the left-most round and vertical impacts from the bottom round measured in 
inches are given in Table 4-9. 

Is t'here any statistical evidence that Ox^ Oy? 
After identifying the horizontal impact points as jv and the vertical ones as y, we calculate, by Eqs 4-73 and 

4-74, with 1/ = 10 - 1 = 9 df 

s, = 14.73, Sy = 14.95. 

Hence, by Eq. 4-75, 

2 _ 
F = si/s; = 0.97 

which foTVi = P2 = 9 df referred to Table 4-8 is not stadstically significant even at the 80% level since FOM (9,9) 
= 2.44 and Fo. w (9,9) = 1 / 2.44 = 0.41. (Note that we are using a two-tailed test.) We conclude, therefore, that 
the improved projectile may indeed exhibit circularity for its dispersion pattern. Moreover, for the purpose of 
weapon systems analyses, one may treat the 20-mm weapon-ammunition combinafion as having a circular 
normal distribution of delivery errors with the "circular" sigma a at 200 m given by 

o = V[(14.73)' + (14.95)']/2 = 14.84 in. 

which may be converted to equivalent angular mils. 
As a final comment on approximations, the Fisher z of Eq. 4-83 is more nearly normally distributed than is 

the F statistic of Eq. 4-75. The Wilson-Hilferty approximation (Ref. 18), or cube-root transformation of F, 
can be used to obtain a variate, call it z, which is, for practical purposes, distributed as a unit normal variate. 
This technique involves putting 

2 = {[1 - 2/{9P2)]F'^' - [1 - 2/(9vi)]} [2F^''/i9v2) + 2/(9U,)Y'^' (4-87) 

where z is approximately normally distributed, i.e., 

The values of z are easily calculated by Eq. 4-87 with a scientific-type pocket calculator for reference to normal 
tables. 

We will discuss the problem of comparing more than two variances next. 
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TABLE 4-9. IMPACT POINTS 

Horizontal Vertical 

0 18.20 
11.47 49.63 
13.48 9.94 
15.60 36.36 
17.27 10.82 
17.61 10.60 
21.87 0 
22.68 25.47 
23.67 21.97 
57.17 7.20 

4-6    SIGNIFICANCE TESTS FOR THE EQUALITY OF SEVERAL POPULATION 
VARIANCES 

4-6.1    PRELIMINARY REMARKS 

The problem of comparing or determining whether two population variances can be considered to be equal 
having been covered, it is a natural extension that one may have at hand several sample variances and may 
wish to establish whether or not they represent samples from normal populations with equal true variances, 
i.e., exhibit "homogeneity of variances". * Again, this is done by calculating the value of sample statistics that 
may be referred to an appropriate table of percentage points of the relevant probability distribution. In other 
words, it amounts to an extension of the Snedecor-Fisher ^statistic. Although for only two observed sample 
variances it is natural to use the ratio of them, there can be a variety of ways of combining several sample 
variances in an appropriate significance test. In fact, this is what has occurred over the years, and as a result, 
there are, as would be expected, several different tests for homogeneity of variances available in the statistical 
literature. For the purposes of this handbook, we will include Bartlett's statistic (Refs. 21 and 22), Cochran's 
statistic (Ref. 23), Hartley's maximum variance ratio statistic (Ref. 24), Cadwell's statistic (Ref. 25), and 
Bartlett and Kendall's statistic (Ref. 21). We will present these in sufficient detail to give the practicing Army 
analyst some background, will comment on their properties, usefulness, and power, and then will give an 
example. 

In the sequel we will consider;? random samples fromp possibly "different" normal populations and will let 
p. = ^. — 1 = number of df for the /th sample 
s] — sample variance for the sample of size «, from the /th normal population. 

4-6.2    BARTLETT'S STATISTIC 

Bartlett's test (Refs. 21 and 22) is based on the Neyman-Pearson likelihood ratio and in its x^ form uses the 
statistic 

1+[2(1M)-1/2J^,]/[3(P-1)] 

with p, Vi, and Si as previously defined. We have designated the numerator of Eq. 4-88 as M and the 
denominator as C. The percentage points of Mare given in the Biometrika Tables for Statisticians (Ref. 26), 
which most Army statisticians should have readily available. The denominator C of Eq. 4-88 might be 
regarded as a "correction factor" due to Bartlett (Ref. 21) and is used to transform M such that the ratio 

Fi, = M/C«x'(p-l) (4-89) 

♦Often called "homoscedasticity". 
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or FB is distributed approximately as chi-square with (p - 1) df, which should be adequate for many practical 
problems. 

Again observing the numerator Af of Eq. 4-88, we can obtain the relation between M a.nd the quantity L*, 
which is often defined in the statistical literature as Bartlett's statistic. This relation is 

M=- (Sv,)lnL* (4-90) 

with 
p 
1 
=r "'       -" "-1=1 L* = [UisY"^'']/[Xiuis])/Xu.l (4-91) 

It is seen in this connection that L* is really the ratio of the weighted geometric mean of the sample variances to 
their weighted arithmetic mean. Glaser (Ref. 27) has calculated the exact critical values for L*, and we give his 
improved table of percentage points of L* here as Table 4-10. The null hypothesis is rejected when the 
observed value of L* is less than the table value for a lower tail area. 

It might be noted or inferred that Bartlett's FB or L* represents very efficient statistics for judging "general 
homoscedasticity" but would not necessarily detect "outlying" variances. 

4-6.3    COCHRAN'S STATISTIC 

Cochran's statistic Fc (Ref. 23) or test for homoscedasticity employs the ratio of the maximum sample 
variance to the total of all of them, or 

Fc = max{susl, . . .,sp)/isf. (4-92) 

Thus it is seen that Cochran's statistic would in effect test whether the largest sample variance of several such 
variances is too large based on the total, or sum, of all the sample variances considered. Tables of critical 
values or percentage points of Cochran's statistic Eq. 4-92 are given in Ref. 26 and also in Dixon and Massey's 
book (Ref. 28). 

4-6.4    HARTLEY'S STATISTIC 

As his test of homoscedasticity. Hartley (Ref. 24) uses the maximum For maximum variance ratio of the 
sample variances which is 

^H = ^max = maxis^i)/minis]). (4-93) 

We note in this connection that the Hartley statistic is very simple to calculate and is used to determine 
whether the largest and smallest sample variances are "too far apart". It should be noted that if the maximum 
5, and the minimum .5? are too discrepant, either or both could possibly represent different populations with 
one or more anomalous variances. 

The upper 5% probability levels of FH are given in Ref. 24, and David (Ref. 29) gives further tables and 
includes the 1% points as well. David's tables are given also in the Biometrika Tables for Statisticians (Ref. 
26). We give David's tables from Ref. 26 as Table 4-11. 

4-6.5    CADWELL'S STATISTIC 

Instead of using sample variances to test for homogeneity of population variances, Cadwell (Ref. 25) has 
developed a test based on the ratio of the maximum to the minimum sample ranges and thereby avoids the 
calculation of variances or SS about sample means. If we refer to the range of the /th sample as r„ Cadwell's 
statistic is 

max(r,)/min(r,). (4-94) 
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TABLE 4-10 

EXACT BARTLETT CRITICAL VALUES (Ref. 27) 

V 0.10 0.05 0.01 

p = 3 

4 0.6539 0.5762 0.4304 
5 0.7163 0.6483 0.5149 
6 0.7600 0.7000 0.5787 
7 0.7921 0.7387 0.6282 
8 0.8168 0.7686 0.6676 
9 0.8362 0.7924 0.6996 
10 0.8519 0.8118 0.7260 
U 0.8649 0.8280 0.7483 
14 0.8931 0.8632 0.7977 
19 0.9206 0.8980 0.8476 
24 0.9369 0.9187 0.8779 
29 0.9477 0.9325 0.8981 
49 0.9689 0.9597 0.9387 
99 0.9845 0.9799 

p = 5 

0.9693 

4 0.6530 0.5952 0.4850 
5 0.7151 0.6646 0.5653 
6 0.7587 0.7142 0.6248 
7 0.7908 0.7512 0.6704 
8 0.8154 0.7798 0.7062 
9 0.8349 0.8025 0.7352 
10 0.8507 0.8210 0.7590 
11 0.8637 0.8364 0.7789 
14 0.8920 0.8699 0.8229 
19 0.9198 0.9031 0.8671 
24 0.9362 0.9228 0.8936 
29 0.9471 0.9358 0.9114 
49 0.9685 0.9617 0.9468 
99 0.9843 0.9809 

p = l 

0.9734 

4 0.6605 0.6126 0.5207 
5 0.7214 0.6798 0.5978 
6 0.7640 0.7275 0.6542 
7 0.7955 0.7629 0.6970 
8 0.8196 0.7903 0.7305 
9 0.8386 0.8121 0.7575 
10 0.8540 0.8298 0.7795 
11 0.8668 0.8444 0.7980 
14 0.8944 0.8764 0.8385 
19 0.9216 0.9080 0.8791 
24 0.9377 0.9267 0.9034 
29 0.9483 0.9391 0.9195 
49 0.9692 0.9637 0.9518 
99 0.9847 0.9819 0.9759 

4 
5 
6 
7 
8 
9 
10 
11 
14 
19 
24 
29 
49 
99 

4 
5 
6 
7 
8 
9 
10 
11 
14 
19 
24 
29 
49 
99 

4 
5 
6 
7 
8 
9 
10 
11 
14 
19 
24 
29 
49 
99 

0.10 0.05 

p = A 

0.01 

0.6507 0.5850 0.4608 
0.7133 0.6559 0.5431 
0.7572 0.7065 0.6045 
0.7895 0.7444 0.6519 
0.8143 0.7737 0.6893 
0.8340 0.7970 0.7196 
0.8498 0.8160 0.7446 
0.8629 0.8318 0.7655 
0.8914 0.8662 0.8119 
0.9194 0.9003 0.8586 
0.9359 0.9205 0.8868 
0.9468 0.9340 0.9056 
0.9683 0.9606 0.9433 
0.9843 0.9804 

p = e 

0.9717 

0.6566 0.6045 0.5046 
0.7182 0.6727 0.5832 
0.7612 0.7213 0.6410 
0.7930 0.7574 0.6851 
0.8174 0.7854 0.7197 
0.8367 0.8076 0.7475 
0.8523 0.8257 0.7703 
0.8652 0.8407 0.7894 
0.8932 0.8734 0.8315 
0.9207 0.9057 0.8737 
0.9369 0.9249 0.8990 
0.9476 0.9376 0.9159 
0.9688 0.9628 0.9496 
0.9845 0.9815 

/, = 8 

0.9748 

0.6642 0.6197 0.5343 
0.7245 0.6860 0.6100 
0.7667 0.7329 0.6652 
0.7978 0.7677 0.7069 
0.8217 0.7946 0.7395 
0.8405 0.8160 0.7657 
0.8557 0.8333 0.7871 
0.8683 0.8477 0.8050 
0.8957 0.8790 0.8443 
0.9226 0.9100 0.8835 
0.9384 0.9283 0.9069 
0.9489 0.9404 0.9225 
0.9696 0.9645 0.9536 
0.9849 0.9823 0.9769 

(cont'd on next page) 
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TABLE 4-10 (cont'd) 

0.10 0.05 0.01 0.10 0.05 0.01 

4 0.6676 
5 0.7274 
6 0.7692 
7 0.8000 
8 0.8236 
9 0.8423 
10 0.8574 
11 0.8698 
14 0.8969 
19 0.9234 
24 0.9391 
29 0.9495 
49 0.9699 
99 0.9851 

0.6260 0.5458 
0.6914 0.6204 
0.7376 0.6744 
0.7719 0.7153 
0.7984 0.7471 
0.8194 0.7726 
0.8365 0.7935 
0.8506 0.8109 
0.8814 0.8491 
0.9117 0.8871 
0.9297 0.9099 
0.9416 0.9250 
0.9652 0.9551 
0.9827 0.9776 

4 0.6708 
5 0.7301 
6 0.7716 
7 0.8021 
8 0.8254 
9 0.8439 
10 0.8588 
11 0.8712 
14 0.8980 
19 0.9243 
24 0.9398 
29 0.9500 
49 0.9703 
99 0.9852 

/»= 10 

0.6315 0.5558 
0.6961 0.6293 
0.7418 0.6824 
0.7757 0.7225 
0.8017 0.7536 
0.8224 0.7786 
0.8392 0.7990 
0.8531 0.8160 
0.8834 0.8532 
0.9132 0.8903 
0.9309 0.9124 
0.9426 0.9271 
0.9658 0.9564 
0.9830 0.9783 

NOTE: p = number of populations; n = number of degrees of freedom for each sample; a = level of test. 

Reprinted with permission. Copyright © by the American Statistical Association. 

4-6.6   BARTLETT AND KENDALL'S STATISTIC 

Although the analysis of variance (ANOVA) tests usually apply to one-way, two-way, etc., classifications of 
means, it is often of interest in practice to conduct an ANOVA of sample variances from different sources to 
determine whether the assumption of homoscedasticity is justified. This type of problem leads to the concept 
of the Bartlett- and Kendall-type statistic for testing the equality of variances which involves the ANOVA of 
the logarithms of sample variances. In fact, the logarithms of sample variances for suitably large df approach 
the normal distribution. The Bartlett-Kendall statistic (Ref. 21) is often referred to as "Log ANOVA" and is 
computed as follows: 

Consider / = 1, 2, . . ., p possible sources of variation, or possibly "different" normal populations, from 
which we have several, or m„ sample variances from the /th population where mt > 1 for at least one of the 
populations. Then let 

Zij= Xns]} — logarithm of/th sample variance from /th population (4-95) 

where 

z,.= z (ln5,j)/m, 

P     mi 

z..= %  X  ilnsij)l{pXmi) 
1=1 j=i 1=1 

(4-96) 

(4-97) 

Zi. = /th average of Zy's 
z.. = grand average of z,/s. 

Thus the reader may liken our outline to a one-way classification in the ANOVA in which there are at least two 
observations per cell, and an observation is In^/;. Finally, Bartlett and Kendall's Log ANOVA is calculated as 
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TABLE 4-11 

HARTLEY'S STATISTIC 
. PERCENTAGE POINTS OF THE RATIO, ^"maxA-mm (R*^'• 27) 

Upper 5% Points 

2 3 4 5 6 7 8 9 10 11 12 

2 39-0 87-5 142 202 266 333 403 475 550 626 704 
3 15-4 27-8 39-2 50-7 62-0 72-9 83-5 93-9 104 114 124 
4 9-60 15-5 20-6 25-2 29-5 33-6 37-5 41-1 44-6 48-0 51-4 
5 7-15 10-8 13-7 16-3 18-7 20-8 22-9 24-7 26-5 28-2 29-9 

6 5-82 8-38 10-4 12-1 13-7 15-0 16-3 17-5 18-6 19-7 20-7 
7 4-99 6-94 8-44 9-70 10-8 11-8 12-7 13-5 14-3 15-1 15-8 
8 4-43 6-00 7-18 8-12 9-03 9-78 10-5 11-1 11-7 12-2 12-7 
9 4-03 5-34 6-31 7-11 7-80 8-41 8-95 9-45 9-91 10-3 10-7 
10 3-72 4-85 5-67 6-34 6-92 7-42 7-87 8-28 8-66 9-01 9-34 

12 3-28 4-16 4-79 5-30 5-72 6-09 6-42 6-72 7-00 7-25 7-48 
15 2-86 3-54 4-01 4-37 4-68 4-95 5-19 5-40 5-59 5-77 5-93 
20 2-46 2-95 3-29 3-54 3-76 3-94 4-10 4-24 4-37 4-49 4-59 
30 2-07 2-40 2-61 2-78 2-91 3-02 3-12 3-21 3-29 3-36 3-39 
60 1-67 1-85 1-96 2-04 2-11 2-17 2-22 2-26 2-30 2-33 2-36 
CXD 1-00 1-00 1-00 1-00 1-00 1-00 1-00 1-00 1-00 1-00 1-00 

Upper 1% Points       ?' 

2 3 4 5 6 7 8 9 10 11 12 

2 199 448 729 1036 1362 1705 2063 2432 2813 3204 3605 
3 47-5 85 120 151 184 21(6) 24(9) 28(1) 31(0) 33(7) 36(1) 
4 23-2 37 49 59 69 79 89 97 106 113 120 
5 14-9 22 28 33 38 42 46 50 54 57 60 

6 11-1 15-5 19-1 22 25 27 30 32 34 36 37 
7 8-89 12-1 14-5 16-5 18-4 20 22 23 24 26 27 
8 7-50 9-9 11-7 13-2 14-5 15-8 16-9 17-9 18-9 19-8 21 
9 6-54 8-5 9-9 11-1 12-1 13-1 13-9 14-7 15-3 16-0 16-6 
10 5-85 7-4 8-6 9-6 10-4 11-1 11-8 12-4 12-9 13-4 13-9 

12 4-91 6-1 6-9 7-6 8-2 8-7 9-1 9-5 9-9 10-2 10-6 
15 4-07 4-9 5-5 6-0 6-4 6-7 7-1 7-3 7-5 7-8 8-0 
20 3-32 3-8 4-3 4-6 4-9 5-1 5-3 5-5 5-6 5-8 5-9 
30 2-63 3-0 3-3 3-4 3-6 3-7 3-8 3-9 4-0 4-1 4-2 
60 1-96 2-2 2-3 2-4 2-4 2-5 2-5 2-6 2-6 2-7 2-7 
oo 1-00 1-0 1-0 

1 1 
1-0 1-0 1-0 1-0 1-0' 1-0 1-0 1-0 

•^Vax 's ^^^ largest and s^J^^^ the smallest in a set ofp independent mean squares, each based on u degrees of freedom. 

Values in the column p = 2 and in the rows c = 2 and oo are exact. Elsewhere the third digit may be in error by a few units for 
the 5% points and several units for the 1% points. The third digit figures in brackets for i/ = 3 are the most uncertain. 

Reprinted with permission. Copyright © by Biomelrika Trustees. 
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FBK = [i^iz,-z.y][i^im,-l)]^{[i^S{zu-z,)fip-l)} (4-98) 

Under the ANOVA assumptions FBK is distributed in probability as the Snedecor-Fisher F statistic. 

4-6.7    COMPARISONS OF THE TESTS OF HOMOSCEDASTICITY 

Gartside (Ref. 30) has studied the relative effectiveness of all of the previously discussed statistics for 
judging homoscedasticity. The Gartside study was performed under the assumption of a null hypothesis in 
which all of the normal population variances are equal, and there are three alternatives—one case for equal 
sample sizes ofn= 16 with (p - 1) of the population variances c ^ 1 times the other population variance, a 
second case for equal sample sizes and (p - 1) of the population variances equal with the last one c y^ 1 times as 
large, and a third in which the second case is repeated but for different sample sizes to study possible effects. 
Finally, Gartside (Ref. 30) considered samphng a Weibull distribution with shape parameter equal to 4/3, 
whereas the Weibull universe is approximately normal for a shape parameter of about 10/3. For the Weibull 
sampling study samples of sizes 4 and 16 were used in this simulation. Gartside was particularly interested in 
each of the statistics insofar as controlling the Type I error rates of 0.05 and 0.01 were concerned and in the 
power of the tests to reject the erroneous null hypothesis when the alternative hypothesis was true. As a result 
of his study, Gartside (Ref. 30) found that Bartlett's statistic was very powerful in all of the experimental 
situations considered in the study and had good control of the Type I error rates as well. Under the condition 
of nonnormality, i.e., the Weibull assumption, the only statistic to maintain stable error rates turned out to be 
the Log ANOVA, or logarithmic transformation, with the ANOVA technique. As is so often true, this further 
substantiates the "robustness" of the ANOVA-type test even for transformed data involving variances. 

Gartside concluded that when the alternative hypothesis is not known (which is certainly the usual 
situation) and the assumption of normality for the null hypothesis can be relied upon, Bartlett's test would be 
the best to use. On the other hand, if it is suspected that just one population variance is really larger than the 
rest, Cochran's test would be a good choice since it maintains power quite well. If a shortcut-type test were 
necessary. Hartley's and Cadwell's statistics would both perform suitably. Gartside also pointed out that 
Bartlett's statistic, modified to use the sample range instead of the variance, would be rather good, especially 
since its power is superior to that of Cadwell's statistic. In fact, we conjecture that the approximate chi-square 
technique of par. 4-4.5 could be used quite effectively to obtain the approximate number of degrees of freedom 
for the range, or the square of the range, in Bartlett's type of weighted statistic, for example. Finally, if there 
are reasons to believe that one is dealing with nonnormal data, the more conservative Log ANOVA approach 
should probably be used if possible. 

4-6.8    FURTHER STUDIES ON HOMOSCEDASTICITY 

Beckman and Tietjen (Ref. 31) have developed tables of the upper 10% and 25% points or probability levels 
of Hartley's maximum F, should one have use of such values. Chambers (Ref. 32) gives an extension of tables 
of percentage points of Hartley's largest variance ratio for the 0.01 and 0.05 levels and for p = 6,8 10 11 
(1)15(5)30 with u = 10, 12, 15, 20, 30, 60, ^. 

For equal sample sizes also Harsaae (Ref. 33) gives tables of percentage points of Bartlett's Af for a = 0.001 
0.01, 0.05, 0.10; V = 1(1)10; and p = 3(1)12. 

Regarding large sample results, Somerville (Ref. 34) discusses the problem of the optimum (minimum) 
sample size for choosing the population having the smallest variance. Saxena (Ref. 35) presents a study of the 
problem of interval estimation of the largest variance of several normal populations. 

Guenther (Ref. 36) gives some useful techniques for the calculation of factors for tests and determination of 
confidence intervals concerning the ratio of only two normal population variances, and John (Ref. 37) 
combines the similar problem of and gives tables for comparing two normal population variances or two 
gamma distributed means. 

Samiuddin and Atiqullah (Ref. 38) use the Wilson-Hilferty cube-root transformation of variances to 
approximate normality to determine the equality of several variances. 
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In connection with multiple comparison tests, Tietjen and Beckman (Ref. 39) gives additional tables 
concerning the application and use of the Hartley type maximum F ratio. 

If one has interest in "robust", large-sample tests of homoscedasticity, he should study Layard's paper (Ref. 
40) in some detail. 

Finally, a study of optimum subsample sizes for the Bartlett-Kendall statistic has been conducted by 
Toothaker, Hicks, and Price (Ref. 41). 

To illustrate the multiple-variance testing technique, we will present the comparison of several normal 
population variances in Example 4-6. 

Example 4-6: 
In a development test of a new type of hand grenade, it was claimed that the new grenade could be thrown 

with improved and especially consistent dispersion in the range direction. Therefore, five infantrymen who 
had experience in throwing hand grenades were each assigned 15 ofthe new grenades at random from 75 made 
up for the purpose, and each ofthe infantrymen threw his 15 grenades at a stake placed about 30 m from the 
throwing position. The deviations from the stake in the range and deflection directions were measured, and all 
of the five sample variances (in ft^) calculated, based on 14 df. Is there any evidence that homoscedasticity does 
not exist for the sample variances given in Table 4-12? 

TABLE 4-12. SAMPLE VARIANCES 

Thrower Variance in range, ft^ 

1 125.29 
2 71.16 
3 59.67 
4 89.17 
5 32.42 

As a quick test, we could use Hartley's maximum /^statistic from Eq. 4-93 to obtain 

^//= i^max = 125.29/32.42 = 3.86 

with v= 14df. We see from Table 4-11 that for v= 15 df and p = 5, the upper 5% point of Fmax is 4.37. Hence 
we conclude that the five populations variances are equal. 

As a further check with a more powerful test, we will use Bartlett's L*of Eq. 4-91. Here we see for the equal 
sample sizes of n = 15 that 

The calculation of L* gives 

v,= 14, Sv, = 70, VilXvi = Q.l. 

68.77/75.54 = 0.91. 

From Table 4-10 of exact Bartlett critical values for p = Sand v= 14, the 0.91 exceeds the 10% point value of 
0.89, so we conclude that homoscedasticity does indeed hold. Hence we may as well use the average variance 
of the five throwers as the estimate of the population value. 

Homoscedasticity is most often a prerequisite to conducting a significance test or ANOVA concerning the 
equality of population means, especially since the problem of trying to judge the equality of normal 
populations is conducted on a parameter-by-parameter basis. Therefore, with the preceding treatment of 
homoscedasticity, we are now ready to proceed with Student's t statistic and its properties and uses. 
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4-7    STUDENT'S / DISTRIBUTION 

4-7.1    INTRODUCTION 

One of the striking and important developments in the theory of mathematical statistics concerning the 
likelihood of occurrence for a sample of size n from a normal population is that the data may be transformed 
into two distributions—one involving the sample mean that uses a single df and the other the distribution of 
the SS about the sample mean, or the sample variance, which uses a chi-square distribution with the remaining 
{n — 1) df of the original sample. Moreover, this leads immediately to Student's / distribution, which is 
completely free of any population nuisance parameters because the resulting Student's / depends in probabil- 
ity only on the number of df in the sample variance or, that is to say, (n— 1). We may summarize the most 
useful points by considering a sample of size n from a normal population with mean equal to /x and variance 
a\ or standard deviation CT—i.e., the sample is from Nijj., a^). Then if we define the quantity / as 

t = {x-^x)^[^|s (4-99) 

we have that the pdf of Student's ris 

.. = [("-2)/2]!  (4-100) 

[(«- 3)/2]! rr x/;r=i {1 + [r/(« - Dir 

= {\li^mil,vl2)\}{\+{t'lv)Y''"'"' 

where *.!■ - 
j/ = «- 1 df. [Note:(l/2)! = \/7r/2.] • 

Student's t distribution (Eq. 4-100) is symmetric about the origin as the mean, and hence all odd moments 
are equal to zero. If we put r = 2, 4 i.e., an even number, then the rth even moment ^,{1) about its mean 
value, or ix{t) = 0, is easily determined to be 

MO = /''[1-3 -5 (r - l)]/[(v - r + l)-{v - 2)] (4-101) 

where r is even only. 
The variance a^{t) of Student's ns 

y?ir{t) = o\t) = vl{v-2),v>2. (4-102) 

The skewness coefficient a^, of t is 

a3(0 = 0 (4-103) 

and the coefficient of kurtosis 04 is given by 

a4(0 = 3 + 6/(i/-4), i'>4. (4-104) 

From Eq. 4-104 it is seen that the probability distribution of Student's t approaches the normal distribution 
very rapidly with increasing v. 

Useful percentage points of Student's / for the practicing analyst are given in Table 4-13, which is 
reproduced from Ref. 5. Reference to the bottom few rows of Table 4-13 indicates just how rapidly Student's t 
approaches the normal distribution. This observation leads us to record a very useful alteration of Student's t 
statistic, due to Smith (Ref. 42); this alteration is of much interest and well to remember. 
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Smith (Ref. 42) notes that since the variance of Student's t, i.e., Eq. 4-102, is really (n— l)/(n — 3), instead of 
using v = {n— l)df for the denominator of the sample standard deviation 5 in Eq. 4-99, one may divide the SS 
about the sample mean by (n — 3) and refer the new or altered /, which we will call ?*, to a table of the 
standardized normal distribution. Thus instead of calculating / from Eq. 4-99, we calculate the quantity /* or 

t* = {x- M)\Ar/[2(x, - x)'l{n - 2,)f' = a(" - 3)/(« - 1)]'^' (4-105) 

and use the tables of percemiles of the unit normal distribution, i.e., only the bottom Une of Table 4-13. The 
accuracy of this approximation for the upper 5% level of significance has been determined by Scott and Smith 
(Ref. 43) and indicated in Table 4-14. 

One notes from the last column of Table 4-14 that for the widely used upper 5% level of Student's /, one may 
safely use ?*, the practical consequences of which for five or more df are nil indeed! In summary, for the 5% 
level of Student's t, one may use t* with the critical value of 1.96 and abandon Student's t table of percentiles. 

In this chapter, we discuss the case of continuous variables. The case of discrete variables and the use of 
count data, especially to compare binomial population parameters, are discussed in Chapter 5. 

4-7.2 CONFIDENCE BOUNDS ON THE UNKNOWN NORMAL POPULATION MEAN 

Student's t statistics of either Eq. 4-99 or Eq. 4-105 contain only the single nuisance population parameter or 
mean n, being free of the unknown a. Hence for a single random sample of size n drawn from a hypothesized 
normal population, one cannot only test the assumption that fx takes on a given or stated value, but he can also 
calculate confidence bounds on the unknown value of the population mean n. If we test the null hypothesis Ho 
that IX = iio, the sample mean and standard deviation along with the assumed value HQ of fx are substituted into 
Eq. 4-99 or Eq. 4-105 to determine whether the observed value of / is significant or not, thereby making a 
statistically valid judgment on the size of/.lo. «' 

On the other hand, the probability statement a . ' 

Pr[-?„ < / < ? J = 1 - 2a (4-106) 

where 
ta = upper a probability level of Student's t 

may be inverted to obtain from Eq. 4-99, for example, that the (1 — 2a) confidence bound on n is available 
from the statement 

Pr[x-taS/y/n<n<x + taSl\/n]= l-2a. (4-107) 

Hence for a single random sample drawn from a normal population N{n,o^), we may obtain confidence 
bounds on both parameters—i.e., confidence bounds or a^, or o, from Eq. 4-64, or IML from Table 4-6, or Isu 
from Table 4-7, and the bounds on n from Eq. 4-107. 

In Example 4-4 we determined confidence bounds on the unknown a for the data of Example 4-1. In 
Example 4-7 we illustrate the use of Eq. 4-107 to obtain bounds on fx. 

Example 4-7: 
Use the data of Example 4-1 to calculate 95% confidence bounds on/Li. 
We have « = 11, x = 1496.36 ft/s, 5 = 10.25 ft/s, and from Table 4-13 the upper ?o.o25 = 2.228. 
Hence by employing Eq. 4-105 
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TABLE 4-13 

PERCENTILES OF THE t DISTRIBUTION (Ref. 5) 

y<^^m^c- -P 

Hf 

^^^^^ ^^^-.___ 

h 

u = di '0.60 to.70 '0.80 to.90 to.95 '0.975 ^.99 '0.995 

1 0.325 0.727 1.376 3.078 6.314 12.706 31.821 63.657 

2 0.289 0.617 1.061 1.886 2.920 4.303 6.965 9.925 

3 0.277 0.584 0.978 1.638 2.353 3.182 4.541 5.841 

4 0.271 0.569 0.941 1.533 2.132 2.776 3.747 4.604 

5 0.267 0.559 0.920 1.476 2.015 2.571 3.365 4.032 

6 0.265 0.553 0.906 1.440 1.943 2.447 3.143 3.707 
7 0.263 0.549 0.896 1.415 1.895 2.365 2.998 3.499 
8 0.262 0.546 0.889 1.397 1.860 2.306 2.896 3.355 
9 0.261 0.543 0.883 1.383 1.833 2.262 2.821 3.250 

10 0.260 0.542 0.879 1.372 1.812 2.228 2.764 3.169 

11 0.260 0.540 0.876 1.363 1.796 2.201 2.718 3.106 
12 0.259 0.539 0.873 1.356 1.782 2.179 2.681 3.055 
13 0.259 0.538 0.870 1.350 1.771 2.160 2.650 3.012 

14 0.258 0.537 0.868 1.345 1.761 2.145 2.624 2.977 

15 0.258 0.536 0.866 1.341 1.753 2.131 2.602 2.947 

16 0.258 0.535 0.865 1.337 1.746 2.120 2.583 2.921 
17 0.257 0.534 0.863 1.333 1.740 2.110 2.567 2.898 

18 0.257 0.534 0.862 1.330 1.734 2.101 2.552 2.878 

19 0.257 0.533 0.861 1.328 1.729 2.093 2.539 2.861 
20 0.257 0.533 0.860 1.325 1.725 2.086 2.528 2.845 

21 0.257 0.532 0.859 1.323 1.721 2.080 2.518 2.831 

22 0.256 0.532 0.858 1.321 1.717 2.074 2.508 2.819 

23 0.256 0.532 0.858 1.319 1.714 2.069 2.500 2.807 

24 0.256 0.531 0.857 1.318 1.711 2.064 2.492 2.797 

25 0.256 0.531 0.856 1.316 1.708 2.060 2.485 2.787 

26 0.256 0.531 0.856 1.315 1.706 2.056 2.479 2.779 

27 0.256 0.531 0.855 1.314 1.703 2.052 2.473 2.771 

28 0.256 0.530 0.855 1.313 1.701 2.048 2.467 2.763 

29 0.256 0.530 0.854 1.311 1.699 2.045 2.462 2.756 

30 0.256 0.530 0.854 1.310 1.697 2.042 2.457 2.750 

40 0.255 0.529 0.851 1.303 1.684 2.021 2.423 2.704 

60 0.254 0.527 0.848 1.296 1.671 2.000 2.390 2.660 

120 0.254 0.526 0.845 1.289 1.658 1.980 2.358 2.617 

oo 0.253 0.524 0.842 1.282 1.645 1.960 2.326 2.576 

From Introduction to Statistical Analysis by W. J. Dixon and F. J. Massey. Copyright 1 
Used by permission of McGraw-Hill Book Company. 

1957 by McGraw-Hill Book Company. 
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TABLE 4-14 

SCOTT AND SMITH'S t APPROXIMATION—(95% LEVEL) (Ref. 43) 

P* 
c = df ?0.95 ?*0.95 ZO.95 (probability) 

5 2.571 1.992 1.96 0.053 
10 2.228 1.993 1.96 0.053 
20 2.086 1.979 1.96 0.052 
60 2.000 1.966 1.96 0.051 
oo 1.960 1.960 1.96 0.050 

r*„.,j  = 95% probability level of t* 

zo.95    = upper 5% point of standard normal deviate 
p*       = probability level achieved by using t* as a normal deviate 

Pr[1496.36 - 2.228(10.25)/Vl 1 < M ^ 1496.36 + 2.228 {\Q.25)l\fV\'] = 0.95 
or 

Pr[ 1489.47 < /x < 1503.25] = 0.95. 

We now turn to Student's t test for two samples, which is used for testing the hypothesis that the two 
samples come from normal populations with the same (equal) mean(s). 

4-7.3    STUDENT'S t TEST FOR TWO NORMAL SAMPLES 

We see from par. 4-7.1 and especially from Eq. 4-99 that Student's t statistic involves the difference of the 
sample mean x and the unknown population mean ij. in the numerator, whereas the denominator is an 
estimate of the standard deviation of this difference or, simply, of 3c. Thus and quite generally, we may extend 
this principle to the comparison of two samples. In fact, for two samples assumed to be drawn from the same 
or perhaps two different normal populations, we may establish a Student's / ratio by taking the difference 
between the two sample means, subtracting from that the difference between the two normal population 
means, and then dividing by the proper estimate of the standard deviation of the numerator. However, we will 
encounter several problems of interest in this connection. 

Student's t statistic is primarily, at least as covered here, a test concerning equality of population means. 
The Snedecor-Fisher ^statistic was used to test the hypothesis that two population variances are equal. Thus 
the /"test may establish that, based on the ratio of two sample variances, the two population variances are not 
equal. This would lead to some problems. It can be seen that if the Ftest justifies the assumption of equality of 
variances, we may as well pool the two sample variances and obtain a more stable estimate of the standard 
error of the difference in means. The problem then is how to pool sample variances. Moreover, this is 
especially the case if the Ftest negates the equality of population variances. We will make these considerations 
clearer and more precise with the following definitions of symbols and subsequent treatment. 

Let 
/xi = population mean of first normal population 
m = population mean of second normal population 
oi = population standard deviation of first normal population 
02 = population standard deviation of second normal population 
«i = sample size of "first" sample (drawn from first population) 
«2 — sample size of "second" sample (drawn from second population) 
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x\   = sample mean of first sample 
X2  = sample mean of second sample 

5i = Z(jr,i — x\f = SS about the first sample mean 
1=1 

Sl = Z(jc,2 — xif — SS about the second sample mean 
1=1 

s\   = S]l{n\ — 1) = sample variance of first sample based on {n\ — 1) df 

s\   — SJIini ~ 1) — sample variance of second sample based on {ni — 1) df. 

With these symbolic definitions we will proceed in steps to test various hypotheses—especially the two 
major ones concerning whether /xi = fxi—first by accepting the hypothesis that oi = 02, and then by proceeding 
to discuss the so-called Behrens-Fisher problem for which it is known or judged that oi ¥= 07. 

4-7.3.1    Student's / for the Case ai = 02 

Suppose we have two normal samples and either know or have established by the Snedecor Ftest that ai — 
ai = a. In this case, we have only to test whether IJLI = m to establish that the two samples come from the same 
normal population, for then both sigmas would be equal. Student's t test for equality of population means 
would then be rather straightforward. In fact, we should, based on the Ftest establishing that o\ = oi, simply 
add the two sums of squares 5'iand 5'2and divide by the total number of df, Le., («i — l)plus(Aj2— 1) to obtain 
the best estimate of the common population variance a^. Thus the estimate o^ of o^ would be the best available 
quantity 

o' = iSi+Sl)l(ni+n2-2). (4-108) 

If we remember that this is the estimate of the variance of an individual observation and that the variance of 3ci 
'■2 — "2 ■ would be a /«i and that of X2 would be a //12, the appropriate Student's/test to judge whether/xi = ;Lt2 would 

be 

^ (xi -X2) -(MI ~M2) ■    (4-109) 
a(I/«i + l/n2)'^' 

where we would put ju I = )U2 or really use only the sample statistic 

t^{x,-X2)l[o\llm + lln2)f'\ • (4-110) 

Note that the denominator of Eq. 4-109 is actually the estimated standard error of the numerator (x — fj.\) — 
(xi — y-i)- In this particular case, the two-sample Student's / test, being "robust" or rather insensitive to 
moderate departures from normality, is really quite powerful in judging whether in fact one may conclude that 
H\ = /LI2. If we actually judge that /xi = ni, we further conclude that the two samples come from the same 
normal population, or process, and hence there is no superiority of one over the other. 

When the Ftest rejects that O] = 02, however, the problem to decide whether ^i = ni even though CTI ^ 02 
becomes much more difficult. We discuss this next. 

First, however, let us say a word about calculation of Student's t for the unequal sample size case to avoid 
the accumulation of rounding error. Since we deal with sums and SS of the sample observations, Eq. 4-108 
becomes by expansion 
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t — (»i -^ ni - 2y'\n2Xxn - riiXxn) 

<(«i + «2) [n2[mXx], - (Sxn)'] + m[n2^x]2 - (Sxa)']})'^' (^-l 11) 

_    {ni + ni — 2)^^^(n2lxn — niXxg) 

where 
^;.,.x, = .n,Sx; - iXx,)\ (4-112) 

Actually, all of the quantities in Eq. 4-111 may be calculated and stored on many scientific-type pocket 
calculators; accordingly, Eq. 4-111 is very convenient and accurate for computation of Student's t. 

4-7.3.2    The Behrens-Fisher Problem (ai 7^ 02) 

When it is known or otherwise established from the F test that we cannot consider that oi = 02—and we still 
desire to test the hypothesis that ni = ij.2, or equality of populations—Student's t is not so straightforward. Let 
us examine this problem now and even for the general case n\ ^ ^2. 

There is a very extensive body of literature on the exact solution of the Behrens-Fisher problem; however, 
we will only suggest some suitable approximate solutions for Army analysts. 

Note first that the numerator of / for the Behrens-Fisher problem will be the difference of xi and X2, the two 
sample means. Now the variance of {X[ — X2) is clearly 

0}     oi 

which certainly may be estimated from 

o\x,-X2) = '-^+- (4-113) 
^ «i     n2 

2 2 
*, S\ 52 
o\xi-X2)=— + — • (4-114) 

ni       122 

We note that we are not pooling sums of squares but are using them separately to estimate a? and al since we 
judge that o] 9^ a\. So far so good, but if we were to take 

/ = —,    "" ~ -^^ Tjr- (4-115) 

what is the appropriate number of df to enter Student's t tables? Some writers have suggested that we take the 
number v df to be 

^«  (^l/»l+^2//72)^  (4.116) 

■ s\l[n\{ri,-\)-\ + s\l\n\{n2-\y\ 

as a good approximation. 
Alternatively, we note that the quantity 

s\lni+S2ln2 

is a quadratic form in normal variables x,i and Xi2, and if we use the approximate chi-square technique of par. 
4-4.5, the interested and curious reader may verify by using Eqs. 4-69 through 4-71 that the approximate 
number of degrees of freedom is 
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.2 /„      I      2 /„  s2 
^ jsxlnx ^silni)  (4-117) 

s\l{n\{m + \)\+s\l\n\{n2+\)] 

We will comment on both of these approximations in the sequel, especially by an example, but this will be after 
we present other techniques. 

A somewhat different approach for the unequal variance problem, which develops a maximum value of / in 
order to determine whether even that value would be significant and others not, is due to Kulkarni (Ref. 44). 
Kulkarni (Ref. 44) notes that when o\¥^a2, the correct value of / in which one is actually interested involves the 
nuisance parameters o\ and oi, but it can be put in the form of additive chi-squares as 

n\S\la\ + niSi/oi -1/2 

t = {x,-X2)ia\ln, + a\lmr^H „    ,„_2 '       ■ ^^'^^^^ 

Kulkarni then puts ai/a2=>'in Eq. 4-118 and obtains Student's/as a function of the "variable"^'. Eq. 4-118 is 
then differentiated for y, equated to zero, and the value oi y giving the maximum value of t is found. The 
maximum value of Ms 

X\—X2 
t= -■ (4-119) 

(5l+52)/(«, +^2-2)'^' 

Kulkarni (Ref. 44) then points out that if the maximum value of/ in Eq. 4-119 is not significant at the level of 
the particular percentage point chosen, one can say without regard to the relative sizes of the unknown a\ and 
oi that the null hypothesis jui = M2 tested turns out to be very reasonable indeed. 

As a comment, we note that the expected standard error of the difference in averages (^i — xj) is simply 

o-.,--.^ = {a\lnx + olln2)"^ (4-120) 

whereas for equal sigmas and equal sample sizes ni = ni — n, Eq. 4-120 becomes 

ai^-J^ = ^/2a/^/;^. (4-121) 

On the other hand, and for these same assumptions, we can see that the corresponding standard error in the 
denominator of Eq. 4-119 is 

Ox, 2oly/2n - 2 = x/2a/V« - 1 (4-122) 

which is perhaps surprisingly not much larger for small sample sizes. It would seem, therefore, that the 
Kulkarni test could be very useful in many practical situations. 

We should probably regard Kulkarni's suggestion in Eq. 4-119 as an approximate solution to the Behrens- 
Fisher problem although it is a good first try, so to speak. Hence and as another approximate solution based 
on the use of (n — 3) as a divisor instead of (« — 1) in Eq. 4-105, we will now record the work of Scott and Smith 
(Ref. 43). 

Following the Letter to the Editor of The American Statistician by Smith (Ref. 42) and the work of J. B. de 
V. Weir in Refs. 45 and 46, Nelson (Ref. 47) points out that Weir (Ref. 46) should be credited with the 
following approximations to the usual two-sample Student's / test for either (1) the case of equal variances or 
(2) the case of unequal variances. When the Ftest establishes that 01 = 02, the two-sample Student's / to use is 
(Ref. 47) 
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t = ts = iXi— Xi)! 
s\ + sl 

n\-\- n2~ 2 
(l/ni+l/«2) (4-123) 

which presumably could be referred to a table of standard normal percentage points for a sufficiently accurate 
answer. 

On the other hand, when the Ftest indicates that a\ ^ ai, the approximate Student's t to use is the quantity 
(Ref. 47) 

t = ds — {x\— xi)! + Si 
n\{n\ — 3)      niim — 3) 

1/2 

(4-124) 

(The capital 5's, or S\ and 52, recall, are the SS about the proper sample means.) See also Adcock (Ref. 48). 
Another very useful test for the Behrens-Fisher problem is Cochran's test (CT) covered in Refs. 49 and 50. 

Cochran's test uses the ratio of the difference between the two sample means and the standard error of this 
difference as in Eq. 4-115, but it also employs a weighted average or value of the two percentage points of the 
Student's t based on the two unequal sample sizes if that condition obtains. Thus for the two-sided test that in 
= JU2, the CT rejects the null hypothesis Ho that m = ni'if 

\Xi — X2\ 

{silni + si/ni) 1/2 > 
{silni)ti +is2ln2)t2 

s]lni + slln2 
(4-125) 

where 
/i = upper a/2 percentage point of/ for («i — 1) df 
ti = upper ajl percentage point of t for {ni— 1) df. 

We see in effect that CT avoids the pooling of variances problem by obtaining a weighted average of two 
percentage points based on estimated variances of the means xi and xi while also recognizing sample size 
differences. 

Lauer and Han (Ref. 51) have studied rather extensively the power of CT for the Behrens-Fisher problem 
and find it to be efficient indeed. Also Lauer and Han (Ref. 51) studied especially the use of the preliminary 
test of significance, or the Ftest, to judge whether oi = 02 and found that CT, after and along with the 
preliminary test of significance (PTS), provided a good procedure in practice. We believe, therefore, that the 
Army analyst probably should have some good and extensive use of the procedure using jointly the Ftest, or 
PTS, and the CT. 

Although we have discussed several test procedures concerning the Behrens-Fisher problem, and hopefully 
the ones of more immediate interest to the Army analyst,the statistical literature on the subject of exact and 
approximate solutions is large indeed. Consequently, some readers may desire to develop their knowledge 
more extensively by using the bibliography and following up on the references included herewith since our 
account in this chapter has been more or less an introduction to the subject. 

At this point, Example 4-8—which makes use of some of the techniques we have discussed for the 
Behrens-Fisher problem—should be instructive. 

Example 4-8: 
A standard lot of mechanical time fuzes was reserved for reference purposes. A manufacturer proposed a 

new fuze and produced 10 prototypes for a comparison test with the old standard lot. In fact, there had been 
some dissatisfaction with the old reference fuzes. For the comparative test, 12 of the old standard fuzes were 
assembled to projectiles along with 10 new prototypes, and the 22 rounds were fired alternately from a gun. 
The results of the firing are given in Table 4-15. From these limited firings is there any evidence that the 
proposed fuzes are superior to the current standard fuzes? In particular, can it be judged that the new fuzes 
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have a smaller standard deviation, that the population means of the two fuzes are equal, or better still that the 
two samples can be considered to have come from the same normal population? 

TABLE 4-15 

OBSERVED FUZE TIMES 

Old Standard, s New Proposed Fuze, s 

5.09 4.85 
5.04 4.93 
4.95 4.75 
4.92 4.77 
4.97 4.67 
5.15 4.87 
4.98 4.67 
5.12 4.94 
5.23 4.85 
4.85 4.75 
5.26 
5.16 

Let us refer to the old standard by the designation 1 and that of the new fuzes by the designation 2. Then the 
pertinent sample sizes, averages, and standard errors are 

«i = 12 «2= 10 

3ci = 5.060 X2 = 4.805 

51 = 0.129 52 = 0.098 

51=0.016641 5'2 = 0.009604. 

We first note that the sample standard deviation for the current standard fuze of 0.129 s exceeds that of the 
prototype, which is 0.098 s. Hence we first use the Snedecor-Fisher Ftest to determine whether the proposed 
fuze has a smaller population sigma, based on 11 and 9 df, respectively. Here we have 

F=(0.129)'/(0.098)'= 1.73. 

Since from Table 4-8 Fo.oi{l 1,9) = 3.10 approximately, we cannot say that the new or proposed fuze has a 
smaller sigma although this might be established in larger scale testing. 

Now what about the comparison of population means? In this connection—especially since we could not 
establish the new fuze has a smaller sigma—we might pool the two sample SS about their means to obtain a 
common estimate of the variance as in Eq. 4-108 and then use Eq. 4-110 as our t test. However, this is indicated 
in Eq. 4-123, and for illustrative purposes we will proceed as if we had encountered the Behrens-Fisher 
problem. For a quick test concerning the equality of population means, we may as well use the approximate 
Student's / of Eq. 4-124. The reader may verify that Eq. 4-124 gives a t value of 4.73, which, when referred to a 
table of the normal distribution, gives a very highly significant value indeed. Thus we reject the null hypothesis 
that the means of the populations from which the two samples were drawn are equal and conrjude instead that 
the new or proposed fuzes have a mean lower by 5.06 — 4.81 = 0.25 s. 

Of course, for the existence of a Behrens-Fisher problem instead of the insignificant variance-ratio test we 
found here, we might, as a point of interest, assume that the standard error of the first sample had turned out 
to be 0.250 instead of 0.129. Under this assumption the Ftest would have shown significance, and the new/ 
value based on Eq. 4-124 would have turned out to be 2.93, which is still very highly significant when referred 
to a table of the normal probability integral. Hence we would still conclude that the first population is higher 
by 0.25 s. » 
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Any of the order tests of this paragraph could have been used including, for example, the test of Eq. 4-115 
with the number of df given by either Eq. 4-116 or Eq. 4-117, or Kulkarni's test of Eq. 4-119 could have been 
applied as well as the CT of Eq. 4-125. Thus the reader has available several test procedures to examine our 
conclusions, which were arrived at by using only the approximate Smith-Weir (Refs. 42, 43, 45, and 46) test 
statistic. 

Finally, we record that there is really no problem in using the new or proposed fuzes for reference purposes, 
since their standard deviation is smaller and calibration could handle the running time mean value problem by 
correcting for the bias of about 0.25 s. 

4-8    INTRODUCTORY DISCUSSION OF DESIGN AND ANALYSIS OF EXPERIMENTS 

The common statistical tests of significance—such as Student's t test concerning a hypothesized value of the 
normal population mean, the Snedecor-Fisher Ftest, and Student's t statistic for judging whether normal 
samples estabHsh equality of population means—apply to the cases of either a single sample or only two 
samples. At least, this is our coverage so far in this chapter, except for the tests of homoscedasticity in par. 4-6. 
Moreover, this highlight brings us more or less to a point of rather important interest. We see that the 
significance tests of par. 4-6—including Bartlett's test, Hartley's test, and CT, for example—are general in 
character since they can really handle the problem of judging homoscedasticity of two or more sample 
variances although they do not necessarily point out just which population variances are too large or too 
small. On the other hand, when we consider two-sample tests concerning equality of population means, we 
come face-to-face with the problem of homoscedasticity again since it simplifies the comparison of means if 
the equality of variances is established, and the complication of the Behrens-Fisher-type problem does not 
really arise. Thus we can say that if a comparison of sample variances establishes homoscedasticity, the 
comparison of population means through an analysis of samples means is more easily conducted. In fact, let 
us suppose for the moment that we do indeed have the situation of homoscedasticity or, that is, that the several 
sample variances can be pooled (through the sum of their sums of squares divided by the total number of 
degrees of freedom), so to speak, to give a common or single value or estimate of population variance. We 
might then refer to this common variance as the "internal" variance, or the residual variance. This value of 
residual variance divided by the sample size would give an estimate of the amount the sample means might be 
expected to vary if some "extraneous" influences did not exist that result in shifting the levels or population 
means of the categories from which the different samples were originally taken for the experiment. In view of 
the existence of such a very desirable state of affairs, we could say that the experiment is in "control"—to use 
quality control terminology—and indeed we have established homogeneity of means or the equality of 
population means, especially since there is no evidence that the variation of sample means exceeds that 
expected from chance conditions. However, if homoscedasticity is not established, any proper analysis of the 
variability among observed sample means becomes more complicated. At any rate, it could be said that the 
concepts expressed here lead to the statistical field of ANOVA. Although in this particular case we have 
visualized the analysis of the variation of means as the ANOVA technique, it is nevertheless true that there 
may be studies about the analysis of variance of variances, or other statistical quantities. Moreover, for the 
problem of dealing with the analysis of several or many samples, it is easy to see that we have arrived at the 
point where it could be of extreme importance to know just how and when the samples were taken since the 
condition may exist where unwanted or unknown variation could have crept into the experiment. Indeed, it is 
seen in this connection that much thought and effort should have been expended toward orderly planning of 
the experiment, especially to control unwanted variability, or to design the experiment so that the effect of 
variability due to extraneous factors could be assessed and stripped out of the experiment through statistical 
analysis, and the primary variability in which we are interested could be properly studied. Hence there is a 
need for statistical design and analysis of experiments of all kinds, especially the more complex types of 
undertakings, because the analysis of variability or variance and the proper design of experimentation go 
hand-in-hand for best results. Finally, we might well add concerning this broad and important field of 
statistical endeavor that the number of comparisons or treatments involved will determine the size of the 
experiment and the arrangement of the experiment to make direct comparisons. Factors contributing to 
experimental design are the number of trials or sample sizes (depending especially on available data 
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concerning variability, if they exist) required to possibly bring out superiority of certain treatments, etc.; the 
equipment to be used in the test, including measuring instruments; the times and dates of the experiment or 
parts of it; and the layout or grouping of tests; etc. 

Since this handbook is dedicated to certain selected topics in experimental statistics for Army analysts and 
there are many, many good texts or books available on the hundreds of standard experimental designs, along 
with methods of analysis, we cannot devote the space to any comprehensive coverage of this highly important 
statistical area. Rather, since statistical designs of experiments and the best analyses to accompany them can 
e'asily be found in our references and bibliography at the end of this chapter or in the statistical Hterature, we 
must make a severe selection of topics covering the analysis of multiple sample means, especially for the 
complex problems in the analysis of variance. Thus having already updated some of the problems of 
estimation, the more common statistical tests of significance, and the Uke, we must limit this chapter to 
recommended reading and discussion of a special example. 

As stated in introductory par. 4-1, Refs. 1-5 already contain a wealth of useful reference information on the 
design and statistical analysis of scientific- and engineering-type experiments. Thus a useful background on 
the planning and analysis of experiments, and special topics associated therewith, is available—especially in 
Refs. 3 and 4—so^^liere, is no point in repeating such basic topics. Moreover, many worked examples are given 
in Refs. 1-5, and eveinrthe subject of transformations to scales where homoscedasticity is assured before the 
analysis of mean values (or other sample statistics) is also discussed. Hence we recommend that the reader 
should first use Refs. 1-5 insofar as is possible. Also Ref. 49 by Cochran and Cox is an excellent text and 
reference book on the design of experiments as are Ref. 52 by Kempthorne, Ref. 53 by Scheffe', and Ref. 54, 
which contains two volumes by Johnson and Leone. 

In addition to a discussion of the nature of experimentation, factorial experiments, randomized blocks, 
Latin squares, balanced incomplete'block designs, and Youden squares, for example, Ref. 3 contains 
examples illustrating the analysis of some of these designs of experiments. The analysis of a factorial-type 
experiment on results from a flame test of fire-retardant treatments of fabrics is given in Table 12-5 (p. 12-19) 
and Table 12-6 (p. 12-20) of Ref. 3. Also many other useful factorial designs of experiments are listed in Ref. 3. 

As an example of a randomized block, a two-way classification in the analysis of variance is given for an 
experiment representing the "conversion gain" of four resistors measured by six test sets for the data listed in 
Data Sample 12-3.2, p. 13-4 of Ref. 3. "Conversion power" is defined as the ratio of available current-noise 
power to applied direct current power expressed in decibel units and is a measure of the efficiency with which a 
resistor converts direct current power to available current-noise power. The analysis of the two-way classifica- 
tion may be used to strip out the variation due to test set measurement (errors) and to assess the variation due 
to resistors or vice versa. Also resistor efficiency and / or test set level of measurement effects may be assessed. 

Ref. 3 lists many balanced incomplete block designs the Army analyst might well use and also many Youden 
square arrangements. Thus we call attention to the possible usefulness of Refs. 1-5 which, of course, may be 
supplemented as required by Refs. 49, 52, 53, and 54. 

An example of a one-way classification in the ANOVA is given in Table 2-7, and the components of 
variance are estimated there. This is for an "interlaboratory"type of test showing the importance of a designed 
experiment for that problem. Another example of a one-way classification in the ANOVA for several 
observations per cell is given in Example 3-12 and identifies just which testing laboratories should be 
investigated for their measurements. 

Chapter 33, Ref. 55, and Ref. 56 on the original US Army Ballistics Research Laboratories' hand grenade 
throwing test give rather detailed use of Graeco-Latin Squares in connection with research and development 
work. Also Chapter 41, Ref. 55, discusses a very unique application of the Latin Square in a combat 
simulation to study the choice of the best selection of infantry weapons. Owen's handbook (Ref. 57) is a 
valuable source of statistical information and tables. 

With the citation of these few examples, we will devote our attention now to special applications of Army 
experimental designs. We refer in particular to the use of an experimental design to evaluate subjective-type 
judgments on proposals submitted for a weapon development competition or to guarantee the best decision 
concerning competing research and development (R&D) projects, or the like. The examples we will use- 
prepared by Mr. Paul C. Cox and suggested for inclusion here by Dr. William S. Agee—relates to a statistical 
procedure for performing an overall analysis of evaluation by board members who rate several proposals in 
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connection with a procurement process at the White Sands Missile Range. Our particular illustration, 
however, will apply to the choice of the best among several competing R&D proposals for a weapon system 
that is to be developed further as required and procured by the Army. 

The statistical procedure can be used to show clearly where significant differences occur between different 
competing industrial companies and also to locate clusters of two or more proposals that possess no real 
differences. Moreover, a very desirable feature is the capability of the analysis to strip out the variation due to 
the raters or judges and to get at the problem of assessing differences among the proposals being rated. Such a 
statistical analysis should provide a convincing justification for the decision maker to negotiate properly with 
certain of the proposers and not with the borderline ones. This is especially important since it may not be 
appropriate to predetermine a "passing grade" but instead to determine which proposals fall within competi- 
tive ranges as a function of numerical ratings or scores. If there is a significant difference between the top-rated 
proposal and the next to top one, a very clear selection results, and the first-ranked proposal might be worth 
the added cost, if any. If, for example, there is no significant difference among the top three proposals, there is 
no real justification for selecting one of these if one happens to be more costly than the other two. However, if 
there is a significant difference between the Number 3 proposal and the Number 4 and if Number 4, or a 
proposal in the same class as Number 4, is less costly than the lowest priced of the top three, a decision must be 
made upon a trade-off between price and quality. Here we cover only the case in which each member of the 
evaluation panel places a numerical rating on each and every proposal. For the case where the raters are 
divided into groups and each group is assigned a portion of the proposals to be rated, a more complicated 
design of experiment and statistical analysis will have to be conducted. 

The case discussed here is a two-way classification in the analysis of variance where n raters are used to 
study and evaluate k proposals by rating each proposal on a scale of 1 to 100, i.e., to develop scores for the 
competing proposals. For convenience it is suggested that the proposals be listed in descending order 
according to their mean scores for the analysis. A good arrangement for the analysis is that of the symbolic 
matrix of Table 4-16, where the proposals to be rated are designated by P, and raters are designated by R. The 
scores are represented by A in the body of Table 4-16, and the sums and means of rows and columns, along 
with the grand sum and grand mean, are given in the margins and the lower right-hand corner. Equations for 
the sums and means are also listed on Table 4-16. 

The suggested form of the actual analysis of variance is given in Table 4-17. 
The f ratios for the raters and proposals, along with the proper number of df as indicated, are compared 

with the corresponding preselected tabular values of the /^distribution from Table 4-8, and insignificance or 
significance of the sources of variation is observed and then judged. If the differences among the raters are 
significant, it means that some of the raters may give consistently higher or lower grades than some of the 
other raters. The analysis removes such anomalies from consideration so that a direct comparison is made of 
the differences among proposals—our primary goal of analysis. If the differences among proposals are 
significant, excellent grounds exist for judging that there is a real difference between the submitted proposals, 
and further study of these differences is warranted. In fact, the job then becomes that of placing the proposals 
in significant groups and of trying to select the superior proposal, if it exists. This problem is addressed in 
Example 4-9, which covers a numerical analysis. On the other hand, if there is no significant difference among 
the proposals, as shown by the f ratio for proposals, there is no need for any further analysis because it 
becomes evident there are no real differences in the merits of the proposals, and it would appear that the award 
should be based on the matter of price alone. 

Finally, a word about the residual, or mean square, error. This residual variance is the unaccounted for 
variation in our experiment and analysis. This is largely due to variations in the grading of a given proposal by 
a given rater, which shows perhaps some random variation under repeated scoring, or it could be an 
interaction effect, i.e., there may be some tendency for grader h to rate proposal/ higher (lower) than proposal 
k, while grader / would rate proposaly lower (higher) than k. Or, there could be other unidentified causes. In 
some cases it could become desirable to make an analysis of residuals. In any event, the residual variance 
becomes a rather natural source of unaccounted for variability by which to judge the other contrasts. 

Once it has been established on the basis of the ANOVA (Table 4-17) that significant differences exist 
among the proposals, then further analysis is required to determine just which proposals differ significantly 
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TABLE 4-16 

SYMBOLIC MATRIX—GRADES FROM A^ RATERS FOR A: RESEARCH PROPOSALS 

Proposal 
Rater Px Pi Pi Pk SUM MEAN   ■ 

i?, 

Rr, 

An 
A2i 

A„\ 

An 

A22 

An! 

An 
A23 

A„i 

A^k 

A 3k 

A„k 

Au 

A2. 

An. 

A,. 
I2. 

Sum* A., A.2 A.i A.k A.. 

Mean** A, A.2 A.i A.k A.. 

*Sums: A.j = 2 A,j\ Ai. = 2 A,;; A.. = 1 A.j 
: = 1 J=l / =1 

**Means: A.j— 4i±; A,. = dii; A.. = 4.^ 
n k nk 

where 
Aij = score or rating by the /th rater on the /th proposal 

A.j = sum of ratings by all raters on /th proposal 

Ai. = sum of ratings given by the ith rater on all proposals 

A.. = sum of ratings by all raters on all proposals 

A.J = mean of ratings by all raters ony'th proposal 

Ai. — mean of ratings given by the ;th rater on all proposals 

A.. = mean of ratings by all raters on all proposals 

k = number of proposals 

n = number of raters 

from the others. There are several methods of procedure for this problem, and the one selected here is that of 
establishing confidence limits about the mean grade /Xy for each of the k proposals, which can be calculated as 
follows: _ _ 

A.j - t,\/MSEIn < iJL.j < A.j + tjMSEIn. (4-126) 

Here, the MSE is divided by the number n of the raters, and t^ is obtained from a table of Student's t, such as 
Table 4-13, by entering the table with {n —\){k— 1) df and a preselected confidence level. One may graph or 
otherwise compare the individual confidence intervals against each other. In interpreting graphical plots of 
confidence limits about the means, one should be careful because the limits may overlap and there may still be 
a significant difference in mean values. 

Recall that we have already established significance between the scores of the proposals as a group, and 
hence our problem is to divide the original proposals (based on their means) into two or more groups of 
homogeneous proposals. There are many, many papers and references in the statistical literature concerning 
this problem; therefore, the entire field cannot be considered here. Rather, we will give only one procedure the 
Army analyst might use with profit, and that is the Multiple Range Test of Duncan (Ref. 58).* The reader 
would do well to consult Scheffe' (Ref. 53) also. To determine whether a significant difference exists between 

* Note, however, the comments on the Tukey, Scheffe', and Games and Howell multiple comparisons tests in par. 4-11. 
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TABLE 4-17 

ANALYSIS OF VARIANCE OF DATA FROM TABLE 4-16 

Sources 
of 

Variance 
df SS MS F 

Raters n- 1 
k              nk 

MSR=   SS^ 
n- 1 

PP ^  MSR * 
MSE 

Proposals k- 1 ,9,^P=2(^-;)' - {A..f 
n             nk 

MSP =   ^^^ 
k-l 

fp= MSP* 
MSE 

Error {n-\)(k-\) SSE=  SST-SSR- SSP MSF =          ^^^ 
in-\)(k-l) 

Total nk- 1 SST= l^iA^j)' - ('^■•)' 
nk 

♦An upper tail F test is used to reject any hypothesis that leads to too large a mean square. 

SS = sum of squares (about proper mean value) 

SSR = sum of squares due to raters 

SSP — sum of squares due to proposals 

SST = total sum of squares 

SSE = sum of squares due to residual or error variance 

MS = mean square 

MSR = mean square for the raters 

MSP = mean square for the different proposals 

MSE = mean square for the error or residual variance term ("error of measurement" for the experiment) 

F — Snedecor-Fisher F ratio 

FR = F ratio of raters to the residual mean square 

FP = F ratio of mean square for proposals to mean square error 

two specific proposals, i.e., their means, the Duncan Multiple Range Test uses the residual variance or the 
MSE, the sample size n, and a factor we will call g. This test is based on the quantity 

g yjMSEjn (4-127) 

which, if exceeded by the difference between two proposal means, whether or not their scores have adjacent 
ordering, indicates unequal true levels. Thus the Duncan test provides a "gap" test to make a grouping. The 
quantity g in Duncan's Muhiple Range Test is obtained from a table in Ref. 58 for (« — 1) (yt — 1) df and the 
order of the mean scores to be compared with the test. Hence with Duncan's test, we are able to divide 
heterogeneous means into homogeneous groups. The methods of Scheffe' (Ref. 53) are considered to be more 
powerful, however. We now have sufficient statistical procedures to carry out the complete analysis; 
therefore, we present Example 4-9 as an illustration. 
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Example 4-9: 

The Army has a crash development program to field a new antitank guided missile (ATOM), referred to as 
the "WOW" ATOM. Detailed proposals have been invited from six reputable contractors, and a special 
evaluation panel of five experts has been convened to rate the six proposals. The numerical ratings or scores of 
the individual experts on each of the six proposals are given in Table 4-18. Is there any evidence that one 
contractor is superior to the others in this competition? 

We will answer this question by making an ANOVA of the scores of the five raters or experts. Note in Table 
4-18 that the sums and means of column and row scores are given; the proposal means are ranked for 
convenience, and the differences between adjacent ranked proposal means are listed at the bottom of the table. 

The ANOVA of the scores is given in Table 4-19. Note that the Fratios for both the proposals and the raters 
are very highly significant using the df indicated and for the upper 5% level of significance from Table 4-8. We 
conclude, therefore, that the variation among raters and that among proposal ratings cannot under any 
circumstances be attributed to chance occurrences, and hence we need to continue the analysis to try to 
determine the superior proposal, if any. 

As it turns out, the MSiox proposals is greater (more than double) than that for the raters. This would seem 
to be a desirable condition, showing perhaps that the raters are able to perform a good job of evaluating the 
proposals with acceptable precision. Moreover, the MSE is only 2.04, or the standard error of the unac- 
counted for variation in the experiment is only about 1.4 points—an acceptable value indeed. The significant 
difference among the raters demonstrates, as we indicated earlier, that some raters are consistently higher or 
lower in their ratings, but this certainly seems to be of little importance because the analysis of variance strips 
these effects out and accomplishes a more direct comparison of differences among the contractor proposals. 
Thus we see the sensitivity and usefulness of the ANOVA technique. 

If there had been no significant difference among the proposal ratings, any observed numerical differences 
would have been attributed to chance and the contractor would have been selected on the basis of price and 
not superior technical merit. Since, however, we have observed quite a significant variation among proposal 
scores, we should proceed to determine homogeneous groupings. For the/th proposal, confidence limits on 
the true unknown mean can be calculated with the aid of Eq. 4-126. This has been done for both the 95% and 
the 90% confidence limits for the six proposals, and the results are given on Table 4-20. 

One may note from Table 4-20 that for both the 95% and the 90% confidence limits, there is some 
overlapping of limits for Proposals 1 and 2. There is a considerable amount of overlapping of the confidence 
limits for Proposals 3, 4, and 5 but hardly any overlapping of hmits for Proposals 2 and 3 except a small 
amount for the 95% limits. Finally, Proposal 6 very definitely appears to be the poorest of all. 

A graph showing the confidence limit calculations for Table 4-20 is depicted on Fig. 4-1. The graph shows 
very clearly that Proposal 6 is in a low class by itself, that perhaps Proposals 1 and 2 should be in the same or 
top group, and that Proposals 3, 4, and 5 belong in a group of their own. We also see that it is necessary to 
proceed with the MuUiple Range Test of Duncan since Fig. 4-1 shows some overlap. 

There is a significant difference between adjacent proposal means if the difference exceeds the quantity 
given in Eq. 4-127. For 20 df Ref. 58 gives g = 2.439 for the 10% level of significance and g = 2.950 for the 5% 
level. This means that the calculations of Eq. 4-127 turn out to be a difference critical value of 1.56 for the 10% 
level and 1.88 for the 5% level. A check with the mean values for the proposals in Table 4-18 reveals no 
significant differences between Pi and Pi, a significant difference between Pj and P^, no significant difference 
between Pi and A or A and Ps, but a very highly significant difference between P^ and Pe. Therefore, it would 
seem that a good procedure would be to negotiate with Px and Pi although it might be desirable to negotiate 
perhaps with the top five proposers if cost considerations have great weight and technical achievements are 
satisfactory. There surely seems to be sufficient grounds for dropping Proposal 6 from any further considera- 
tion unless a very definite technical relationship between a score of, for example, 70, and acceptability of the 
system for Army use has been established and cost considerations for Proposal 6 outweigh other matters. It 
seems clear also that if Proposal 3 is included in the negotiations. Proposals 4 and 5 should be included also. 
Finally, it is possible that some type of trade-off between technical merit and price could be encountered and 
that such a relationship also could be established through the use of the ANOVA technique. 
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TABLE 4-18 

SCORES FOR SIX WOW PROPOSALS BY FIVE RATERS 

Proposals 

Rater Pi Pi Pi PA Pi Pe SUMAf. MEAN A^. 

^1 84 81 78 78 75 74 470 78.3 
^2 79 80 74 72 73 67 445 74.2 
/?3 84 81 79 77 76 70 467 77.8 
RA 75 76 75 74 72 66 438 73.0 
Ri 78 75 75 73 72 66 439 73.2 

Sum A.j 400 393 381 374 368 343 /l.. = 2259 

Mean A. • 80.0 78.6 76.2 74.8 73.6 68.6 A.. = 75.3 

Difference 
in Means 

1.4             2.4 1.4 1.2 5.0 

TABLE 4-19 

ANALYSIS OF VARIANCE OF SCORES FOR WOW PROPOSALS 

Sources of Var df SS MS F 

Proposals 5 409.1 81.82 40.11 

Raters 4 160.5 40.13 19.67 

Error 20 40.7 2.04 

Total 29 610.3 

TABLE 4-20 

CONFIDENCE LIMITS FOR MEAN SCORES FOR SIX PROPOSALS 

95% 90% 
Proposal Mean LCL*        UCL* LCL UCL 

1 80.0 78.7 81.3 78.9 81.1 

2 78.6 77.3 79.9 77.5 79.7 

3 76.2 74.9 77.5 75.1 77.3 

4 74.8 73.5 76.1 73.7 75.9 

5 73.6 72.3 74.9 72.5 74.7 

6 68.6 67.3 69.9 67.5 69.7 

* LCL = lower confidence limit 

* UCL= upper confidence limit 
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Figure 4-1.    95% Confidence Limits for Each Proposal 

We conclude that the design of experiments and the ANOVA technique may have much to offer in 
contributing to daily decisions in which the Army may be involved because these statistical techniques may be 
used to quantify the tasks in a superior way. Moreover, the ANOVA technique provides a most efficient way of 
handling the ever-present and critical problem of wide variation in subjective ratings or judgments. 

As a cautionary note to the reader, we record that in our example we have gone ahead with a direct ANOVA 
without concern about the assumptions of normality or transforming the ratings or count data to another 
scale or measurement to satisfy normality assumptions. 

4-9    COMBINATION OF OBSERVED TAIL AREA PROBABILITIES FOR INDEPENDENT 
EXPERIMENTS 

Experiments are often repeated, or the analyst may be able to get data concerning the significance of several 
statistical trials or investigations. In view of this, it becomes desirable to know just how the analyst should 
proceed in order to make the best use of all available data or significance tests that have been conducted. What 
usually happens is that the statistician calculates the value of a statistic based on the sample observations, such 
as Student's /, and then the calculated value is referred to a table of the null distribution of the quantity 
involved. Thus if we let/(0 be the pdf of the statistic in which we are interested, from the appropriate table we, 
in effect, find the value of the quantity 

Pi=ilf{t)dt (4.,28) 

for the /th experiment or significance test, or the complement of it (1 -pi). We know from statistical theory 
however, that the quantity ^' 
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-21n;?, = x'(2) (4-129) 

or that is, the left-hand side is distributed as chi-square with 2 df noting that the upper limit of the integral in 
Eq. 4-128 is a random variable under the null hypothesis. Thus for a series of the observed probabilities—such 
aspi,p2,Ph- ■ ■ -yPn—then for A: significance tests we may sum the—21njp, and treat that sum as chi-square 
with 2k df. By referring this resulting sum to a preselected percentage level of chi-square, we may determine 
the statistical significance of the whole series of tests. 

This result is illustrated by Example 4-10. 

Example 4-10: 
In two experiments on the delivery "accuracy" of a proposed high-velocity antitank round of ammunition, 

the first test resulted in an upper tail area probability of 0.07 giving an inconclusive judgment on the 
round-to-round dispersion at the 5% significance level; a second sample of 10 rounds was fired in the next test. 
The results from the second test showed significance at the 5% level, and in fact, the observed upper tail area 
probability turned out to be 0.03. It is possible to combine the two test results and arrive at a definitive 
judgment? 

We have that p, = 0.93 and pi = 0.97. Hence 

-21n/Ji =+0.14514 
-21n/?2 = +0.06992 

0.20606 = x'(4). 

By referring to Table 4-5 for df = 4, one sees that the 5% level of chi-square is 0.711, and therefore, that the 
combination of both tests does indeed produce significance at the 5% level or probability—1 — p ^ 0.005. 

In this particular analysis of final results from two different experiments, onfe notes that only 4 df are 
available for the combined test using chi-square, whereas both original sample sizes did, no doubt, have 
available more than just 2 df each. The reader, therefore, might suspect that the combined test would be rather 
insensitive. There is, in fact, some loss in efficiency perhaps, as we note in the accuracy firings referenced that 
the sums of squares from both tests might be pooled to gain df greater than four. Nevertheless, the tests could 
have been different in type or character, and it may not always be possible to combine sample statistics as 
desired. Thus the combined chi-square test does indeed have many potential, important uses. 

4-10    THE CHOICE OF SIGNIFICANCE LEVELS FOR MULTIPLE TESTS 

When the analyst conducts a single test of significance, he decides upon or preselects the level of significance 
by which he will judge results—this usually amounts to a 5% or a 1 % probability level—and then he carries out 
the calculations for the test and finally compares the value of the observed statistic with the level chosen. As is 
well-known, however, even this procedure is not straightforward because there is always the question, "Just 
what level of significance should be chosen?". If, for example, for the outlier detection tests of Chapter 3 one 
desired to be very careful so that he would not unerringly reject "good" sample values, he might select the 1% 
or even the 0.5% significance level. Again, however, if the engineer or physicist were looking for sample fatigue 
test specimens to examine closely on a metallurgical basis, as an example, the 10% or perhaps even the 25% 
probability level might be selected. Hence we believe that often some very practical guidance, especially 
concerning the particular physical situation, is of considerable value in the selection of even a probability level 
for a single statistical test. We therefore urge that the practicing Army statistician come to grips with such a 
complex problem; by so doing he may well be able to arrive at the best practical solution. 

Another important problem for the practicing statistician relates to the choice of significance levels for 
multiple tests or a series of tests. For example, in the treatment of outlying observations in Chapter 3, we noted 
the need or temptation to apply outlier tests for a single discordant sample observation, then to test the next 
suspected sample value after rejection of the first outHer, and so on. Obviously, if we initially chose the 5% 
level or the 1% level of significance and conducted several significance tests for outliers, the resulting level of 
probability would change radically from the 5% or 1%, etc., level originally selected. Therefore, one has to 
exercise care in the choice of percentage points for several tests so that the overall level of statistical 
significance will be controlled to the desired probability level. This leads us to another complex problem, i.e., 
the question of the proper choice of a significance level for each test during the course of multiple testing. 
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Suppose there are m significance tests and the ith test is made at the significance or probability level a,, say, 
where we refer to the upper tail area or the pertinent probability distribution. Then the overall significance of 
the m tests is certainly less than or equal to 2a,. (Similarly, if we were dealing with m confidence intervals, each 
with confidence (1 — a,), the overall confidence level would be greater than or equal to (1 — 2a,).) Usually, the 
a, are taken equal to a/m, where a is the desired (upper) significance level (or the desired confidence level 
(1 — a)). A good way of handling problems concerning the probability that one or more of the events will 
happen, or the "union" U of the sets, is to use the so-called Bonferroni inequalities for the more complex 
probability calculations, which give either upper and lower bounds or often give exact chances of occurrence. 
The Bonferroni inequalities are based on a very elementary and basic law for the calculation of the chance of 
occurrence of at least one of several events, which also would include the occurrence of all of the events 
simultaneously. 

Let there be n events of interest—which are designated byAuAz,..., A„—and let the occurrence of at least 
one of these events be designated by XJAi. Then, the chance that at least one of the Ai will occur is given by 

Pr[l]A.] = XPr[A,] - X XPr[A.Aj] + ■■■ +(-l)""'Pr[^,/l2 • • -An]. (4-130) 

The right-hand side (RHS) of Eq. 4-130 is very useful because the sum of an odd number of terms of the RHS 
gives an upper bound on the probability of at least one of the events, and the sum of an even number of terms 
on the RHS of Eq. 4-130 provides a lower bound of the left-hand side (LHS). Moreover, the sharpness of the 
bounds increases with the number of terms included. This concept leads to sets of inequalities on lower and 
upper probabilities of occurrence, which are widely referred to as the Bonferroni inequalities, the first of 
which is 

lPr[A,]-X lPr[AiAj]<Pr[\JAi]<XPr[A^. (4-131) 

One continues the process of placing an even number of terms on the left and an odd number of terms on the 
right—bracketing the /'r[U^,]—in order to obtain bounds as close as he may desire to the "exact" probability 
of at least one event. Thus the Bonferroni inequalities are now widely used and, in fact, are necessary in many 
probability calculations. One additional remark should be made, however—namely, the RHS of Eq. 4-131 
can, in many cases, exceed unity. When that happens, the RHS or sum in Eq. 4-131 must be replaced by or 
limited to unity. 

The Bonferroni inequalities, or improvements over it, have been used to study the problem of the choice of 
significance levels for individual tests in a series of several or multiple experiments. In fact, they often lead to 
the choice for m tests of a significance level equal to a/m for each individual significance test. We will now 
restrict our remarks to the use of multiple Student's t tests since they are widely used in practice or 
applications. 

If Student's t test is used, for example, in a one-way ANOVA to make confidence interval statements for m 
contrasts among, say, k population means, then to assure a significance level of less than or equal to a, the 
Bonferroni inequalities lead to the use of a significance level for each individual test of [1 — a/(2m)] for the 
two-sided tests. Dunn (Ref 59) has pointed out, however, that a slightly more powerful test would use 0.5 + 
0.5(1 — a)'''", for each significance level, it being slightly smaller. (These last two quantities are left to right 
areas.) 

Unfortunately, the state of the art has not reached the point that the best procedures for selecting individual 
significance levels are now available for all the important statistical tests when muhiple tests are performed. 
Rather, it may be necessary to consider each application in appropriate detail. All we can say here is that, 
generally, for one-sided tests we might use a significance level of a/m for each individual test, whereas for 
two-sided tests we suggest the use of a significance level of a/(2m) although such a procedure may often be "off 
the mark". Perhaps and hopefully, these recommendations may not be too poor for current practice until 
refuted by further research. 

Bailey (Ref 59) gives tables of the Bonferroni t statistic for the 5% and 1 % probability levels and for a wide 
range of df Some extended tables of; and chi-square for Bonferroni tests with unequal error allocation have 
been provided by Dayton and Schafer (Ref 60). These publications and references should be of value to 
interested readers. 
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4-11    SOME FURTHER COMMENTS 

Although some topics are covered in sufficient detail in this chapter—so that the Army analyst may use 
certain of the techniques to advantage—we have only touched on the extremely extensive subject of multiple 
comparison procedures, which are critical in ANOVA tests after having observed a significant Snedecor F 
ratio for more than two treatment effects, blocks of the experiments, etc. Therefore, in the interest of 
providing the reader with further references to study and apply as needed to his particular experimental 
problems, we urge that he review Refs. 61-68 because they should be most helpful. Many of the advances in the 
problem of multiple comparisons are based more or less on an original unpublished manuscript of Tukey 
(Ref. 68), which has been widely distributed. Many of the multiple comparison procedures use the Student- 
ized range (Ref. 69) for testing the equality or inequaHty of population means for k samples in an analysis of 
variance after observing a significant /"ratio. Keselman and Rogan (Ref. 70) recently made an extensive study 
of comparisons of the modified Tukey and Scheffe' methods of multiple comparisons for pair wise contrasts 
and recommended the Games and Howell (Ref. 64) modification of the Tukey multiple comparison test for 
pair wise comparisons of means because the Games and Howell procedure not only controlled the Type I error 
at or below the nominal size but did so for unequal sample sizes and equal or unequal variances. At the same 
time it was apparently the more powerful procedure. In view of this, it seems appropriate to record the Games 
and Howell procedure. It consists of testing the difference between the /th andyth sample means of k such 
treatments based on the statistic 

q = {x,.-xj.)l{s]ln^ + s]lnj)"' (4-132) 

where this is simply the difference in sample means of interest divided by individual estimates of their 
variances (which are summed and the square root taken) and q is the Studentized range even though a Z-type 
ratio is designated as q since a table of the Studentized range (Ref. 69, for example) is entered to test for 
significance. The parameters to enter the Studentized range table are k for the total number of sample means, 
and the df are given by 

v = {s'ilm + s)lnjfl{{s]ln^'l{m - 1) + {s]lnjfl{nj - 1)]. (4-133) 

(Note in this connection that the number of df is precisely that of Eq. 4-116, which was suggested for the t test 
in the Behrens-Fisher problem for two sample means.) Again, however, we remind the reader that tables of the 
Studentized range (Ref. 69) are used for the multiple comparison test. Finally, we suggest that the reader study 
the references thoroughly to become sufficiently expert in his appHcations. 

Another matter of importance concerning ANOVA procedures relates to the subject of transformations of 
the original data in an attempt to guarantee homoscedasticity and normality along with the frequent case of 
unequal sample sizes. For this problem, Refs. 71-79 will be of much use to the practicing statistician; the 
details of transformations of all kinds and their adequate behavior are covered by the referenced authors. 
Fuchs' paper (Ref. 79) is recent (1978) and hence should be more or less current on such matters. The selection 
and proper use of transformations in the ANOVA are also extremely important topics that cannot be treated 
here. 

For a pertinent and interesting discussion of the relation between science and statistics in general, see Box 
(Ref. 80). 

For an excellent presentation and fairly introductory account of experimental design procedures of much 
value to Army analysts, study Box, Hunter, and Hunter (Ref. 81). 

4-12    SUMMARY 

We have recorded in this chapter a special selection of statistical topics to update the 1969 Experimental 
Statistics Handbooks (Refs. 1-5). The subjects covered include some noteworthy topics on estimation, 
especially unbiased estimation of the normal population standard deviation based on the sample standard 
errors with (« - 1) df or the divisor n and also the sample MD and sample range. The idea of efficiency is 
discussed as is the concept of MSE of estimates. Some moment properties of use to the statistician are 
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included since they may be of fundamental use in many applications. The relationships between the chi- 
square, binomial, and Poisson distributions are recorded; and the chi-square distribution and its many, many 
important applications are covered to a considerable extent. Several methods of estimating confidence 
bounds on the population variance are discussed for the chi-square methodology. The approximate chi- 
square distribution is introduced for possible use by the Army analyst, and the Snedecor-Fisher variance ratio 
or F distribution is discussed rather extensively. Significance tests for the equality of many population 
variances are presented for the up-to-date methods, and the comparison of tests of homoscedasticity is also 
covered in sufficient detail. Student's t distribution for a single sample mean and for two sample means is 
thoroughly addressed as is the Behrens-Fisher problem for testing equality of means when one is faced with 
the inequality of variances for the two samples. 

The subject of ANOVA in general for several or many means, as well as the design of all types of 
experiments and current methods of analysis, was not undertaken in this chapter. Rather, we have recorded 
some comments of interest and have given a technique using the two-way classification in the ANOVA to rate 
and rank proposals or to make other types of subjective judgments. The advantage of the ANOVA as 
presented here is the elimination of the variation among raters and thereby assessing the proposal ratings 
directly. The ranking of proposals, or the division of them into appropriate groups, is also treated. 

Combination of observed tail area probabilities from several experiments is treated, and the choice of 
significance levels for multiple tests is also discussed, including the use of Bonferroni inequahties. 

Although multiple comparison procedures and transformations of data to various scales of measurement 
for applying ANOVA techniques were not included in this chapter, we nevertheless give a sufficient number of 
references so that the reader may proceed with further study for his particular applications. 

Several examples are given to illustrate the applications of the statistical techniques discussed. 
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CHAPTERS 
INTRODUCTION TO SOME MODERN ANALYSES OF CONTINGENCY TABLES 

This chapter describes and highlights the more important and useful statistical techniques that have been 
developed over the last quarter of a century for the purpose of analyzing contingency tables. Contingency 
tables represent univariate, bivariate, or multivariate distributions of qualitative data or enumerative type 
data, which are most often cross-classified because there may be some form of dependence between the classi- 
fications. It is of primary interest to determine whether the null hypothesis of independence can be upheld. 
Some of the more modern statistical techniques that have been used to advantage in recent years to analyze 
contingency tables, or "cross-classified categorical data", are outlined. 

The topics covered include especially some of the key developments in the classical chi-square analysis ap- 
proach and also the more recent and powerful principles of the information theory approach of Solomon Kull- 
back that employs his minimum discrimination information statistics (MDIS) to analyze contingency tables 
of any order. The use of loglinear models is also introduced. 

Some special coverage of the important problem of comparing binomial populations is given in appropriate 
detail, arid techniques for the determination of confidence limits on the difference of two binomial parameters, 
their ratio, or the odds ratio, are discussed. 

Many illustrative examples are also presented as somewhat of a training aid. 

5-0   LIST OF SYMBOLS 

A = designates process or category A 

A — designates the characteristic A 

A = designates the characteristic "not A" 
a — frequency or number of observations classified according to the cell definition of the 

first row and first column of a 2X2 contingency table 

a = mean of o 
B = designates process or category B 

B = designates the characteristic B 

B = designates the characteristic "not B" ' 
b = number of sample observations in the cell of the second row and first column of a 

2X2 contingency table 
c — cell frequency for the first row and second column of a 2X2 table, or number of 

columns for a table 

fg = continuity correction. Yates' Cg = 0.5 
d = cell frequency for the second row and second column of a 2X2 table 
d = difference or distance between population and sample values or two quantities 

Ei = expected number of occurrences for the /th category 

f{p) = function of the quantity p, usually a probability density function (pdf) 

Ho = null hypothesis 
H] = first or initial set of marginals used in an analysis 

Hj — second set of marginals, used for analysis, which is included in set Hi 

h = specified small quantity 

/ = amount of information 

I{p:Tv) = amount of information based on the MDIS ir table 
5-1 



DARCOM-P 706-103 

/ = estimate of the amount of information 

m = a + c = sample size for the first row of a 2X2 table 

A'^ = total for the 2X2 table — m+n = r + s 

n — b + d = sample size for the second row of a 2 X 2 table (n sometimes refers to the 
table total) 

n = sample size 

Oi = observed number of occurrences for the ;th category 

P = designation for a probability 

Pi = specific probability (see Eq. 5-28) 

P2 — specific probability (see Eq. 5-28) 

p = true unknown proportion of defectives (or nondefectives, or successes, etc., in a 
binomial population) 

p = sample estimate of the unkn-own population parameter/? 

p{AB) = probability of both A and B occurring (The same joint chance applies to other letters, 
of course.) 

p{ij) — true but unknown probability of occurrence, or population proportion, for an indi- 
vidual belonging to the cell in the /th row and /th column of the table 

p(i.) = pr{x = i) = marginal probability for /th row 

P(-J) — P^{x —J) — marginal probabiUty for7th column 
PA = lower confidence level of p 

PB = upper confidence level of p 

Pc — "control" or "standard" value of p 

p, = "test" or "treatment" value of/? 

p\ = population parameter for the first binomial population 

pi = population parameter for the second binomial population 

p*(//) = cell probability for the /th row and7th column based on the MDIS 

/?*(/.) = /th row probability based on the MDIS 

p*{.]) =,/th column probability based on the MDIS 

R = P\lpi — PIIPC ~ ratio ofp's 
RL,RU — lower and upper confidence limits of R, respectively 

r = number of defectives observed, or r = a + b, or number of rows 
s = sum of c and d 

Sd = sample standard deviation of the difference d 

x{ij) = observed frequency for the cell in the /th row and 7th column, for i= \, . . .,r and 
7= 1, . . ., c 

x{i.) = sum of the x {ij) across the c columns of the /th row 

x{.j) = sum of the x{ij) across the r rows of the^th column 

x{. .) = A'^, sometimes n, = the sum of all the observations within the contingency table 

x(l 1) = observed number of occurrences a for the cross-classification involving A and B in 
Table 5-6 

A:(21) = observed number of occurrences given by b for the cross-classification B and A in 
, 2 Table 5-6 
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x*(Jj) = predicted value for the cell in the /th row and 7th column, which is determined in 
accordance with Kullback's MDIS principle r 

X* = refers to the expected frequency for a set Hi of given marginals 

x*2 = refers to the expected frequency for a second set Hi of given marginals which is 
included in Hi 

z = unit or standard normal deviate 
zi = normal deviate defined in Eq. 5-20, which keeps the sample sigmas separate for two 

different binomial/7's,pi and pi 
22 = normal deviate represented by d/sd (difference divided by the standard deviation of 

that difference) (see Eq. 5-17), which pools the two samples of data to obtain a single 
estimate of o 

Za = ath probability level of the deviate z. Often, only the deviate for the upper a probabil- 
ity level is used. 

a = probability level, less than 0.50 and usually 0.05 or 0.01 

a* — maximum o{f{p) 

a^ = value to which the computer is instructed to iterate 

A = pi — pi= Pi — Pc = difference ofp's 
AL, AC/ = lower and upper confidence limits of A, respectively 

7r(//) = probability for the cell in the /th row and /th column based on the ir table = I/(re) 
for the uniform distribution 

ol = Var(a) = variance of a 
6 = estimate of sigma, the population parameter 

X^ = X^( ) = chi-square statistic with degrees of freedom (df) indicated within the 
parentheses 

lA = pi(l -pi)l[pi (1 ~pi)] =Pti\ -Pc)l{pc{l -pt)] = the odds ratio 

^L,iJJu = lower and upper confidence limits of (//, respectively 

5-1    INTRODUCTION 
Chapter 4 dealt with measurements or observations on a continuous scale but not generally with bi- 

nomial- or count-type data. As we are aware, a very large amount of data from experiments, or many ex- 
perimental observations, leads to characterization into only two categories. Thus an observation is judged 
simply as a "success" or a "failure", or "pass" or "fail", "go" or "no go", etc. An example would be fir- 
ing 10 armor-piercing (AP) projectiles having a striking velocity of, say, 1000 m/s at 9 in. of rolled homo- 
geneous armor plate and observing that two of the projectiles did "defeat", or pass through, the plate. 
These measurements are considered to be on an attribute scale instead of on a continuous scale as we dis- 
cussed in Chapter 4. Hence our purpose in this chapter is to discuss methods of statistically analyzing 
such data in order to arrive at some decision about the unknown population parameters, or for other 
reasons. In particular, we again will have the problem of analyzing data representing one, or two, or more 
"samples" of cross-classified data. 

In a manner quite analogous to the treatment of continuous-type data, the analysis of attribute data 
also will involve making inferences from a single sample drawn at random from a binomial population, or 
we may deal with two or more binomial-type samples and be interested in whether the samples can be 
considered to have been drawn from the same binomial population. One might think, in this connection, 
that since binomial populations are described by a single parameter, i.e., the proportion of successes or 
failures, etc., it would naturally follow that the statistical analysis would be much easier. However, this is 
not always the case because of the discrete nature of the random variables. In any event, the analysis of 
enumerative data often may be carried out along somewhat similar lines to that of observations on a con- 
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tinuous scale, and often the discrete type data are displayed in a layout with cells similar to the analysis of 
variance (ANOVA) form used for continuous data. In fact, our analysis of proposals in par. 4-8 did in- 
deed involve enumerative data or "ratings", and we carried out an analysis of variance on the original 
measurements as if we were dealing with continuous-type data. Often, however, such a matrix for discrete 
or enumerative data would be given in the form of and analyzed as a "contingency" table, but this de- 
pends on the categories of interest into which the data fit or are taken or drawn originally. For a con- 
tingency table we have a random sample of objects that are cross-classified into two or more attributes, 
and each attribute may be further divided into two or more categories. Thus there are cells or classifica- 
tions into which none, one, or more of the observations will logically fit or possess the required attributes. 
Moreover, for each of the cells or attributes involved, there exists a probability for the whole population 
under consideration that an individual will belong to that particular cell.* For a sample of observations, 
we will not know just what the true chance is, and, in fact, we will almost always have to estimate such 
probabilities or at least have to make some inferences about the true unknown population parameters by 
testing a hypothesis of interest, which states, for example, that two or more samples come from the same 
population—i.e., the samples are "equivalent" until such a hypothesis is rejected. 

A contingency table represents a sample from a multivalued population, and the two-way table, for ex- 
ample, is simply a matrix of observed frequencies cross-classified with the two characterizations, and the 
display is by rows and columns of the matrix.** For example, we might represent the number of penetra- 
tions and nonpenetrations of armor plate by using two columns and two types of heat treatments of the 
projectiles by two rows; this establishes a "two-by-two" contingency table. Of course, this idea extends to 
any number of classifications by rows and columns. In this particular example the statistician may pro- 
ceed to try to establish whether one heat treatment really makes any difference or is superior to the other 
heat treatment, etc. The basic treatment and analysis of contingency tables are to be found in almost any 
standard textbook on statistics. Therefore, our purpose is to discuss some topics on contingency tables of 
interest to Army analysts. Indeed, we should aim to update the very good account of the analysis of 
enumerative and classificatory data in Ref. 1. The reader is urged to review first this reference as a basis 
for proceeding with the contents of the present chapter. 

In our coverage we will begin with the concept of a single sample from a single binomial population, 
proceed to a discussion of two-by-two contingency tables, which are of considerable importance in Army 
statistical investigations, and finally go on to some coverage of the more complex types of contingency 
tables. 

Before proceeding, however, we should warn the reader that efforts toward any unique or straight- 
forward analysis of even the two-by-two contingency table can be very confusing unless one stops to place 
several different types of problems in proper perspective before the actual analysis is conducted. Indeed, it 
becomes very important to know just how samples were drawn or selected, and what they really repre- 
sent—especially whether row or column totals are "fixed", or whether both row and column totals are 
fixed, etc.—because this would represent very different conditions or areas of analysis. As we shall learn, 
it was not until about 1947 that the different types of problems in the analysis of contingency tables were 
made unmistakably clear. 

We now summarize very briefly in par. 5-2 some results related to the drawing of a single random sam- 
ple of n items from a single binomial population, especially that covered in Refs. 1 and 2. 

5-2    SAMPLING A SINGLE BINOMIAL POPULATION WITH A SAMPLE OF SIZE n 

Following the notation of Ref. 1, we consider the random drawing of a sample of size n from a bi- 
nomial population with parameter;? representing the true unknown proportion of defectives (or failures) 
or successes, etc. In Army analyses we will more often deal with "failures" or "defectives" because they 
are most usually the main focus of interest. However, if we are concerned with high reliability or safety. 

*The term "cell" is used here to denote the category or classification into which a response fits. 
**The 2X2 contingency table is often referred to as a "double dichotomy", especially for the case where the row and column 

totals are random numbers. 
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our concentration might shift somewhat. As a result of drawing the single sample of n, we will find r de- 
fectives, or failures, and then our main interest will center around estimating the proportion p of failures 
in the universe and also around placing confidence bounds on this unknown parameter/?. It is well-known 
in this connection that the maximum likelihood (ML), unbiased estimate of the binomial population 
parameter is given by p, where 

P   = r/n (5-1) 
r    = number of defectives (failures) observed 
n   = sample size. 

Ref. 1 discusses in some detail the problem of placing confidence intervals on the paramater p, which 
gives the normal approximation for the sample size n greater than 30. Also Table A-22, Ref. 2, gives some 
very valuable tables for confidence limits on the proportion p for sample sizes of A7<30. Table A-24, Ref. 
2, which actually is figures, gives curves for the upper and lower confidence limits on p for sample sizes of 
n '= 50, 100, 250, and 1000. As a matter of record, the (1 - la) confidence limits given in Ref. 1 for n 
greater than 30 are listed as 

{rin) - z„ V irin) (1 - r//7)/n <p < (r/n) + z„ V (r/n) (1 - r/n)/n*. (5-2) 

A more up-to-date treatment of confidence intervals—one devoted especially to reliability, along with 
use of the Snedecor-Fisher F distribution, the incomplete beta function ratio, and some other pro- 
cedures—may be found in Chapter 21, Army Weapon Systems Analysis, Part /, Handbook (Ref 3). Some 
very useful charts for reading off the upper and lower 95% and 99% confidence limits about the binomial 
p are given in Ref 4, and we include these in Figs. 5-l(A) and 5-l(B). Ref 4 also includes tables of confi- 
dence limits for the expectation of a Poisson variable with confidence coefficients of 90%, 95%, 98%, 99%, 
and 99.8%. The Poisson approximation to the binomial becomes valid for "small"/? (or/? less than about 
0.10), and in applications one usually counts the number of defectives or occurrences, which is small, 
often without knowing the sample size. The Biometrika table of confidence limits for the Poisson param- 
eter (Ref 4) is reproduced here as Table 5-1. 

Often it is desired to estimate the unknown binomial parameter p within a distance or difference of d 
between the population and sample values. If some prior information of/? is available or its size is known 
approximately, then the sample size equation is given by 

n=zlp{\-p)lcf (5-3) 

where 
d = difference or distance between population and sample values. 

Hence by so determining n, we can say that the sample size n is such that the probability is no more than 
a that our estimate of/? is in error by more than d. In case/? is near the value 1/2, Eq. 5-3 reduces to the 
approximation 

n^zlHAd'). . (5-4) 

With this very brief background on sampling a single binomial population, we turn to the comparison 
of two samples of count type data and especially to the general 2X2 contingency table. 

*za is used here to denote the upper (positive) a probability level of the standard normal distribution. Some readers will prefer 
the more precise label z,-„. Perhaps it is unfortunate that the two symbols have been used interchangeably in the literature when 
one is the negative of the other. 
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The numbers printed along the curves indicate the sample size n. If for a given value of the abscissa r/n, PA, and ps are the 
ordinates read from (or i'^^'-'-polated between) the appropriate lower and upper curves, then 

Pr[pA <p <PB\ <\-la. 
Note; The process of reading from the curves can be simplified with the help of the right-angled corner of a loose sheet of paper 

or thin card, along the edges of which are marked off the scales shown in the top left-hand corner of the chart. 

(A) Confidence Coefficient, 1 - 2a = 0.95 

Figure 5-1. Confidence Limits forp in Binomial Sampling, Given a Sample Fraction rjn (Ref. 4) 
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1-00      0-98      096      0-94      0-92      0-90      0 88      0 86      0-84      0 82 
-rjn 

080      0-78      0-76      074      0 72      0-70      0-68      0-66      0 64      OGJ      0 60      0-58      0-56      0 54      052      0 5.1 

P 0 112      0 04       0-06      0-08      OaO      0 12      O'H      0-16      U18      VXl  '  tiSi" d-il      0-26      0-28      0-30      032      0 34      u 30      ii31 

The numbers printed along the curves indicate the sample size n. 
rjn- 

U-4.J      0 42       144      04(j      ii-48 

Note; The process of reading from the curves can be simplified with the help of the right-angled corner of a loose sheet of paper 
or thin card, along the edges of which are marked off the scales shown in the top left-hand corner of the chart, 

(B) Confidence Coefficient, I — 2 a = 0.99 

Reprinted with permission. Copyright © by Biometrika Trustees. 

Fig. 5-1 icont'd) 
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TABLE 5-1 

CONFIDENCE LIMITS FOR THE EXPECTATION OF A POISSON VARIABLE (Ref. 4) 

l-2a 0.998 0.99 0.98 0.95 0.90 l-2a 

a 0.001 0.005 0.01 0.025 0.05 a 

r Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper r 

0 0.00000 6.91 0.00000 5.30 0.0000 4.61 0.0000 3.69 0.0000 3.00 0 
1 0.00100 9.23 0.00501 7.43 0.0101 6.64 0.0253 5.57 0.0513 4.74 1 
2 0.0454 11.23 0.103 9.27 0.149 8.41 0.242 7.22 0.355 6.30 2 
3 0.191 13.06 0.338 10.98 0.436 10.05 0.619 8.77 0.818 7.75 3 
4 0.429 14.79 0.672 12.59 0.823 11.60 1.09 10.24 1.37 9.15 4 

5 0.739 16.45 1.08 14.15 1.28 13.11 1.62 11.67 1.97 10.51 5 
6 1.11 18.06 1.54 15.66 1.79 14.57 2.20 13.06 2.61 11.84 6 
7 1.52 19.63 2.04 17.13 2.33 16.00 2.81 14.42 3.29 13.15 7 
8 1.97 21.16 2.57 18.58 2.91 17.40 3.45 15.76 3,98 14.43 8 
9 2.45 22.66 3.13 20.00 3.51 18.78 4.12 17.08 4.70 15.71 9 

10 2.96 24.13 3.72 21.40 4.13 20.14 4.80 18.39 5,43 16.96 10 
11 3.49 25.59 4.32 22.78 4.77 21.49 5.49 19.68 6,17 18.21 11 
12 4.04 27.03 4.94 24.14 5.43 22.82 6.20 20.96 6,92 19.44 12 
13 4.61 28.45 5.58 25.50 6.10 24.14 6.92 22.23 7,69 20.67 13 
14 5.20 29.85 6.23 26.84 6.78 25.45 7.65 23.49 8.46 21.89 14 

15 5.79 31.24 6.89 28.16 7.48 26.74 8.40 24.74 9.25 23.10 15 
16 6.41 32.62 7.57 29.48 8.18 28.03 9.15 25.98 10,04 24.30 16 
17 7.03 33.99 8.25 30.79 8.89 29.31 9.90 27.22 10,83 25.50 17 
18 7.66 35.35 8.94 32.09 9.62 30.58 10.67 28.45 11,63 26.69 18 
19 8.31 36.70 9.64 33.38 10.35 31.85 11.44 29.67 12,44 27.88 19 

20 8.96 38.04 10.35 34.67 11.08 33.10 12.22 30.89 13.25 29.06 20 
21 9.62 39.38 11.07 35.95 11.82 34.36 13.00 32.10 14,07 30.24 21 
22 10.29 40.70 11.79 37.22 12.57 35.60 13.79 33.31 14,89 31.42 22 
23 10.96 42.02 12.52 38.48 13.33 36.84 14.58 34.51 15,72 32.59 23 
24 11.65 43.33 13.25 39.74 14.09 38.08 15.38 35.71 16.55 33.75 24 

25 12.34 44.64 14.00 41.00 14.85 39.31 16.18 36.90 17.38 34.92 25 
26 13.03 45.94 14.74 42.25 15.62 40.53 16.98 38.10 18.22 36.08 26 
27 13.73 47.23 15.49 43.50 16.40 41.76 17.79 39.28 19.06 37.23 27 
28 14.44 48.52 16.24 44.74 17.17 42.98 18.61 40.47 19.90 38.39 28 
29 15.15 49.80 17.00 45.98 17.96 44.19 19.42 41.65 20.75 39.54 29 

30 15.87 51.08 17.77 47.21 18.74 45.40 20.24 42.83 21.59 40.69 30 
35 19.52 57.42 21.64 53.32 22.72 51.41 24.38 48.68 25.87 46.40 35 
40 23.26 63.66 25.59 59.36 26.77 57.35 28.58 54.47 30.20 52.07 40 
45 27.08 69.83 29.60 65.34 30.88 63.23 32.82 60.21 34.56 57.69 45 
50 39.96 75.94 33.66 71.27 35.03 69.07 37.11 65.92 38.96 63.29 50 

If r is the observed frequency or count and IVA, ms are the lower and upper confidence limits, respectively, for its expectation m 
then 

Pr\mA < m < WB] < I — 2a. 

Reprinted with permission. Copyright © by Biometrika Trustees. 
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5-3    THE 2X2 CONTINGENCY TABLE WITH EMPHASIS ON COMPARING TWO 
BINOMIAL POPULATIONS 

The 2X2 contingency table probably represents the most important and usual type of statistical analysis 
of enumerative data with which the Army analyst will likely be confronted. Therefore, it is necessary to 
discuss 2X2 tables and some pertinent background in some depth. First, we will depict the 2x2 table and 
discuss some of the possible arrangements of it, and then we will proceed to indicate clearly the different 
methods of analysis that will be required. Moreover, we will give a fairly complete account of the par- 
ticular type of analysis that covers the comparison of two binomial populations since this area appears to 
be of prime interest in applications for the Army analyst or statistician. 

5-3.1    THE GENERAL 2X2 CONTINGENCY TABLE 

As a basis for preliminary discussion, the general 2X2 contingency table may be put in the form of 
Table 5-2. 

TABLE 5-2 : 

THE GENERAL 2X2TABLE 

Number Defectives Number N on defectives      Total 
Process A a c m 

Process B b d n 

Total r s N 

In Table 5-2 we have used letters without subscripts for convenience, and the relations among them are as 
follows. For Process A there are m items that have been tested or observed, of which the number a of 
them are classified as "defectives" (or sometimes "successes") and c of them are branded as being 
"nondefective"; thus a + c = m.\n& like manner, for Process B, we have b defectives and d nondefectives 
in a total of n items, observations, etc. The total number of items considered in the experiment is N = m 
+ n, whereas the total number of defectives found \s r = a + b, and the total number of nondefectives is s 
= c + d. Also we have r + s = N. Our prime interest in this experiment is to compare Process A with 
Process B to determine whether any difference really exists or especially to try to judge whether A is 
superior or inferior to B. 

The difficulty with such a simpleminded test or experiment is that so far some of the more important 
considerations, or points, have not appeared! For example, just how were the number of items, m and n, 
for the original observations selected? Do, for example, m and n represent random samples from larger 
categories or different binomial populations? Is the total of A^ all that interests one and not a larger uni- 
verse from which A'^ items were possibly drawn? Are m, n, r, and s all "fixed" so that one is only interested 
in whether the random division into the observed numbers of defectives and nondefectives—or a, b, c,and 
d—can be judged to represent independence or equality of Processes A and B instead of a low-chance re- 
sult? Thus it can be seen that it becomes quite important to know the basic physical reasons the experi- 
ment was conducted, especially the drawing of items for test, and just what is expected to be learned from 
the experiment. 

Although until about 1947 many statisticians treated 2X2 tables very much alike and mostly used the 
same test of significance, Barnard (Ref. 5) and Pearson (Ref. 6) began to clear up much of the confusion 
surrounding contingency tables and brought very striking differences in experimental procedures and 
analyses of 2X2 tables into sharp focus. They pointed out that one must be careful to distinguish some 
three different sampling methods of obtaining 2X2 tables and proceed to analyze such contingency tables 
accordingly. To begin with, one could be interested only in the totality of N items, which have been 
divided into m and n items for test to determine whether Processes A and B are "equivalent" or "inde- 
pendent" or produce an equal percentage of defectives. Thus in this case we would expect that very nearly 
a/m = b/n = r/N except for some very random deviations. Barnard (Ref. 5) calls this the "independence" 
trials experiment, and Pearson (Ref. 6) refers to this case as his "Problem I". No assumption is made con- 
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cerning how the N individuals were selected, perhaps from a larger universe, and it might be said that one 
is observing either the presence or absence of a reaction. The first treatment is applied to m items and the 
second to n items, so that as a result a/m and b/n show reaction to the stimulus applied. This case is also 
commonly referred to as the "Fisher Exact Test" of 2x2 comparative trials in the statistical literature. 
The marginal totals m, n, r, and 5 may all be regarded as fixed, and, since the proportion r/N is known, 
can one regard the ratios a/m and b/n as being reasonable, in which case there would be no significant 
differences between Processes A and B? 

A second case, and often the one of most importance to the Army analyst, occurs when the m items 
from Process A have been drawn at random from a large binomial population and n items for Process B 
have been taken similarly from a second binomial parent. This situation is labeled by Barnard as the 
"CSM" test* and by Pearson as his "Problem 11", in which one is testing whether the proportion of indi- 
viduals bearing some character—the percent of defectives—is the same in two different populations. It is, 
however, the well-known problem of comparing the true/j's of two different binomial populations to de- 
termine whether p\ for the first parent is equal to pi for the second. In the very limited statistical test of 
significance, we would make a comparison of whether a/m and b/n are sufficiently equal and would reject 
the null hypothesis of no difference if our statistical test gives a result well into the tails of the pertinent 
probability distribution used for final judgment. 

Finally, there is the third or more general type of 2X2 table in which the random process involves tak- 
ing A^ items or individuals from a large population, and each of the A'^ individuals must fall into one or the 
other of the four cells, or categories, a, b, c, and d. A repetition of drawing another total sample of A^ 
individuals would lead to a different set of random numbers falling into cells a, b, c, and d, and also the 
marginal totals AW, n, r, and s would change as well! Pearson (Ref. 6) calls this case his "Problem III", and 
it actually results in the multinomial distribution as one might easily surmise.** 

Although some readers may have difficulty understanding the sharp distinctions Barnard (Ref. 5) and 
Pearson (Ref. 6) attempt to make, they also may become a bit more confused when it is known that for 
rather large samples a normal approximation may give sufficiently good results in all three cases! Never- 
theless, this is a useful development indeed because the more exact computations become so unwieldy that 
suitably accurate approximations are welcome and most often must be made. Hopefully, we will be able 
to clear up some of the difficulties by means of selected examples. 

Next we will consider each of the three different problems, one at a time. 

5-3.2    THE FISHER EXACT TEST 

As we have outlined for the Fisher "exact" test of "independence", the table total N and the row and 
column totals may be regarded as being "fixed", and our test of significance should be aimed at judging 
whether the cell frequencies in the body of the table are reasonable with respect to the row totals, column 
totals, and table total A', i.e., the inferences therefrom. 

It is well-known from combinational theory and elementary probability considerations that the chance 
of the result depicted in Table 5-2 is 

m\n\r\s\ 
N\a\b\c\d\ 

(5-5) 

which (Ref 5) may be seen by considering that the contents of the r receptacles marked "defective" form 
a sample of r from an urn containing m balls marked "Process A" and n balls marked "Process B", the 
sampling being done without replacement. Hence the probability from Eq. 5-5 added to those of all re- 
sults less likely than that obtained will form the basis of the Fisher exact test. It can be easily seen, how- 
ever, that many computations as represented by Eq. 5-5 can result in much drudgery; thus it becomes 
most desirable to use an approximation for calculating chances. 

* Barnard uses CSM in referring to a rather rigorous mathematical ordering of the sample space; the letters mean "convexity, 
symmetry, and the maximum condition". 

**We will refer to this case as the "Double Dichotomy". 
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Pearson (Ref. 6) points out that the mean value of a in random drawings will be 

Mean a = a = rm/N (5-6) 

and that the variance of fl is 

Var(a) = al = mnrs/[N\N - 1)]. (5-7) 

One then uses the normal probability tables and Yates' correction for continuity to determine whether the 
observed result is significant statistically.* This means that the normal probability tables would be entered 
with 

z = {a - 0.5 - a)/Oa = (a-0.5-a)/ [mnrs/N^N- l)]'/^iffl>a (5-8) 

to find the tail area above this observed z, or for the lower tail area use 

z = {a+ 0.5-a)/Oa = {a + 0.5 - a)l [mnrs/N\N-\)f^^ if a <a (5-9) 

as the standardized deviate of entry. 
Since contingency table forms, such as Eq. 5-6 or even Eq. 5-5, may be linearized by taking logarithms, 

much attention has been paid in recent years to "loglinear" models of analysis. See, for example. Section 
5-5 on information theory and Section 5-9 of Ref. 7. Also, see Ref. 8. However, for this particular chapter 
of the handbook, we thought it desirable and had some preference for adhering to analyses of Ihe original 
observations for the training of Army statisticians since one would not always use loglinear analyses to 
the exclusion of the other methods of analysis. In fact, it is very often true that the different methods of 
analysis give strikingly similar results. Of course, it is also true that with the advent of modern computers 
and scientific pocket calculators, the matter of transformations to almost any scale of analysis presents no 
special difficulties. 

As a final comment concerning the loglinear models, we quote from the "Introduction" of Fienberg's 
book (Ref. 7): "The models used throughout this book rely upon a particular approach to the definition 
of interaction between or among variables in multidimensional contingency tables, based on cross- 
product ratios of expected cell values. As a result, the models are linear in the logarithms of the expected 
value scale; hence the label loglinear models.". In connection with the loglinear models and the analysis of 
cross-classified data falling within the framework of multivariate analyses, it also helps to make a distinc- 
tion between "response variables", or variables that are free to vary in response to controlled conditions, 
and "explanatory variables", or variables that are regarded as fixed, either because of the experimentation 
or because the context of the data suggests they play a determining or causal role. 

We continue with the normal approximation, its accuracy, and an example. 
Pearson (Ref. 6) discusses the accuracy of the normal approximation for several possible sample sizes of 

practical interest. Also in some particular cases, one may desire to calculate the Fisher exact probabili- 
ties—especially perhaps for low cell numbers—rather than resort to the normal approximation. Indeed, 
over the years many authorities on statistical methods have advocated that the cell frequencies should be 
perhaps at least four or five for suitably accurate results from the normal approximation, and sample sizes 
m and n should be nearly equal. 

Instead of the normal approximation there is also the equivalent chi-square approximation. If one 
squares Eq. 5-8, it can be shown that the result with continuity correction is 

^2{\) = z-= -^ ^ '—^  (5-10) 

*W. G. Cochran has suggested that instead of Yates' correction to "Calculate x^ by the usual equation. Find the next lowest 
possible value of x^ to the one to be tested and use the tabular probability for a value of -^- midway between the two.". 

**The normal method of calculating x^ is to take each of the four cell numbers—a, b, c, d—subtract its expected value, square 
each such difference, then divide by the expected value, and sum the resulting numbers. 
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and if Yates' continuity correction is not used, chi-square is given as 

X^ = {ad-bc)^N/(mnrs}.* (5-11) 

It should be noted that there is only a single degree of freedom (df) for chi-square. 
Perhaps an example of the Fisher exact test would amplify the situation. 

Example 5-1: 
A class conducted in tank gunnery at Fort Knox had 40 students. The purpose of the class was to teach 

the students to become expert crew members of the new main battle tank. The instructor also was given 
the task of selecting the best, or more proficient, gunners for future assignment. The overall program of 
instruction and training involved not only class study but also actual firing experience in prototype tanks. 
The instructor noted from student records that 20 of the soldiers had engineering degrees and the others 
had nonengineering experience. In view of this, it seemed without doubt that the engineers would make 
the best gunners. Hence the instructor considered that the present class would provide a good "experi- 
ment" to test such a hypothesis, and he proceeded to do so. After the complete program of instruction 
and tank training in the field, nine of the engineers qualified as tank gunners but only six of the non- 
engineers qualified. Is there sufficient evidence from such a test to conclude that only the engineers should 
be tank gunners? 

We have that a = 9, b = 6, c = \l,d = \4, m = 20, n = 20, r = \5, s = 25, and A^ = 40. From Eq. 5-6 
we find that a = 7.5 , and from Eq. 5-7 we calculate that Oa = 1.55. Then, by using Eq. 5-8 with the Yates 
continuity correction to include the observed a = 9, we find that the normal deviate z = 0.65, which 
corresponds with an upper tail probability of 0.258** for the normal approximation. Thus assuming that 
we were conducting the significance test at the 5% level, we would have to conclude that the evidence is 
not sufficient to say that only engineers make good tank gunners. (We note also in this connection that 
only 9 of 20 engineers could make the grade.) 

Finally, for the Fisher exact test we mention that controversy over the Yates continuity correction con- 
tinues. Pearson (Ref. 6), on the basis of his many calculations, appears to take the position that the con- 
tinuity correcfion is worthwhile for the Fisher exact 2X2 contingency table case although it is very doubt- 
ful for comparing binomial populations—the next case discussed. Over the years, many other investiga- 
tors have tackled the problem of the continuity correction and also have concluded that the Yates cor- 
rection may well be needed for small frequencies for the Fisher model. Current evidence, therefore, seems 
to support Yates' continuity correction. The real concern, however, has to do with just how accurately the 
tail area probabilities have to be determined, including some tie-in with practice, since it may not be too 
important to distinguish between a probability of 0.05 and 0.07, for example. 

5-3.3    THE COMPARISON OF TWO BINOMIAL POPULATIONS 
As nicntioned earlier, the problem of judging whether two binomial populations have the same 

parameter/? based on small samples selected at random from them probably is one of the more important 
and frequent activities with which the Army analyst will be concerned. Moreover, there is no really justi- 
fiable reason for embedding or hiding this problem in a contingency table; it is important in its own right! 
Here one selects a sample of w at random from one binomial-type population and also a random sample 
of size n from a second binomial population and then conducts a significance test to judge whether/>i = 
P2 = p, say, where the />'s are the true proportions of failures, successes, etc. Many times some product is 
in service for which the proportion for such a "lot" or population is already fairly well-known; this is 
treated as a "standard", "control", or best available product. As an example, the best available lot of de- 
lay-type antitank fuzes may contain 5% duds. Sometimes this type of lot may be called the "control" 
lot—a term used in many fields of application—and the true p is designated as p^. Similarly, once the 
product is improved (or thought to be improved), the new product to be tested (perhaps for replacing the 

*The normal method of calculating x- is to take each of the four cell numbers--a, b, c, d—subtract its expected value, square 
each such difference, then divide by the expected value, and sum the resulting numbers. 

** Pearson (Ref. 6) gives the exact probability for these numbers as 0.2572; therefore, the normal approximation is excellent in- 
deed here. Such cannot be expected for smaller sample sizes or for a very small or very large number of occurrences, however. 
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"standard" lot), is often referred to as the "test" or "treatment" lot with its proportion of defects, suc- 
cesses, etc., designated as pt. Thus it is more descriptive to use pc instead of;?: and p, instead of/)2 in 
practical applications. 

For the 2X2 contingency table of Table 5-2, we note that for the comparative binomial case m, «, and 
N are fixed as before but that the r and s are now random variables, as compared to the Fisher exact test 
of par. 5-3.2. Thus rather than analyzing the data using all the letters of Table 5-2, we will focus our at- 
tention on comparing the sample proportions a/m and b/n, which estimate the true/j's. In applying equa- 
tions, however, it sometimes will be convenient to use the marginals of the table also, especially for com- 
parative purposes with other equations as in par. 5-3.2, for example. 

Since we are now deahng with binomial populations, the reader may see that the likelihood of occur- 
rence of the two observed sample results is given by 

[/JELVUI- 
\a\c\/ 

p^y niyUi-PiY (5-12) 

and under the null hypothesis that the two proportions are equal, i.e., p\ = pi = p, say, this probability 
becomes 

alblcld] 
m}nLj\ p\\ -p)\ (5-13) 

One may note that Eq. 5-13 differs from the corresponding likelihood for the Fisher exact test by the 
factor 

A^! 

r\s\ 
PW-PY. (5-14) 

The so-called classical method of testing the null hypothesis that the binomial /j's are equal involves 
taking the estimate p of p to be 

p = {a + b) /{m + n) = r/N (5-15) 

and then using the standard deviation Sd of the difference of the two sample proportions, a/m and b/n, 
given by , 

Sd=\/ {rlN){\ -r/N)N'\ljm+ l/«) (5-16) 

so that the actual significance test used is the ratio 

difference I Sd = ia/m- bln)/^J{r/N) (1 - rlN)N~' (1/w + l/n) = Z2, say * 

= {a — rmj N)l\Jmnrsl N^. (5-17) 

We note (leaving out the Yates continuity correction), but with some surprise, that Eq. 5-17 is the same as 
Eqs. 5-8 or 5-9 except that the A^^ of Eq. 5-17 is replaced by the nearly equal factor N'- (A^-1), which is lit- 
tle different except for small sample sizes! Hence, for even moderate sample size, there is really no differ- 
ence in the two tests that hypothesize equal pW However, it is interesting to liken our procedure to the 
use of Student's / test for comparing two population means in par. 4-7, but especially to the Behrens- 
Fisher problem of par. 4-7.3.2 for unequal sigmas for the case of continuous variates. Instead of pooling 
(adding) the numbers of failures or successes from both samples, for example, we might keep them 
separate and estimate the variances of the population proportions separately. Thus we have 

^1 = a/m (5-18) 

* Due to references to the literature, we define Eq. 5-17 as the quantity z:, and for comparative purposes zi is defined next. 
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and 

CTp, = \J{alm) (l—a/ni)lm (5-19) 

and an obviously similar quantity for the mean and standard deviation of the estimate b/n of the param- 
eter p2. Furthermore, we could, as in the Behrens-Fisher problem, and especially granting leeway for the 
possibility that the standard errors of the proportions are unequal, formulate our significance test as the 
normal approximation 

zi=ialm-bln)l[{alm){l-a/m)lm + {bln)il-bln)ln]''^ (5-20) 

as compared to that of Eq. 5-17, which we have already referred to as zi. Thus we have competition con- 
cerning the better choice for the case of unequal binomial population sigmas between z\ or Eq. 5-20 as 
compared to zi or Eq. 5-17. This, in fact, is a problem that has recently broken into the statistical litera- 
ture. Robbins (Ref. 9) points out that when m = n, then for equal sample sizes 

l^i|^l^2|* (5-21) 

and asks the important question concerning just which of the two procedures has the better power against 
possible alternatives to the null hypothesis of equal p's. (It is understood in this connection that the 
normal approximation calls for about equal p's and that the sample sizes m and n be sufficiently large. Of 
course, the p's are "about equal" otherwise a statistical test would not be needed, and the sample sizes 
should be ample for the approximations to hold.) It might be said that there is some advantage in equal 
sample sizes for then zi tends to be larger than zj and hence has greater power in the critical region, i.e., a 
value of z that goes beyond the value 1.96, or the upper 5% point of the standardized normal distribution. 

About the time of the Robbins letter to the editor, Eberhardt and Fligner (Ref. 10) had also studied the 
same question raised by Robbins (Ref. 9) and had arrived at some definite conclusions about the prob- 
lem. They pointed out that Zi is in fact more powerful when equal sample sizes are used but that either 
procedure can be more powerful when sample sizes are unequal. Eberhardt and Fligner (Ref. 10) note 
also that the test using ZT is practically equivalent to the chi-square test of Eq. 5-10 or Eq. 5-11 and that 
Goodman (Ref. II) had recommended z^ as a competitor to the chi-square test. In addition, if the quan- 
tity (/>, - P2) were subtracted from the numerator of Eq. 5-20 and the denominator were unchanged, then 
this sample statistic could be used to advantage to test the hypothesis that (p, - P2) equals some value 
other than zero. Finally, Lehman (Ref. 12) has shown that, for small samples, the appropriate solution for 
testing equality of the two binomial/j's with a known conditional significance level is in fact the Fisher ex- 
act test. Eberhardt and Fligner (Ref. 10) summarize their findings by saying that the "large-sample" com- 
parison favors the test based on z, not on z, although for small samples there are some contingencies, and 
we quote: "It was found that for smaller samples the exact size of the test based on z, can be much larger 
than the nominal level, although this is in part compensated for by a corresponding increase in power. 
For example, when the nominal level is 0.05, the exact size was found to be 0.08075 when m - n = 20 and 
0.08479 when w = 40 and n = 20. Thus, the use of z, may not be advisable for these smaller sample sizes. 
However, for the larger sample sizes considered, the exact probabilities tabulated lend some credence to 
the large-sample comparison.". 

Conover (Ref. 13) reiterates that when one is interested in a confidence interval on the true unknown 
(/7i — P2), there is no justification for a pooled variance; therefore, z\ is preferred because it has more 
power when m = n, but this is the only case for such a result. For all cases of unequal sample sizes, there 
will be some values of a and b for which the absolute values of the z's will cross each other in size. Con- 
over (Ref 13) gives an algebraic description of the affected regions. He concludes, "Thus, the choice be- 
tween zi and Z2 for hypothesis testing is inconclusive. Since z\ is the obvious choice when forming confi- 
dence intervals or when testing p\ = p2 + h for some specified h 9^ 0, perhaps z\ should be selected for the 

* Equality occurs only when a = b. 
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case h = 0 also.". Presently available research, therefore, still leaves the problem somewhat open, and it 
seems clear that the practicing analyst might lean toward the use of zi, which treats the "Behrens-Fisher" 
type of occurrence. At least, it seems to be more general and "robust". 

There are some functions of the unknown parameters p\ and p2 about which the practicing statistician 
may have some special interest in establishing confidence limits. These include the difference A, the ratio 
R, and the odds ratio \p of p\ and pi, which are 

A = pi-p2=p,—pc (5-22) 

R=Pilp2=PtlPc (5-23) 

^"'^ ^=Pii\-p2)/[p2il-p,)] 
= P'ii-Pc)/[Pcil-pt)] (5-24) 

where the last quantity is well-known as Fisher's odds ratio. The choice of A, R, or \p often is somewhat a 
matter of personal taste although in many applications the proper choice of one over the other might be 
clear. 

Thomas and Gart (Ref. 14) have published a table of exact confidence limits for the difference, the 
ratio, and the odds ratio of the unknown p\ and pi- The Thomas and Gart (Ref. 14) tables are for the 95% 
confidence limits and are based on the conditional distribution since Fisher has argued that "the marginal 
frequencies by themselves supply no information on the point at issue" but that the information they do 
supply is "wholly ancillary". The relevant conditional distribution used by Thomas and Gart is. given as 
their Eq. 2.1 in Ref. 14. Their 95% confidence limits table is reproduced here as Table 5-3. 

Table 5-3 is for equal sample sizes, m = n, only, and Lehman (Ref 12) has pointed out that for this 
case the best power is obtained for testing the hypothesis that the odds ratio is unity. 

To use the table, one calculates a/m and b/n and then labels the smaller of the two ratios as p^ and the 
larger one as p, ; these ratios are used to enter Table 5-3. The sample sizes are for only m = n = 20 (20) 
100, and the P values listed are the one-tail probabilities for the Fisher exact test. Then the lower and up- 
per confidence limits AL and Ay, respectively, for the difference of the two p's; the lower and upper 95% 
confidence limit RL and Ru, respectively, for the ratio; and then finally lower and upper confidence limits 
of the odds ratio ip^ and i/zc , respectively, are given. 

Some questions have been raised concerning whether Table 5-3 gives exact confidence bounds, 
especially for the difference and the ratio of the two population p's. This point is explained in the corri- 
genda to the paper (Ref. 14), and we quote Thomas and Gart. 

"The limits for the difference. A, and the ratio, R, are not exact in the sense that for some values of pc 
and p, the intervals may cover the true values of A and R with probabilities, in the conditional sample 
space, less than the nominal confidence coefficient, 1 - a. Apparently, this follows from the fact that the 
marginal total, a + b = r, is not an appropriate ancillary statistic to condition on when making inferences 
on A and R. However, for values of p< andp, for which n(pc + p,) ^ r, additional calculations show that 
the coverage probabilities for A and R are similar to those for xp. The limits for xp have the coverage 
probabilities >(1 — a) for M pc andp, in this conditional sample space. Similarly, all three pairs of limits 
include the null values (xp = R = 1, A = 0, for all p^ and p, ) whenever the exact p > a/2 and exclude 
them whenever the exact P< all." 

In summary, since some further investigation may be called for and exact confidence limits for all cases 
have not appeared in print, the Thomas and Gart table of Ref 14 will serve as a valuable aid until re- 
placed with a more exact one. Recently, the paper of Santner and Snell (Ref 15) appeared that proposed 
three methods of constructing exact confidence bounds. One of the methods should be selected and tables 
computed to compare with and perhaps replace the Thomas and Gart table of Ref 14. 

With this account of confidence intervals for the various functions of parameters of interest in applica- 
tions, we find it desirable to make a few remarks about binomial data tests, especially for small sample 
sizes and about some available tables the Army analyst or statistician might use. Table A-26 of Ref 2 
gives sample sizes required for comparing a proportion with a standard or control proportion when the 
sign of the difference between the two is important. 
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TABLE 5-3 
EXACT P VALUES AND EXACT 95% CONFIDENCE LIMITS FOR DIFFERENCES IN 

PROPORTIONS IN PERCENT (lOOA), RATIOS OF PROPORTIONS R, AND ODDS RATIOS ijj 
(Ref. 14) 

Smeller Larger m P Smaller Larger m P 
100(1, 1000, - n value      ( roOA^ lOOAo ) (     Ro «»   ; (  fc fc     ;   1000, 1000, = n value rooAi, rooAi,; <     R„ fl»  ; (      fc fc   ; 

y 20 —        ( —     .     —   ) (- .     -) (- ■     -) 10 40 20 0.03        ( -1.52,   47.12) (0.94, 33.73) (0.92, 64.62) 
1* 40 —        ( —     .     —  ) (- .     -) (- .     -) 40 <.005      ( 9.06.   43.70) (1.44, 14.87) (1.63, 27.09) 
1' 60 0.75        ( -3.25,     3.25) (0.01, 77.22) (0.01, 79.81) 60 <.0O5      ( 13.54,   41.67) (1.74, 11.01) (2.09, 19.48) 
V 80 0.75        ( -2.44,     2.44) (0.01, 77.54) (0.01, 79.47) 80 <.005      ( 16.10,   40.33) (1.95, 9.35) (2.42, 16.22) 
1* 100 0.75        ( -1.95,     1.95) (0.01, 77.74) (0.01, 79.28) 100 <.0O5      ( 17.79,   39.37) (2-10, 8.41) (2.67, 14.39) 

2* 20 —         ( -      ,     -  ) (- .      -) (- .      -)   10 50 20 0.01-     ( 7.19,   57.07) (1.27, 39.90) (1.41, 94.80) 
2' 40 0.50        ( -2.37,100.00) (0.03, "    ) (0.03, «    ) 40 <.005      ( 18.49,   53.65) (1.89, 17.89) (2.47, 40.13) 
2" 60 0.75        ( -3.25,     3.25) (0.01, 77.22) (0.01, 79.81) 60 <.005      ( 23.17,   51.64) (2.26. 13.35) (3.15, 28.96) 
2* 80 0.50        ( -3.03,     3.69) (0.11, 116.52) (0.10, 120.98) 80 <.005      ( 25.83,   50.31) (2.51. 11.38) (3.65, 24.15) 
2 100 0.50        { -2.43,     2.95) (0.11, 116.82) (0.10, 120.37) 100 <.005      I 27.58,   49.35) (2.70. 10.27) (4.03, 21.45) 

5 20 0.50        ( -4.74, 100.00) (0.03, » ) (0.03, »)  20 20 20 0.65        ( -25.77,   25.77) (0.22, 4.62) (0.16, 6.40) 
40 0.25        ( -3.37, 100.00) (0.20, =0    ) (0.19, CO     ) 40 0.61         ( -18.68,   18.68) (0.36, 2.75) (0.29, 3.48) 
60 0.31         ( -4.01,     6.58) (0.25, 154.82) (0.24, 165.73) 60 0.59        1 -15.26,   15.26) (0.45, 2.23) (0.37, 2.71) 
80 0.18        1 -2.63,     6.19) (0.41, 194.44) (0.40, 207.27) 80 0.58        ( -13.19,   13.19) (0.50, 1.98) (0.43, 2.34) 

100 0.11         ( -1.63,     5.95) (0.57, 234.05) (0.56, 248.86) 100 0.57        ( -11.77,   11.77) (0.55, 1.83) (0.47, 2.12) 

10 20 0.24        ( -6.62, 100.00) (0.20, oo    ) (0.19, ' )   20 25 20 0.50 -23.35,   30.87) (0.32, 5.37) (0.23, 8.04) 
40 0.06 -1.80,100.00) (0.69, » ) (0.68, oo   ) 

40 0.39 -15.10,   23.87) (0.50, 3.26) (0.41, 4.45) 
60 0.06        ( -1.58,   11.58) (0.76, 271.04) (0.75, 306.56) 60 0.33 -11.30,   20.48) (0.60, 2.67) (0.52, 3.48) 
80 0.02        ( 0.59,   11.19) (1.11, 350.16) (1.12, 394.28) 80 0.29 -9.02,   18.41) (0.67, 2.38) (0.59, 3.03) 

100 <.005      ( 2.08,   10.95) (1.47, 429.26) (1.50, 482.05) 100 0.25 -7.47,   16.99) (0.72, 2.21) (0.65, 2.76) 

25 20 0.02        ( 0.26, 100.00) (1.02, 00    ) (1.02, - )   20 30 20 0.36 -20.27,   35.91) (0.42, 6.10) (0.32, 9.94) 
40 <.005      ( 10.23, 100.00) (2.38, 00     ) (2.68, 00    ) 

40 0.22 -11.14,   28.98) (0.64, 3.76) (0.55, 5.56) 
60 <.0O5 11.15,   26.58) (2.44, 617.89) (2.77, 841.72) 60 0.15 -7.04,   25.61) (0.75, 3.10) (0.69, 4.38) 
80 <.005 14.15,   26.19) (3.34, 815.39) (3.93. 1104.8 ) 80 0.10 -4.61,   23.55) (0.83, 2.78) (0.78, 3.82) 

100 <.005 16.07,   25.95) (4.24, 1013.1  ) (5.10, 1368.2 ) 100 0.07 -2.97,   22.13) (0.89, 2.59) (0.85, 3.48) 

5 20 0.76 -9.74,     9.74) (0.01, 74.53) (0.01. 82.58)   20 40 20 0.15 (-12.83,   45.85) (0.65, 7.48) (0.54, 14.76) 
40 0.69 -8.59,     8.59) (0.08, 13.21) (0.07. 14.46) 40 0.04 -2.49,   39.03) (0.92, 4.72) (0.89, 8.37) 
60 0.66 -7.56,     7.56) (0.14, 7.19) (0.13, 7.79) 60 0.01 + 2.01,   35.71) (1.07, 3.94) (1.10, 6.64) 
80 0.64 -6.77,     6.77) (0.19, 5.19) (0.18, 5.58) 80 <.0O5 4.64,   33.66) (1.17, 3.56) (1.25, 5.81) 

100 0.63 -6.17,     6.17) (0.24, 4.22) (0.22, 4.50) 100 <.0O5 (     6.40,   32.25) (1.24, 3.32) (1.36, 5.31) 
10 20 0.50 -11.94,   14.73) (0.11, 111.66) (0.10, 130.99)   20 50 20 0.05- (   -4.32,   55.59) (0.88, 8.71) (0.83, 21.73) 

40 0.34 -7.98,   13.64) (0.31, 21.10) (0.28, 24.46) 40 <.005 (     6.79,   48.89) (1.21, 5.63) (1.35, 12.42) 
60 0.25 -5.69,   12.67) (0.45, 11.87) (0.42, 13.61) 60 <.005 ;   11.53,   45.62) (1.39, 4.74) (1.67, 9.87) 
80 0.18 -4.23,   11.92) (0.56, 8.75) (0.54, 9.96) 80 <.005 (   14.27,   43.61) (1.51, 4.30) (1.89, 8.65) 

100 0.14 -3.21,   11.35) (0.65, 7.21) (0.63, 8.16) 100 <.005 (   16.10,   42.21) (1.60, 4.04) (2.05, 7.92) 
5 25 20 

40 
60 
80 

100 

0.09 
0.01 + 
<.005 
<.005 
<.005 

-6.67,   29.73) 
2.22,   28.68) 
6.12,   27.75) 
8.36,   27.04) 
9.84,   26.49) 

(0.64, 
(1.16, 
(1.51, 
(1.77, 
(1.98, 

221.18) 
44.40) 
25.68) 
19.27) 
16.08) 

(0.59, 
(1.19, 
(1.63, 
(1.96, 
(2.22, 

314.93) 
62.43) 
35.70) 
26.56) 
22.02) 

25 20 
40 
60 
80 

100 

0.64 
0.60 
0.58 
0.57 
0.56 

(-28.51,   28.51) 
(-20.36,   20.36) 
(-16.57,   16.57) 
(-14.29,   14.29) 
(-12.74,   12.74) 

(0.27, 
(0.42, 
(0.50, 
(0.56, 
(0.59, 

3.65) 
2.37) 
1.99) 
1.80) 
1.68) 

(0.19, 
(0.32, 
(0.40, 
(0.46, 
(0.50, 

5.37) 
3.12) 
2.49) 
2.18) 
2.00) 

5 30 20 0.05- -3.17,   34.73) (0.83, 256.87) (0.80, 393.83) 
30 20 0.50 (-25.47,   33.57) (0.37, 4.13) (0.26, 6.62) 

40 
60 
80 

100 

<.005 
<.005 
<.005 
<.005 

6.55,   33.68) 
10.69,   32.76) 
13.04,   32.05) 
14.59,   31.50) 

(1.46, 
(1.88, 
(2.19, 
(2.43, 

52.04) 
30.22) 
22.74) 
19.00) 

(1.58, 
(2.14, 
(2.56, 
(2.90, 

78.74) 
45.20) 
33.70) 
27.97) 

40 
60 
80 

100 

0.40 
0.34 
0.30 
0.26 

(-16.45,   25.51) 
(-12.36,   21.74) 
( -9.93,   19.47) 
( -8.28,   17.91) 

(0.54, 
(0.63, 
(0.69, 
(0.74, 

2.73) 
2.31) 
2.10) 
1.97) 

(0.43, 
(0.53, 
(0.61, 
(0,66, 

3.90) 
3.12) 
2.75) 
2.52) 

r 40 20 0.01- 4.89,   44.72) (1.24, 326.22) (1.32, 590.83) 
40 20 0.25 (-18.11,   43.48) (0.56. 5.04) (0.43, 9.83) 

40 
60 

<.0O5 
<.0O5 

15.71,   43.68) 
(   20.16,   42.76) 

(2.07, 
(2.62, 

67.04) 
39.17) 

(2.54, 
(3.41, 

119.64) 
69.02) 

40 
60 

0.12 
0.06 

( -7.87,   35.58) 
( -3.37,   31.86) 

(0.78, 
(0.90, 

3.42) 
2.92) 

(0.70, 
(0.86, 

5.87) 
4.73) 

80 <.005 22.65,   42.06) (3.03, 29.58) (4.06. 51.61) 
80 0.03 ( -0.73,   29.61) (0.98, 2.67) (0.97, 4.17) 

100 <.005 24.28,   41.51) (3.34, 24.79) (4.59, 42.92) 
100 0.02 (     1.05,   28.06) (1.03, 2.52) (1.05, 3.84) 

10 10 20 0.70 (-17.05,   17.05) (0.08, 12.57) (0.07, 15.21)   25 60 20 0.10 ( -9.65,   53.11) (0.77, 5.85) (0.66. 14.50) 
40 0.64 (-13.34, ,13.34) (0.20, 5.01) (0.17, 5.81) 40 0.02 (     1.37,   45.39) (1.04, 4.07) (1.06, 8.70) 
60 0.62 (-11.17,   11.17) (0.28, 3.53) (0.25, 4.00) 60 <.005 (     6.11,   41.75) (1.18, 3.51) (1.30, 7.03) 
80 0.60 (  -9.76,     9.76) (0.34, 2.91) (0.31, 3.24) 80 <.005 (     8.87,   39.54) (1.27, 3.23) (1.46, 6.22) 

100 0.59 ( -8.76,     8.76) (0.39, 2.56) (0.35, 2.82) 100 <.005 (   10.72,   38.01) (1.33, 3.06) (1.58, 5.73) 

10 25 20 0.20 (-12.56,   32.14) (0.47, 23.49) (0.40, 34.86)   25 60 20 0.03 ( -0.45,   62.37) (0.99, 6.51) (0.98, 21.95) 
40 0.07 ( -4.01,   28.66) (0.79, 10.05) (0.76, 14.27) 40 <.005 (   11.06,   54.93) (1.30, 4.65) (1.58, 13.16) 
60 0.03 (  -0.16,   26.60) (0.99, 7.34) (0.99, 10.16) 60 <.005 (   15.95,   51.40) (1.46. 4.06) (1.93, 10.62) 
80 0.01 + (     2.10,   25.24) (1.13, 6.18) (1.16, 8.41) 80 <.005 (   18.77,   49.25) (1.57, 3.76) (2.18, 9.38) 

100 <.0O5 (     3.62,   24.27) (1.23, 5.52) (1.29, 7.43) 100 <.005 {   20.66,   47.77) (1.64, 3.57) (2.36, 8.63) 

10 30 20 0.12 ( -9.27,   37.14) (0.62, 27.00) (0.56, 43.33)   30 30 20 0.63 (-30.56,   30.56) (0.33, 3.08) (0.21, 4.79) 
40 0.02 (     0.14,   33.69) (1.01, 11.68) (1.01, 17.91) 40 0.60 (-21.63,   21.63) (0.47, 2.13) (0.34, 2.90) 
60 0.01- (     4.26,   31.65) (1.24, 8.58) (1.31, 12.81) 60 0.58 (-17.56,   17.56) (0.55, 1.83) (0.43, 2.35) 
80 <.005 (     6.65,   30.30) (1.40, 7.24) (1.52, 10.63) 80 0.57 (-15.13,   15.13) (0.60, 1.67) (0.48, 2.08) 

100 <.005 (     8.25,   29.32) (1.52, 6.49) (1.68, 9.41) 100 0.56 (-13.47,   13.47) (0.63. 1.58) (0.52, 1.92) 
' Values of p (0.01 and 0.02) wher 3 Up is not an integer are rounded to the closest integer (0, 1, or 2 
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TABLE 5-3 (cont'd) 

Smaller Larger m P Smaller Larger m P 
1000, loop, = n value      ( 100^^ 1006.^ ) (     Ru n„   ) (■      fe <!>„     ) loop. loop, = n value frooA^ rooi„; (     fl„ n^   ; (■      *u ♦„   ; 

30 40 20 0.37 -23.23, 40.45) (0.50, 3.74) (0.35, 7.11) 40 70 20 0.06 -5.60, 59.05) (0.90, 3.32) (0,80, 15.98) 
40 0.24 -13.09, 31.72) (0.68, 2.66) (0.56, 4.37) 40 0.01- 5.80, 50.94) (1.11, 2.72) (1.26, 9.83) 
60 0.17 -8.61, 27.70) (0.78, 2.31) (0.68, 3.56) 60 <.00S 10.67, 47.17) (1.21, 2.50) (1.54, 8.01) 
80 0.12 -5.97. 25.30) (0.84, 2.13) (0.77, 3.16) 80 <:.005 13.51, 44.89) (1.28, 2.38) (1.73, 7.11) 

100 0.09 -4.19, 23.65) (0.89, 2.02) (0.83, 2.92) 100 <.00S 15.40, 43.32) (1.33, 2.30) (1.87, 6.57) 

30 50 20 0.17 -14.79, 49.98) (0.69, 4.33) (0.54, 10.51) 40 80 20 0.01 + 4.90, 65.06) (1.09, 3.37) (1.23, 32.72) 
40 0.05+ -3.88, 41.50) (0.91, 3.16) (0.85, 6.49) 40 <.0O5 16.50, 58.53) (1.32, 2.90) (2.00, 18.74) 
60 0.02 0.84, 37.58) (1.02, 2.77) (1.04, 5.30) 60 <.005 21.37, 55.34) (1.43, 2.71) (2.48, 14.88) 
80 0.01- 3.61, 35.21) (1.09, 2.57) (1.16, 4.71) 80 <.005 24.18, 53.38) (1.50, 2.60) (2.81, 13.04) 

100 <.005 547, 33.60) (1.15, 2.45) (1.26, 4.35) 100 <.005 26.04, 52.01) (1.55, 2.53) (3.05, 11.93) 

30 60 20 0.06 -5.60, 59.05) (0.88, 4.82) (0.80, 15.98) 
9.83) 
8.01) 
7.11) 
6.57) 

40 0.01- 5.80, 50.94) (1.14, 3.61) (1.26, 
50 50 20 0.62 -33.88, 33.88) (0.49, 2.02) (0.24, 4.10) 

60 <.005 10.67, 47.17) (1.27, 3.20) (1.54, 
40 0.59 -23.70, 23.70) (0.62, 1.62) (0.38, 2.63) 

80 <.005 13.51, 44.89) (1.35, 2.99) (1.73, 
60 0.57 -19.18, 19.18) (0.68, 1.47) (0.46, 2.17) 

100 <.005 15.40, 43.32) (1.41, 2.86) (1.87, 
80 0.56 -16.50, 16.50) (0.72, 1.40) (0.51, 1.95) 

100 0.56 -14.69, 14.69) (0.74, 1.34) (0.55, 1.81) 
30 70 20 0.01 + 4.21, 67.34) (1.09, 5.12) (1;18. 26.26) 50 60 20 0.38 -24.62, 42.46) (0.63, 2.26) (0.36, 6.29) 

40 <.005 15.93, 59.87) (1.38, 3.98) (1.90, 15.87) 40 0.25 -14.01, 32.93) (0.77, 1.85) (0.57, 3.99) 
60 <.005 20.87, 56.35) (1.53, 3.58) (2.33, 12.83) 60 0.18 -9.35, 28.64) (0.84, 1.70) (0.68, 3.29) 
80 <.005 23.72, 54.21) (1.62, 3.37) (2.63, 11.34) 80 0.13 -6.61, 26.08) (0.89, 1.62) (0.77, 2.94) 

100 <.005 25.62, 52.73) (i.69. 3.23) (2.85, 10.44) 100 0.10 -4.76, 24.33) (0.92, 1.57) (0.83, 2.73) 

40 40 20 0.63 -33.09, 33.09) (0.41, 2.41) (0.24, 4.25) 50 70 20 0.17 -14.79, 49.98) (0.78, 2.43) (0.54, 10.51) 
40 0.59 -23.20, 23.20) (0.55, 1.82) (0.37, 2.69) 40 0.05+ -3.88, 41.50) (0.94, 2.06) (0.85, 6.49) 
60 0.57 -18.79, 18.79) (0.62, 1.61) (0.45, 2.21) 60 0.02 0.84, 37.58) (1.01, 1.91) (1.04, 5.30) 
80 0.56 -16.17, 16.17) (0.66, 1.51) (0.51, 1.98) 80 0.01- 3.61, 35.21) (1.06, 1.83) (1.16, 4.71) 

100 0.56 -14.40, 14.40) (0.70, 1.44) (0.55, 1.83) 100 <.005 5.47, 33.60) (1.10, 1.78) (1.26, 4.35) 

40 50 20 0.38 -24.82, 42.46) (0.57, 2.79) (0.36, 6.29) 50 80 20 0.05- -4.32, 55.59) (0.94, 2.49) (0.83, 21.73) 
40 0.25 -14.01, 32.93) (0.73, 2.15) (0.57, 3.99) 40 <.005 6.79, 48.89) (1.11, 2.21) (1.35, 12.42) 
60 0.18 -9.35, 28.64) (0.81, 1.93) (0.68, 3.29) 60 <.005 11.53, 45.62) (1.19, 2.08) (1.67, 9.87) 
80 p.13 -6.61, 26.08) (0.86, 1.82) (0.77, 2.94) 80 <.005 14.27, 43.61) (1.25, 2.01) (1.89, 8.65) 

100 0.10 -4.76, 24.33) (0.90, 1.74) (0.83, 2.73) 100 <.0O5 16.10, 42.21) (1.28, 1.96) (2.05, 7.92) 

40 60 20 0.17 -15.42, 51.23) (0.73, 3.10) (0.54, 9.61) 50 90 20 0.01- 7.19, 57.07) (1.11, 2.38) (1.41, 94.80) 
40 0.06 -4.33, 42.24) (0.92, 2.46) (0.84, 6.06) 40 <.005 18.49, 53.65) (1.30, 2.24) (2.47, 40.13) 
60 0.02 0.48, 38.14) (1.01, 2.23) (1.02, 4.99) 60 <.005 23.17, 51.64) (1.40, 2.17) (3.15, 28.96) 
80 0.01- 3.29, 35.68) (1.07, 2.11) (1.14, 4.45) 80 <.005 25.83, 50.31) (1.45, 2.12) (3.65, 24.15) 

100 <.005 5.17, 34.00) (1.11, 2.03) (1.23, 4.12) 100 <.005 27.58, 49.35) (1.49, 2.09) (4.03, 21.45) 

Reprinted with permission. Copyright © by the American Statistical Association. 

Table A-28 of Ref. 2 gives what is callecJ "minimum contrasts" for w = « = 1(1)20(10)100 
(50)200(100)500 corresponding to signficance levels of 5% an(j 1% for a two-sided test on proportions or 
for a one-sided test with half of these percentage points, i.e., 2.5% and 0.5%. By "minimum contrast" is 
meant the "least different" pair of observed failures, successes, etc., which is significant at the chosen sig- 
nificance level. A "more different" pair is significant also. For example, if Table A-28 indicates that the 
pair (1,7) is statistically significant, then so is the pair (1,8), etc.—hence the use of the term "minimum 
contrast". 

Often the Army analyst will have occasion to make a significance test for binomial proportions or for a 
2X2 table for small but unequal sample sizes. Here Table A-29 of Ref. 2 would be very valuable because 
it covers unequal m and n up to 20 and the 0.05, 0.025, 0.01, and 0.001 levels of probability or signifi- 
cance. Also the exact probabilities under the null hypothesis tested are listed in Table A-29 so that such 
information may be used as an aid to judgment. 

We will give two examples, one for small sample sizes and the other for moderate to "large" sample 
sizes—at least in practice. 

Example 5-2: 
In a test of 12 "standard" antitank rounds fired at 2000 m against an old tank, all 12 rounds hit the tar- 

get. Nine experimental antitank rounds were also fired at the same target, but only seven hit the old tank. 
Can it not be said that the experimental round is much inferior to the standard antiarmor round insofar 
as hit probability is concerned? 

5-17 
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Here we assume that both samples were drawn randomly from the two lots, and we identify that- 
w = 12, a - 12 (hits), n = 9 and b = 1 (hits). 

Note that we are dealing with rather small sample sizes in this problem so we should calculate exact 
chances or use a table. Because the use of Table A-29 of Ref. 2 is suggested here, we enter that table with 
(in their notation) «, = 12 (our m), «2 = 9 (our «), and a, = 12 (our a). Then for the one-sided 0.05 signifi- 
cance level we find that a statistically significant result for our b (their aj) would not occur until this 
number of hits was five or less. Therefore, from this limited test we cannot conclude that the experimental 
round is inferior in hit probability. 

As a matter of calculative interest, we might use Eq. 5-17 and find that from a normal probability table 
the observed chance or upper tail area is 0.17 with the continuity correction, indicating no significant dif- 
ference at the 5% level either. We note that Table A-29 of Ref. 2 shows an exact chance of 0.021 in the up- 
per tail area for 02 = our b = 5, the largest value at which significance would occur, but we observed b = 
1. Had we actually used ^ = 5 instead of 7 and the continuity correction, the normal approximation 
would have resulted in an upper tail area of 0.022, which shows very excellent agreement with the value of 
0.021 from Table A-29 of Ref. 2 and a closeness not expected! 

Example 5-3: 
Combat simulations, or computerized war games, are often played to represent a given "real" battle 

time of interest, and the losses on each side are counted to give an indication of the effectiveness of Blue 
versus Red. One of the major problems concerning future wars centers around always having the best 
available weapons, and for the infantry this turns out to be rather difficult indeed because major break- 
throughs for hand-held weapons are few. Nevertheless, Blue had developed a new rifle sight, a new type 
of cartridge, and best of all a light machine gun that would not "jump all over the place". To test the ef- 
fectiveness of his new weapons, the Blue Commander decided to conduct a computerized combat simula- 
tion of one of his companies with his new, improved weapon mix against the usual Red company- 
organized and equipped for such a battle. For the combat situation, the Blue Commander had some spe- 
cial interest in probable results from about 60 of his infantrymen with the newly developed weapons 
against 60 Red infantrymen in a close skirmish. For the close combat situation played in this connection, 
there were 18 Red infantrymen lost versus only 6 Blue infantrymen. Since, in the past. Blue and Red in- 
fantrymen in such a struggle seemed equally matched, can it be said now that Blue's new weapon mix 
would show clear superiority? Assume representativeness with future companies. 

For this problem we have 
m =n = 60, a = ]S, b = 6, c = 42, d = 54, /• = 24, 5 = 96, and A^ = 120. Also/;, =0.30 and/J. = 0.10 

so that we use p.   = 0.10, along with p,   = 0.30 to enter the Thomas-Gart Table 5-3. 
We note from Table 5-3 that the P value is only 0.01 and that the 95% confidence limits on the true dif- 

ferences in /j's, the ratio of/j's, and the odds ratio are, respectively, 

(Ai, Ac/) = (0.0426,0.3165) 

(/?£, i?c/)= (1.24, 8.58) 

(<A£,iA£/) = (1.31, 12.81). 

Moreover, it is noted that the 95% confidence limits do not include any of the null values of the 
parameters, i.e., zero for the difference in the two population/7's, or for the ordinary ratio, or for the odds 
ratio equal to unity. Hence we should very definitely conclude that Blue's new weapon mix is superior to 
Red's and that it would be expected to inflict 30% Red casualties as compared to only 10% for Blue. (The 
reader might use the normal approximation of Eq. 5-17 but with the continuity correction to check that 
the P value so obtained is about 0.006, which agrees with the tabled value of 0.01 ~. Alternatively, by not- 
ing there seems to be an improvement in Blue's weapons, i.e., 0.30 versus 0.10, and hence there is likeli- 
hood of different variances for the contrasts, it seems clear that Eq. 5-20 should be used.) 

Thomas and Gart (Ref. 14) also point out that their tables should be used for the planning of experi- 
ments. Thus already in possession of good evidence concerning the control proportion, some evidence 
about the improved process or treatment, and the chosen significance level of 95%, the tables may be 
5-18 
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scanned to determine the various P values arising from the use of different sample sizes. For instance, Ex- 
ample 5-3 contains evidence of a Red ability to kill only about 10% of Blue's engaged infantry while Blue, 
with his new weapon list, is able to kill probably 30% of the Reds. From Table 5-3, therefore, one sees a 
one-tailed P value of 0.12 for a sample of size 20; then a probability of only 0.02 for m = « = 40; a P = 
0.01 ~ for samples of 60 (as we just observed); and when the sample size exceeds 80, the one-tailed prob- 
ability is less than 0.005. Hence a sample size corresponding to 35 for the chosen significance level of 5% 
in this case might well be able to detect the indicated difference. Gail and Gart (Ref. 16) discuss the tradi- 
tional method of selecting the sample size for comparative binomial trials in their 1973 paper. Interested 
readers may make a comparison of the two methods. 

5-3.4    RECENT WORK ON COMPARING TWO BINOMIAL PERCENTAGES 
Procedures for comparing two binomial populations, i.e., the comparison of two proportions in 

2X2 contingency tables, are fraught with some basic difficulties. In fact, there are continuing argu- 
ments on which method of computation should be selected. The Fisher "exact" probabilities, 
which often have been used for the problem, have been criticized as a "randomization or permuta- 
tion" test only; the Type I errors or level of significance chosen cannot be guaranteed due to the 
discrete number of occurrences of "failures" or "successes"; and even though significance test cal- 
culations are often nearly the same, there is much difficulty in providing exact confidence bounds 
on the parameters, or functions of them. Moreover, there is the problem of the continuity cor- 
rection for the normal and chi-square approximations. To improve the accuracy and practical 
worth of statistical analyses, Garside (Ref. 17) has published some new continuity correction 
factors for the chi-square test. By this, we mean that the observed a, b, c, and d are replaced by 
a — Cfi , h + Cg , (■ + Cg , and d — Cg , respectively. For Yates' correction Cg = 0.5, but for Garside's 
correction Cg is a tabulated adjustment depending on m, n, and the significance level a. Boschloo 
(Ref. 18), in connection with an alternative approach for the smaller sample sizes, has proposed 
tables of "raised conditional levels of significance" that, if used in place of Fisher's exact test, are 
still conservative in making judgments but not as much as Fisher's. The Type I error in Fisher's 
exact test is always less than a, as originally calculated by Fisher; however, many statisticians 
argue—and perhaps rightly so—that the Type I error for any test should be as close as possible to 
a, the significance level chosen, and yet not exceed a. Thus although his complete tables have not 
yet been published, Boschloo's aim is to try to bring the Type I error rates of Fisher's test closer to 
the nominal level a. 

In 1976 Garside and Mack (Ref. 19) carried out some rather extensive calculations to determine 
error rates for the uncorrected chi-square approximation, Yates' corrected chi-square test. Gar- 
side's continuity corrections, Fisher's exact test, and the Boschloo modification of Fisher's test. 
These computations show that Boschloo's and Garside's error probabilities are very similar, and 
both are closer to a than either Fisher's or Yates' error rates. Also, as expected, the computations 
show that the uncorrected chi-square gives probabilities often exceeding the significance level a 
and that the excess may be appreciable for unequal m and n. Moreover, if a is very small, say 
0.001, the error rates may be as much as six times the nominal or expected value a for the uncor- 
rected chi-square test and hence very undesirable. 

Concerning randomization tests. Tocher (Ref. 20) proposed a randomization test—which is a 
modification of Fisher's test—that gives actual Type I error rates exactly equal to a whether none, 
one, some, or all of the marginal totals are fixed. However, too few users and statisticians really 
care to make a decision that may depend on the drawing of a random number over and above his 
observed data! Therefore, such an approach is unlikely to gain confidence for the 2x2 compara- 
tive binomial trials contingency tables. 

Our discussion so far seems to lead one to conclude that some problems remain concerning the 
small sample sizes for contingency tables and binomial comparisons. In fact, it is apparently this 
background of the problem that has led McDonald, Davis, and Milliken (Ref. 21) to propose a 
nonrandomized,  unconditional  test  for  comparing  two  binomial  populations.   Indeed,   McDonald, 
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Davis, and Milliken (Ref. 21) have recommended against the practice of using the following three 
tests in comparing binomial /s in the case of small samples: (1) the uniformly most powerful un- 
biased (UMPU) test of Lehman (Ref. 12) because it depends on randomization, (2) the usual, non- 
randomized analogue of the UMPU test, and (3) Fisher's test not only because of its conservative- 
ness but also because there is disagreement with Fisher's philosophy in this case. Thus McDonald, 
Davis, and Milliken (Ref. 21) find their position more in agreement with that of Barnard (Ref. 5) 
and Pearson (Ref. 6), and they propose a nonrandomized, unconditional test of the hypothesis 
Ho. p\ = pi, which is in the "spirit" of the Barnard-Pearson approach. The McDonald, Davis, and 
Milliken proposed test is primarily for small sample sizes, m = « < 15, and they give useful tables 
of their significance test procedure. It should be pointed out that there are some very desirable fea- 
tures of the McDonald, Davis, and Milliken tables; these are that the exact Type I errors are given 
and also that the boundaries for the one-sided 5% and 1% (and two-sided) aimed-at or nominal 
significance levels are included, which may be very helpful. 

In the course of their study, McDonald, Davis, and Milliken found that the usually non- 
randomized, conditional tests for comparing binomial ;j's for independent samples are very con- 
servative in the sense that the actual significance level attributable to an outcome is often one- 
fourth to one-half of the anticipated value. As is well-known, the actual size of the critical region 
depends on the unknown p for the null hypothesis, or in other words, a = J{p), so that by numeri- 
cal methods a least upper bound a* for a can be found, and the actual size of the test must be less 
than or equal to this least upper bound although the target level may be higher. In their con- 
struction of critical regions, McDonald, Davis, and Milliken select a target size, call it a , and 
then for the sum of the observed numbers a and b their critical region consists of those points in- 
side the critical region of the UMPU test. Once the points of such a critical region have been de- 
termined, McDonald, Davis, and Milliken assume the independence of a and b to resolve a func- 
tion f\(p\,p2) for the calculation of the size of the region. The size of the critical region under the 
null hypothesis then reduces to a function of/?, or/(/?), which may be studied to find its maximum. 
If the value of p is some value other than the one that causes f{p) to reach its maximum, the true 
value of a = f(p) is less than max f{p), and the test is conservative. Therefore, a computer routine 
is used to evaluate numerically the least upper bound a* = max f(p), and finally, a "driver" pro- 
gram iterates on values of a to obtain critical regions with a* less than or equal to the nominal 
levels, 5% and 1%, desired. As it turns out, the least upper bound on the size of a two-sided critical 
region is not necessarily twice the least upper bound on the size of the corresponding one-sided re- 
gions. Nevertheless, the sizes of all critical regions are recorded for the sake of judgment. 

The McDonald, Davis, and Milliken tables, along with the boundaries of their critical regions and Type 
I error sizes of Ref. 21, are given here as Table 5-4. To use Table 5-4, the sample size m is taken as less 
than or equal to the sample size n; then values of the observed number of occurrences a'xnm observations 
are listed to the left of the aimed-at one-sided nominal levels of 5% and 1%. The body of each table lists 
the values of b corresponding to a that will give the boundaries of the critical regions.* The left column 
within each vertical strip of Table 5-4 gives the upper left critical region boundary values or points for a 
two-dimensional graph or chart on which a is the abscissa and b is the ordinate. The values listed in the 
right-hand column of each strip, one for the 5% level and the other for the 1% level, give the lower right- 
hand boundary points of fe for that corner critical region. Note that within each of the two strips of Table 
5-4 the sizes of the critical regions are Usted; the size for the one-sided test is in the left column, and the 
size for the two-sided test is in the right column. For the smaller sample sizes, the two-sided size of the 
critical region is also equal to the one-sided value, and the Type I errors do not approach the desired sizes 
except for the larger values of m and n. It is somewhat striking that the desired sizes of the critical regions 
are hardly ever those precisely targeted. Nevertheless, McDonald, Davis, and Milliken's Table 5-4 may 
prove to be of considerable value in many practical analyses, and we will now illustrate its use. 

* There is an upper left critical region and a lower right critical region. Each critical region consists of the boundary and all points 
(a,b) more distant than expectations under the null hypothesis. 
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TABLE 5-4 

2X2 CONTINGENCY TABLES: TEST FOR COMPARING TWO PROPORTIONS (Ref. 21) 
CRITICAL REGIONS FOR THE NONRANDOMIZED UNCONDITIONAL TEST OF Hoipi = pi 

Nominal Level (one-sided) Nominal Level (one-sided) 

m « a 0.05 0.01 m n a 0.05 0.01 

0.035     0.063 0.033     0.033 0.008    0.008 
2 3 0 

1 

b = 3 2 14 0 
1 
2 

6=11 13 
1 

2 b = Q 3 1 

0.022     0.031 0.049     0.049 0.007   0.007 
2 4 0 

1 
h = 4 2 15 0 

1 
6=11 

15           0 
14 

2 0 

0.015     0.016 

2 4 

0.016     0.031 

1 

2 5 0 
1 
2 

b = 5 

0 

0.039     0.055 

3 3 0 
1 
2 
3 

6 = 3 

0 

2 6 1 b = 5 0.040     0.078 0.008    0.016 
2 1 

0.030     0.032 0.009    0.009 

3 4 0 
1 

6 = 3 4 

2 7 0 
1 
2 

b = 6 

1 

7 

0 

2 
3 6= 1 

0.04(5     0.070 

6 = 0 

0.005    0.008 

0.023     0.024 0.007   0.007 3 5 0 6 = 4 5 

2 8 0 
1 

b = l 8 1 
2 

5 
0 

2 1 0 3 1 0 

2 9 0 
1 

0.042     0.046 
b = l 

0.005    0.005 
9 3 6 0 

1 

0.050     0.098 
6 = 4 

6 

0.003   0.004 
6 

2 10 

2 

0 
1 

2 

0.054     0.035 
6 = 8 

0 

0.004   0.004 
10 

3 7 

2 
3 

0 

0 
2 

O.Oii     0.0(5i 
6 = 5 

0 

0.070    0.076 
6 

2 2 

0.029     0.029 

0 

0.004    0.004 

1 
2 
3 

7 
0 
2 1 

2 11 0 
1 

b = 9 11 
0.047     0.094 0.007   0.009 

2 2 

0.044     0.046 

0 

0.003   0.003 

3 8 0 
1 
2 

6 = 5 
8 

0 

1 

2 12 0 6 = 9 12 3 3 1 
1 
2 3 0 0.035     0.065 0.005    0.006 

0.038     0.038 0.009   0.009 
3 9 0 

1 
6 = 6 

9 
8 

2 13 0 6= 10 12 2 0 
1 
2 3 1 

Nc te: m < n 

3 3 

(conf 

1 

d on next page) 
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TABLE 5-4 (cont'd) 

10 0 
1 
2 
3 

11 0 
1 
2 
3 

12 0 
1 
2 
3 

13 

14 

15 

Nominal Level (one-sided) 

0.05 

0.047 
b = l 

9 

0.043 
b = l 

10 

0.036 
b = S 

0.041 
b = S 

12 

0.033 
b^9 

13 

0.048 
6 = 9 

13 

0.035 
b = 3 

4 

0.045 
b = 3 

5 

0.051 

1 
3 

0.073 

4 

0.051 

1 
4 

0.074 

5 

0.054 

5 

0.079 

2 
6 

0.070 

0.078 

0.01 

0.004    0.004 
9 

1 

0.009   0.009 
9 

0.007    0.007 
10 

a OOP  a OOP 
11 
13 

0 
2 

O.OOJ    0.008 
12 
14 

0 
2 

O.OOP   0.009 
12 
15 

0 
3 

0.004    0.008 
4 

Z? = 0 

0.002    0.004 
5 

10 

11 

12 

13 

5-22 Note: m<n 

Nominal Level (one-sided) 

0.05 

0.026 
b = 4 

6 

0.047 
b = 4 

6 

0.042 
b = 5 

7 

0.038 
b = 5 

0.045 
h = 6 

8 
10 

0.046 
b = 6 

10 
12 

0.046 
b^l 

10 
13 

0.057 

0 
2 

0.094 

1 
3 

0.06(5 

0 
1 
3 

0.07^ 

0 
1 
4 

0.075 

0.0^0     0.07P 
6 = 6 

9 
11 0 

2 
5 

0.01 

0.086 

0 
2 
6 

0.086 

0.007 
5 

0.014 

0.009 
6 
7 

0.070 
9 

11 

0.008 
10 
12 

0.072 

0.00(5    0.007 
7 

0 
1 

0.00,S    0.072 
7 
9 

0 
2 

0.005    0.007 
8 

10 

0 
2 

0.005   0.07^ 
8 

11 

0 
3 

0.077 

0.008 

(cont'd on next page) 
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TABLE 5-4 (cont'd) 

Nominal Level (one-sided) Nominal Level (one-sided) 

m n a 0.05 0.01 m          n a 0.05 0.01 

0.050     0.091 0.009    0.0/2 0.046    0.068 0.010   0.015 
4 14 0 b = l 10 5          10 0 b = 5 7 

1 11 13 1 8 9 
2 13             1 2 9            0 10 
3 3 1 3 10            1 0 
4 7 4 4 2 1 

0.044     0.072 0.007    0.008 
5 5 3 

4 15 0 b = S 11 0.0'/'/     0.085 0.010    0.019 
1 12 14 5          11 0 b = 5 7 
2 14            1 1 8 10 
3 3 1 2 10            0 11 
4 7 4 3 11            1 0 

5 5 0 
1 

0.031     0.062 
b = 3 

5 

0.001    0.002 
5 

4 
5 

3 
6 

0.034     0.063 

1 
4 

0.007    0.013 
2 5 5          12 0 b^b 8 
3 0 1 9 11 
4 0 2 11            0 12 
5 2 0 3 12            1 0 

5 6 0 
0.049     0.085 
b^3 

0.005    0.012 
5 

4 
5 

3 
6 

1 
4 

1 5 6 0.044     0.087 0.009    0.012 
2 6 5          13 0 b = 6 9 
3 0 1 9 11 
4 1 0 2 12    b = 0 13 
5 3 1 3 13            1 Z) = 0 

5 7 0 
0.028     0.056 
b^A 

0.008    0.017 
5 

4 
5 

4 
7 

2 
4 

1 6 7 0.045     0.086 0.00,S    0.0/5 
2 7 5          14 0 b = 6 9 
3 0 1 10 12 
4 1 0 2 12           0 14 
5 3 2 3 14           2 0 

5 8 0 
1 

0.045     0.087 
b = 4 

6 

0.005    0.070 
6 
8 

4 
5 

4 
8 

0.047     0.093 

2 
5 

0.010    0.020 
2 8 5          15 0 b = l 9 
3 0 . I 10 13 
4 2 0 2 13            0 15 
5 4 2 3 15            2 0 

5 9 0 
0.045     0.072 
b^5 

0.00,^    0.0/2 
7 

4 
5 

5 
8 

2 
6 

1 7 8 
2 8 
3 1 
4 2 1 
5 4 2 

Note: m<n (cont'd on next page) 
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TABLE 5-4 (cont'd) 

m 

10 

II 

Nominal Level (one-sided) 

0.05 

0.034 
b = 3 

5 
6 
6 

0.068 

0.048     0.092 
b = A 

5 
6 
7 0 

2 
3 

0.034     0.066 
b = 4 

6 
7 

2 
4 

0.04^     0.081 
b = 4 

6 
8 
9 0 

1 
3 
5 

aO^/J     0.086 
b = A 

7 
8 

10 0 
2 
3 
6 

0.W9     0.093 
b = 5     . 

7 
9 

10 1 
2 
4 
6 

0.01 

0.003 
5 
6 

0.006 

0.009 
1 
8 

10 

0.00« 
7 
9 

11 

0.007    0.0/2 
5 
7 
7 

0 
0 
2 

0.070    0.020 
5 
7 

0 
1 
3 

0.006    0.013 
6 

0 
1 
3 

0.016 

0 
2 
3 

0.075 

= 0 
2 
4 

Note: w 

w 

12 

13 

Nominal Level (one-sided) 

0.05 

14 0 
1 
2 
3 
4 
5 
6 

15 0 
1 
2 
3 
4 
5 
6 

7 0 
1 
2 
3 
4 
5 
6 
7 

12 
13 

O042 

9 
II 
13 
14 

0.047 
b = 6 

9 
12 
14 
15 

0.038 
b = 3 

5 
6 
7 
7 

0.079 0050 
^ = 5 

8 
10 

12 2 
4 
7 

0.043     0.083 
b = 6 

O.OI 

0 
1 
2 
5 
7 

0.07^ 

0 
1 
3 
5 
8 

0.092 

0 
1 
3 
6 
9 

0.075 

0.008    0.011 
8 

10 
II 

I 
2 
4 

0.009    0.012 

11 
12 
13 

2 
5 

0.009    0.07* 

11 
13 
14 0 

1 
3 
6 

0.007 
9 

12 
14 
15 

O07i 

0.006    0.013 
5 
6 
7 

(cont'd on next page) 
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TABLE 5-4 (cont'd) 

Nominal Level (one-sided) Nominal Level (one-sided) 

m n       a 0.05 0.01 m          n        a 0.05 0.01 

0.037     0.065 aoo,s  0.014 0.049     0.081 0.009    0.0/7 
7 8       0 b = 4 5 7           13        0 b = 5 7 

1 5 7 1 8 10 
2 7 8 2 10 11 
3 8            0 8 3 11             1 13 
4 8           0 0 4 12            2 0 
5 1 0 5 3 2 
e 3 I 6 5 3 
7 4 3 7 8 6 

0.045     0.081 0.008   0.016 0.046     0.091 0.009    0.0/5 
7 9      0 b = 4 6 7          14       0 b = 5 8 

1 6 7 1 8 10 
2 7 9 2 10 12 
3 8           0 9 '  3 12            1 14 
4 9           1 0 4 13            2 0 
5 2 0 5 4 2 
6 3 2 6 6 4 
7 5 3 7 9 6 

O.Wi     0.079 0.009   0.016 0.048     0.090 0.009    0.0/6 
7 10       0 fc = 4 6 7          15       0 b = 6 8 

1 6 8 1 8 11 
V2 8 9 •     2 11            0 13 

3 9           0 10 3 13            1 14 
4 10           1 0 4 14            2 1 
5 2 1 5 15            4 2 
6 4 2 6 7 4 
7 6 4 '   ^           7 9 7 

0.042     0.085 0.00(5    0.010 0.0-//     0.082 0.00-/   0.005 
7 11       0 b = A 7 8           8        0 b = 3 5 

1 7 9 1 5 7 
2 8 10 2 6 8 
3 10           0 11 3 7            0 8 
4 11            1 0 4 8            0 
5 3 1 5 8            1 0 
6 4 2 6 2 0 
7 7 4 : 7 3 1 

0.047     0.090 0.005    0.075 8 5 3 
7 12       0 b = 5 7 0.040     0.089 0.010    0.017 

1 1 9 8           9        0 b^4 5 
2 9 11 1 5 1 

;, 3 10           0 12 .        .    2 7 8 
4 12           2 0 3 8            0 9 
5 3 1 4 9            0 9           0 
6 5 3 ■    5 9            1 0 
7 7 5 6 2 1 

7 4 2 
8 5 4 

Note: m <n (cont'd on next page) 
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TABLE 5-4 (cont'd) 

10 

11 

12 

13 

14 

Nominal Level (one-sided) 

0.05 

0.038     0.073 
b = 4 

6 
7 
9 

10 
10 

0.042 
b = 4 

6 

9 
10 
11 

0.042 
b = 4 

7 
8 

10 
11 
12 

0.046 
b = 5 

1 
9 

10 
12 
13 

0.046 
b = 5 

8 
9 

11 
13 
14 

0 
0 
1 
3 
4 
6 

0.085 

0 
1 
2 
3 
5 
7 

0.084 

0 
1 
2 
4 
5 
8 

0 
1 
3 
4 
6 
8 

0.091 

0.01 

0.009    0.077 
6 
7 
9 

10 
10 0 

0 
1 
3 
4 

0.009    0.019 
6 

9 
11 
11 0 

0 
2 
3 
5 

0.009 
6 
9 

10 
11 
12 

0.008 
7 
9 

11 
12 
13 

0.009 
7 

10 
11 
13 
14 

0.077 

0 
1 
2 
3 
6 

0.016 

0 
1 
2 
4 
6 

0.077 

15 

10 

11 

Nominal Level (one-sided) 

0.05 0.01 
0.041     0.081 
6 = 5 

10 
12 
13 
J5 

0 
2 
3 
5 
7 

10 

0.049    0.098 
b = 

0.042 
b = 4 

5 
7 
8. 
9 

10 
10 

0.050 
b = 4 

6 
7 
8 

10 
11 
11 

0 
0 
1 
2 
3 
4 
6 

0.076 

0 
0 
1 
2 
3 
5 
6 

0.700 

0.009 0.077 
8 

10 
12 
14 
15 0 

1 
3 
5 
7 

0.070   0.027 
5 
6 

0 
1 
1 
3 
4 

0.070    0.020 
5 
1 
8 
9 

10 
0 
1 
2 
3 
5 

0.070    0.075 
6 
7 
9 

10 
11 

0 
1 
2 
4 
5 

5-26 Note: m<n 
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TABLE 5-4 (cont'd) 

m 

12 

13 

14 

15 

Nominal Level (one-sided) 

0.05 0.01 

0.039 
6 = 5 

6 
8 
9 

11 
12 
12 

0.042 
6 = 4 

7 
8 

10 
11 
12 
13 

0.044 
0 b = 5 
1 1 
2 9 
3 10 
4 12 
5 13 
6 14 
7 
8 
9 

0.050 
0 b = S 
1 1 
2 9 
3 11 
4 12 
5 14 
6 15 
7 

0.078 

0 
0 
1 
3 
4 
6 
7 

6».0«4 

0 
1 
2 
3 
5 
6 
9 

0.088 

0 
1 
2 
4 
5 
7 
9 

0.099 

0 
1 
3 
4 
6 
8 

10 

0.010 
6 
8 
9 

11 
12 
12 

0.027 

0.070 
7 
9 

10 
II 
13 
13 

0.070 
7 
9 

11 
12 
13 
14 

0 
0 
1 
3 
4 
6 

0.077 

0.009 
7 

10 
11 
13 
14 
15 

0 
0 
2 
3 
4 
6 

0.077 

0 
1 
2 
3 
5 
7 

0.07« 

m 

10 10 

10 11 

10 12 

10 13 

Note: m<n 

Nominal Level (one-sided) 

0.05 

0 
1 
2 
3 
4 
5 
6 
.7 
8 
9 

10 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.045     0.089 
b = 4 

5 
6 
8 
8 0 
9 1 

10 2 
2 
4 
5 
6 

0.044     0.084 
b = A 

5 
7 
8 
9 

10 
11 
11 

0.041 
b = A 

6 
7 
9 

10 
11 
12 
12 

0.048 
b = A 

6 
8 
9 

10 
12 
12 
13 

0.01 

0.013 

0 
0 
1 
2 
3 
4 
6 
7 

0.075 

0 
0 
1 
2 
3 
5 
6 
8 

0.093 

0.006 
5 
7 
8 
9 

10 
10 0 

0 
1 
2 
3 
5 

0.070    0.020 
6 
7 
8 

10 
10 
11 0 

1 
1 
3 
4 
5 

0.009 
6 
8 
9 

10 
11 
12 

0.077 

0.008 
6 
8 

10 
11 
12 
13 
13 

0 
1 
2 
3 
4 
6 

0.075 

(cont'd on next page) 
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TABLE 5-4 (cont'd) 

Nominal Level (one-sided) Nominal Level (one-sided) 

m n        a 0.05 0.01 m           n        a 0.05 0.01 

0.048     0.085 0.008   0.016 0.043     0.079 0.070    0.020 
10 14       0 b = A 6 11           13        0 b = 4 6 

1 7 9 1 6 8 
2 8 10 2 7 9 
3 10           0 12 3 9            0 10 
4 11            1 13           0 4 10            0 12 
5 12           2 14          0 5 11             1 12          0 
6 13           3 14           1 6 12            2 13           1 
7 14           4 2 7 13            3 1 
8 6 4 8 13            4 3 
9 7 5 9 6 4 

10 10 8 10 7 5 

0.043     0.087 0.00«   0.0/7 11 9 7 

10 15       0 b = 5 7 O.O'/P     0.097 0.010   0.018 
1 1 9 11           14       0 b = 4 6 
2 9 11 1 6 8 
3 10           0 12 2 8 10 
4 12           1 14          0 3 9            0 11 
5 13            2 15           0 4 10            0 12          0 
6 14           3 15           1 5 12            1 13           0 
7 15           5 3 6 13            2 14            1 
8 6 4 7 13            4 14          2 
9 8 6 8 14            5 3 

10 10 8 9 6 4 

11 11       0 
0.047     0.093 
b = 4 

0.009    0.017 
5 

10 
11 

8 
10 

6 
8 

1 5 7 0.045     0.0,57 0.008   0.016 
2 6 8 11           15       0 b = 5 6 
3 8 9 1 1 9 
4 9           0 10 ■ ■...   2 8 10 
5 9           1 11           0 ■    3 10            0 12 
6 10           2 11           0 4 11             1 13          0 
7 11           2 1 5 12             1 14          0 
8 3 2 6 14            3 15          1 
9 5 3 7 14            4 15           2 

10 6 4 8 15             5 3 
11 7 6 9 7 5 

11 12       0 
0.048     0.095 
b = 4 

0.009    0.019 
5 

10 
11 

8 
10 

6 
9 

1 5 7 1 ■ 

2 7 9 
3 8           0 10 
4 9           0 11 
5 10           1 11           0 
6 11           2 12           1 
7 12           3 1 
8 12           4 2 
9 5 3 

10 7 5 
.    U 8 7 (cont 'd on next page) 
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TABLE 5-4 (cont'd) 

Nominal Level (one-sided) Nominal Level (one-sided) 
m n       a 0.05 0.01 w          n       a 0.05 0.01 

0.050     0.099 O.OOP    0.077 0.050     0.099 0.070    0.079 
12 12       0 b = A 5 12          15       0 b^A 6 

1 5 7 1 6 8 
2 6 8 2 8 10 
3 8 10 3 9            0 11 
4 9            0 10 4 10            0 12 
5 10            1 11           0 '.5 12            1 14           0 
6 10            2 12          0 6 13            2 14            1 
7 11            2 12           1 7 14            3 15            1 
8 12            3 2 8 15            5 3 
9 4 2 9 15            6 4 

10 6 4 10 7 5 
11 7 5 11 9 7 
12 8 7 12 11 9 

a 045     0.094 0.070    0.077 O.Oi,S     0.077 0.070    0.079 
12 13       0 b = A 5 13          13       0 b = A 5 

1 6 7 1 5 7 
2 7 9 2 7 8 
3 8 10 ■ 

3 8 10 
4 9            0 11 4 9           0 11 
5 11            1 12          0 5 10           1 11           0 
6 11            2 13           0 6 11            1 12          0 
7 12            2 13           1 7 12           2 13           1 
8 13            4 2 8 12           3 13           2 
9 5 ' 3'. 9 13            4 2 

10 6 ^ 10 5 3 
11 7 6 11 6 5 
12 9 8 12 8 6 

0.044     0.0«6 0.008   0.015 13 9 8 
12 14       0 

1 

b = A 
6 

6 0.050     0.094 0.070    0.020 
1 8 13          14       0 b^A 6 
2 7 9 1 6 7 
3 9            0 11 2 7 9 
4 10           0 12 3 8 10 
5 11             1 13           0 4 9           0 11 
6 12            2 13           1 5 11            1 12           0 
7 .  13            3 14           1 6 .   12           2 13           0 
8 14           4 2 7 12           2 14           I 
9 14            5 3 :         8 13           3 14          2 10 7 5 9 14           5 3 

11 8 6 ^             10 6 4 12 10 8 11 7 5 
12 8 7 
13 10 8 

Note: w < n (cont'd on next page) 
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TABLE 5-4 (cont'd) 

13 15 

14 14 

14 15 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Nominal Level (one-sided) 

0.05 

0.048     0.093 
b = 4 

6 
7 
9 

10 
11 
12 
13 
14 
15 
15 

0 b = 4 
1 5 
2 7 
3 8 
4 9 
5 10 
6 11 
7 12 
8 13 
9 13 
10 14 
11 
12 A- 

13 
14 

0.044 
0 b = A 
1 6 
2 7 
3 8 
4 10 
5 11 
6 12 
7 13 
8 13 
9 14 
10 15 
11 
12 
13 
14 

0.01 

0 
0 
1 
2 
3 
4 
5 
6 
8 
9 

11 

0 
1 
1 
2 
3 
4 
5 
6 
7 
9 

10 

0.085 

0 
1 
2 
2 
3 
4 
5 
7 
8 
9 

11 

0.009    0.017 

9 
11 
12 
13 0 
14 1 
14 1 
15 2 

3 
4 
6 
7 
9 

0.008    0.017 

0.010 
6 
8 
9 

10 
12 
12 
13 
14 
15 
15 

5 
7 
9 
10 
11 
12 0 
13 0 
13 1 
14 1 
14 2 

3 
4 
5 
7 
9 

15 15 

0 
0 
1 
2 
3 
3 
5 
6 
7 
9 

Note: m <n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Nominal Level (one-sided) 

0.05 0.01 

0.049 
b = A 

5 
7 
8 
9 

10 
11 
12 
13 
14 
14 
15 

0.099 

Reprinted with permission. Copyright ©by the American Statistical Association. 

0 
1 
1 
2 
3 
4 
5 
6 
7 
8 

10 
11 

0.009 
5 
1 
9 

10 
11 
12 
13 
14 
14 
15 
15 

0.018 

0 
0 
1 
1 
2 
3 
4 
5 
6 
8 

10 
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Example 5-4: 
Since Example 5-2 dealt with sample sizes of only 12 and 9 standard and experimental rounds, respec- 

tively, we will use the same data to check that analysis with McDonald, Davis, and Milliken's table. 
We have m = 9, the smaller sample size, a = 1, n - \2, and b = 12. Then, entering Table 5-4 

with m = 9, n = 12, and a = 1, one finds that for the one-sided test at the 0.039 level no b value is 
given; therefore, again we cannot conclude that the experimental round is really inferior in hit 
probability to the standard round. We do note, however, that the point a = 6 and b = 12 is a 
boundary point on the critical region of this test, but that significance does not result from the test 
using Table A-22 of Ref. 2 for Example 5-2 unless the value of a = 5 were attained. Hence the 
McDonald, Davis, and Milliken test would reach significance more quickly. Perhaps this shows 
that a very complete investigation of the critical regions for the binomial and contingency table 
problems is very worthwhile since it is seen that some rather critical decisions may be necessary. 

5-3.5    THE DOUBLE DICHOTOMY 

Finally, for the 2x2 contingency table we arrive at what Barnard (Ref. 5) refers to as his third type of 
abstract experiment and what Pearson (Ref. 6) labels Problem III for the 2x2 contingency table. We will 
refer to it in this chapter as the "double dichotomy". For the case of the double dichotomy, the sampling 
is such that a preselected number A^ of items is drawn from a large population, or universe, and random 
samples of sizes m and n are obtained, which contain a defective units from the first designated process 
and b defective units from the second. In this final case for the 2X2 contingency table, we note that only 
the total sample size A'^ is fixed or preselected, whereas the four row and column totals—m, n, r, and 
5—are random numbers just as the cell numbers a, b, c, and d are. In this case the multinomial expansion 
applies, and it seems advantageous and lucid in presentaUon to use the notation of Pearson (Ref. 6) as a 
basis for describing the experiment so involved. In fact, Pearson (Ref. 6) describes this case as a test for 
the independence of two characters, or characteristics, A and B, say. It is supposed that some individuals 
selected at random will possess character A, while others will not; for this reason we designate them as A 
or "not /4". Likewise, some of the individuals in the sample will possess character B and others will not; 
consequently, we designate them as B or "not B". Continuing, let us use the notation p{A) to designate 
the chance that an individual selected at random will have character A and p{A) = 1 — p{A) to designate 
the probability that such an individual will not possess character A. It is clear then that corresponding 
probabilities for the character B are p{B) and p{B) - 1 - p{B). Finally, we see that four alternative com- 
binations of characteristics will occur: AB, AB, AB, and AB. The probabilities for these occurrences are 
best presented as indicated in Table 5-5. 

TABLE 5-5 
PROBABILITIES 

A                   A Total 
B 

B 

Total 

p(AB)            p{AB) 

p{AB)            p{AB) 

PiA)               PiA) 

P{B) 

piB) 
1 

In terms of the observed sample data. Table 5-6 is shown. 

TABLE 5-6 
DOUBLE DICHOTOMY TABLE 

A A Total 
B a c m 
B b d n 

Total r s N 
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If the null hypothesis specifying the independence of A and B is true, it follows that ' 

-   - ■■ p{AB)=p{A_)p{B\ p{AB)=p{A)p{B) 

p{AB)=p{A)piB),     and     p {AB) =p{A)p{B). 

Hence, we see that given a random sample of size A^, the observed data of Table 5-6, which is in the form 
of a contingency table, may be analyzed to test the hypothesis of independence of the characteristics A 
and B. As Pearson points out in this case, there is only one application of a random process—i.e., the 
selection of the total of N individuals, each one of which must fall into one of the four categories of Table 
5-6. Furthermore, if another sample of N items were drawn at random, the values of a, b, c, and d would 
change in a random manner as would the row totals m and n, and the column totals r and s. 

The test of independence for the double dichotomy amounts to the test of a composite hypothesis, and 
the reader easily may see that the probability P of the particular observed result given in Table 5-6 is 

p=[ ,::\jpi^Brp{ABfp{ABrp{ABf (5-26) 

which, under the assumption that the null hypothesis of Eq. 5-25 is true, becomes 

\a\b\c\d\/ 

Furthermore, as Pearson indicates in Ref. 6, Eqs. 5-26 and 5-27 can also be expressed as 

m\n\/ \r\s\/ a\b\c\d\N\ 
= P2{m\p{B),N^ X P2{r\p{A),N^ X P,{a\N,r,ml say, (5-28) 

where P\ and Pj are specific probabilities. 
Refer to Eq. 5-28; Pearson (Ref. 6) points out there are three major factors involved. The first Pj repre- 

sents the chance of obtaining in N random observations exactly m items with character B as in Table 5-6, 
while the second Pi alike represents the chance of obtaining exactly r items that possess character A of 
Table 5-6. These two factors, therefore, represent binomial trials as we discussed in par. 5-3.3; there are, 
however, some differences in notation, of course. Finally, the third, or last, major factor P\ is precisely the 
probability of Eq. 5-5 for the Fisher exact test. This third factor specifies that given m items with char- 
acter B and r items with character A, the chance for the observed partition a, b, c, and d is exactly P\ or 
Eq. 5-5. We see, therefore, that the double dichotomy problem involves some of the characteristics of 
both the Fisher exact test and the comparative binomial trials experiment, especially if we were to test 
p{A) = p{B). 

With regard to a statistical test of significance for the double dichotomy case, one could calculate the 
probabilities as indicated in Eq. 5-28 for hypothesized values of p{A) and p(B), equal or not, although this 
would be laborious indeed. However, most often the p{A) and p{B) have to be estimated from the same 
sample data, and tables to cover many significance tests would be too voluminous. Finally, it seems clear 
that one must rely on the normal or equivalent chi-square approximation as the obvious choice, i.e., 
either Eq. 5-8 or Eq. 5-17. In this connecfion, Pearson (Ref. 6) indicates that the normal approximation 
along with the continuity correction will be very much on the safe side, i.e., the formal or stated size of 
the critical region is likely to be much above the actual level attained no matter what the values of p{A) or 
p{B) are. In fact, the presence of the two binomial terms in Eq. 5-28 will make it likely that overestimation 
of a will be greater in the double dichotomy problem than in the comparative binomial trials. Thus it 
would be expected that unless m, n, r, and 5 are too small, Eq. 5-8 will be a suitable approximation. 

In summary, we see that fortunately or unfortunately we are stuck with the normal approximation to a 
great extent! Nevertheless, there remains much research to be done for the 2x2 contingency table, and 
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many of the problems encountered also extend to higher order contingency tables, which have even more 
complications and involvement. With the present state of the art, some readers may not be impressed with 
the differences we have made concerning essentially three distinct sampling and analytical problems for 
the 2X2 contingency since the result is just about the same method of analysis except for the smaller sam- 
ple sizes, in which case we must carry out direct calculations or refer the observed data to an appropriate 
table. Nevertheless, it certainly seems wise to point out that such distinctions may be important as general 
guidehnes even though it is at the same time fortunate that rather simple normal approximations ordi- 
narily will suffice in many practical applications. Finally, the 2X2 table and higher order tables may be 
analyzed by using the chi-square principle of summing the squares of deviations from expectations 
divided by expected values. 

Example 5-5 illustrates the principle of the "double dichotomy". 

Example 5-5: 
In a random sample of 40 recruits at an Army induction and training center, 18 had previous ex- 

perience with shooting a rifle and 22 did not. Of the 18, 12 of the recruits qualified as "expert"; the other 
six did not. On the other hand, of the 22 with no former rifle training, 9 trainees qualified as "expert". 
Can it be said there is conclusive evidence that background experience in shooting rifles is necessary for a 
trainee to become expert? 

This particular example meets the strict requirements for a "double dichotomy" in that both row and 
column totals, or all marginal totals, can be treated as random variables, and the sample size of 40 is 
preselected for the experiment to be conducted. Thus by treating the problem this way, we have A^ = 40, 
/M = 18, a = 12, n = 22, 6 = 9, /• = 21; and s = 19. Moreover, the sample size is not small nor are the cell 
frequencies unusually low. Hence, we may as well use the normal approximation for our analysis. By 
using Eqs. 5-6 and 5-7 and then by computing z from Eq. 5-8, we have 

Mean a = 9.45, Oa = 1.591, and z = 1.29. 

This value of z, from a table of the normal integral, corresponds with an upper tail area of about 0.10. 
Thus it cannot be concluded that background experience in shooting a rifle substantially benefited the re- 
cruits because they learned very quickly anyway. 

5-3.6    INDEPENDENCE AND INTERACTION IN 2X2 CONTINGENCY TABLES 

At this point, it is important to discuss briefly the relation between the concepts of independence and 
interaction in 2X2 contingency tables. In a two-way classification in the ANOVA for continuous variates, 
the concept of interaction was perhaps more easily understood, and the reader saw that the interaction 
term—when there existed only a single observation per cell—was used as the experimental error to judge 
row and column effects by using an "F" test. On the other hand, for the 2X2 contingency table the con- 
cept of interaction is perhaps more difficult to grasp. Independence of association between the cross- 
classifications in a 2X2 table was defined in terms of the basic probability laws indicating independence in 
Eq. 5-25. Bartlett (Ref 22) has defined the meaning of "interaction" as it applies to contingency tables 
and has stated: "The testing of independence in a 2X2 table may be regarded as testing the significance of 
the interaction between the two classifications.". Thus insofar as 2X2 contingency tables are concerned, 
the concepts of independence and interaction are to be taken as being synonymous for all intents and pur- 
poses. Therefore, the significance test carried out for a 2X2 contingency table is a test for independence, 
or a lack of association between the cross-classifications, or a test of the nonexistence of any interaction 
between the two classifications. This leads us to the use of information theory in the analysis of 2X2 
tables as our next pertinent topic. 
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5-4    SOME DEFINITIONS OF SYM BOLS FOR GENERAL CONTINGENCY TABLES 

Before proceeding to the use of Kullback's (Ref. 23) principle of minimum discrimination information 
estimation analysis of contingency tables or to higher order (multidimensional) contingency tables, it is 
best to adopt a more general notation than we have used for the 2x2 tables—a notation that was con- 
venient for the purpose of referring to some of the specific and basic papers on the subject. First, suppose 
we consider only dual classifications again but expand this to the possibility of a two-way table that now 
has r > 2 rows and c>2 columns. Then we further define: 

xiij)   =  observed frequency for the cell in the /th row and ;th column, for / = 1, . . ., r and7= 1, 
...,£■ 

xii.)   = sum of the x{ij) across the c columns of the fth row 
x{ J)   = sum of the x{ij) across the r rows of thejth column 
x{^.) = N, or sometimes n, = the sum of all observations within the contingency table 
p{ij)   = true but unknown probability of occurrence, or population proportion, for an individual 

belonging to the cell in the /th row and ;th column of the table 
p(2.)    = p/-(x = /■) = marginal probability for jth row 
p{j)   - pr{x =j) = marginal probability foryth column. 

With these definitions, it is seen, for example, that: 
x(ll) = observed number of occurrences a for the cross-classification involving ^and B in Table 5-6 
x(21) = observed number of occurrences given by b for the cross-classification B and A as in Table 

5-6. 
Finally, we will define 

x*(^ij) = predicted value for the cell in the /th row and;th column, which is determined in accordance 
with Kullback's (Ref. 23) minimum discrimination information statistic (MDIS), as dis- 
cussed in par. 5-5. 

Probabilities p*iij), p*{i.) and p*U) may be correspondingly used. 

5-5    THE KULLBACK MINIMUM DISCRIMINATION INFORMATION STATISTICS 
For a background on the relation of information theory and statistics, the interested readers should 

study Kullback's Information Theory and Statistics (Ref. 24), which covers the basic principles. Perhaps 
one of the most prominent applications of information theory in statistics has been that concerning the 
analysis of multidimensional contingency tables by Kullback, and a very useful and readable account of 
the methodology is that contained in Ref. 23. It is suggested that Army analysts also study Refs. 25, 26, 
and 27 because they will help to round out the general use of information theory applied to contingency 
tables. 

Kullback's information theory approach to the analysis of contingency tables proceeds basically as fol- 
lows. First, for any observed contingency table of interest, it seems appropriate to visualize three asso- 
ciated tables: 

1. The so-called vr table, containing cell elements x(//). The TT table may be specified by the null hy- 
pothesis, estimated, or given by the observations. For example, the TT table may specify the condition or 
hypothesis of equal probability in all the cells, or it may specify two-way independence, or three-way inde- 
pendence, etc. 

2. The second associated table is a p table denoted by the unknown quantities p{ij) defined in par. 
5-4. This/> table is a contingency table that satisfies certain conditions of interest—for instance, the one- 

way marginals /?(/.), />(.;'), etc. 
3. The third and final associated table is called the p* table; the elements of which are denoted by 

p*(ij). The p* table is that member of the class of p tables that most closely resembles the TP table in the 
sense of Kullback's minimum discrimination information, i.e., the TT table minimizes the discrimination 
information given by the equation 

I{p:Tv) = 2/7ln ip/w) (5-29) 

over the class of/? tables, where lip-.ir) stands for "information". 
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Although we can neither go extensively into the details of the Kullback approach, nor is it necessary, 
we will summarize one or two main results of the information theory approach that are quite germain and 
very useful insofar as this chapter on contingency tables is concerned. Briefly and for example, we give the 
following items of some special interest. 

If we set 
7r(//-)= \/{rc) (5-30) 

which is the condition for a uniform table with r rows and c columns, the classical hypotheses of inde- 
pendence, homogeneity, conditional independence, no interaction, etc., are represented by p* tables when 
certain of the marginals are considered fixed and can be considered as generalized independence hypoth- 
eses. The term "generalized independence" means that the cell probability of a multidimensional con- 
tingency table may be expressed as the product of factors that are functions of the pertinent marginals.* 
The more common notions of independence, conditional independence, homogeneity, or conditional 
homogeneity in contingency tables are all rather special cases of "generalized independence". As Kull- 
back points out in Ref. 24, this is the consequence of the fact that the minimum discrimination informa- 
tion estimates are formulated as members of an exponential family that for the contingency tables appli- 
cation also may be expressed as a multiplicative model or logarithmic linear additive model. Such models 
are derived on the basis of minimizing the discrimination information. For further appreciation and 
deeper understanding, interested readers should study Ref. 24 in general and Ref. 26 for the applications 
to multidimensional contingency tables. The details are, in fact, rather involved. In Ref. 27 Kullback gives 
a further description of the principles of minimum discrimination information statistics and also presents 
a 3x2x3x2 example of contingency table analysis, which applies to the firing of guns. Ref. 28 is an 
earlier paper on the background theory and analysis of contingency tables using the MDIS approach, and 
Ref 28 covers the use of loglinear models in the analysis of contingency tables. An excellent and ever- 
continuing valuable review of contingency tables is available in Ref. 29. We give Kastenbaum's references 
in our bibliography. 

In Ref. 28 Kullback, Kupperman. and Ku summarize some of the more basic principles of the mini- 
mum discrimination information statistics and indicate the simplest form of the appropriate estimate of 
twice the amount of information in terms of observed and expected frequencies and the relation to the 
well-known chi-square statistic. Quite generally, if we consider, say, r observed frequencies, the /th desig- 
nated by O, with / = 1, . . ., r, and Et defined to be the expected /th frequency (which will be determined 
with marginal values or totals), the relationship for a one-way contingency table, so to speak, is 

2/ = 2S Odn{OilE,) - X (O, - E;)'IE, = x'(r - 1) (5-31) 

that is to say twice the estimate of the amount of information is asymptotically distributed as the chi- 
square statistic with (r-l) df. Note that twice the estimate of the amount of information is approximately 
distributed as chi-square, but not exactly. Thus Kullback, Kupperman, and Ku (Ref. 28) show that for 
contingency tables or "categorical" type data, the minimum discrimination information in its simplest 
form amounts to summing the observed frequencies multiplied by the natural logarithms of the ratios of 
the observed to the expected frequencies and to multiplying this result by two; the final expression gives 
twice the amount of information as is shown in Eq. 5-31. For two-way contingency tables this means that 
we calculate the double summation given by . , 

2/= 22 X [x (//)]ln [xiij)/inpij)] = XX[xm nln[x(//)]/(x,.x.,) - x' [{r - 1) (r - 1)]      (5-32) 

in which we have used the appropriate marginals to estimate the unknown pij . The quantity of Eq. 5-32 
for a general number of rows and columns represents the interaction term of the contingency table, which 
is used to test for independence of row and column effects and is approximately distributed as chi-square 
with (/• - 1) (c - 1) df. Thus for the simple 2X2 table there is only a single df. In Example 5-6 we will apply 
Eq. 5-32 to the data of Example 5-5. 

"As it turns out, most analyses will involve the prediction of cell frequencies from the marginal totals and will not hypothesize a 
"uniform" table based on Eq. 5-30. 
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Example 5-6: 
Use the data as given in Example 5-5 and apply Kullback's minimum discrimination information theory 

to determine whether independence exists for the row and column effects, i.e., previous training is not 
necessary to become an expert. By referring to the symbols of Table 5-6 and the observed quantities of Ex- 
ample 5-5, we have, for example, that the observed number of occurrences ;c( 12) = c = 6, whereas the MDIS 
estimate of this cell value would bex*(12) jci.x.2/« = (18) (19) / (40) = 8.55. Proceeding in a like manner, 
one calculates by Eq. 5-31 for the 2X2 table: 

ll{x;x*)  = 2[121n(12/9.45) + 61n(6/8.55) + 91n(9/l 1.55)+ 131n(13/10.45) ] = 2(1.33)= 2.66 « x'(l)- 

The approximate upper tail area for an observed chi-square of 2.66 with 1 df is about 0.12; hence we can- 
not conclude that dependence has been established between rows and columns, i.e., it is necessary to have 
had extensive training as a rifleman to become an "expert" in the Army training program of rifle shoot- 
ing. 

If interested, one may calculate the ordinary chi-square for the 2X2 table by summing the observed 
minus the expected values squared divided by the expected values to obtain an observed chi-square of 
2.63, which is a little different but nearly the same as that obtained from the information theory ap- 
proach. This is caused by the use of two different methods, and one therefore should expect small differ- 
ences in values. These differences will be inconsequential insofar as any judgment is concerned. 

Since we have mentioned the matter of a one-way contingency table and to show the generality of Kull- 
back's information theory approach, we give an example from Ref. 28 on tossing coins in Example 5-7. 

Example 5-7: 
Five coins are thrown in a series of 74 independent tosses, and the number of heads is recorded. We de- 

sire to test the hypothesis of a binomial distribution with parameter 1/2, or the chance of a head occurring 
is 1/2; independence of the trials is assumed. For convenience, the results of the 74 tosses of five coins are 
brought together in Table 5-7, in which we have calculated and included the expected frequencies. Use the 
information theory analysis of contingency tables to accept or reject the null hypothesis of a binomial dis- 
tribution with parameter 1/2 as being the appropriate model to fit the observed data. 

TABLES-? 

SEVENTY-FOUR TOSSES OF FIVE COINS (Ref. 28) 

Number of Theoretical Observed Expected 
Heads Probability Frequency Frequency 

0 1/32 
I 5/32 
2 10/32 
3 10/32 
4 5/32 
5 1/32 

2 2.31 
5 11.56 

22 23.13 
29 23.13 
14 11.56 
2 2.31 

74 Total 

By using the second expression of Eq. 5-31, we calculate that the observed chi-square is 6.74, and the df 
are 6 - 1 =5. Using a table of the percentage points of chi-square, we find that the observed value of 
6.74 for 5 df will be exceeded with a probability of about 0.25 and hence is not significant. Thus we accept 
the null hypothesis of a binomial distribution with parameter of/? = 1/2 for the chance of tossing a head. 

With this rather brief account of the information theory approach to the analysis of contingency tables 
and other statistical problems, the reader should be impressed with the power and general usefulness of 
this approach in solving Army problems. Ref. 28 is highly recommended reading and study for Army 
analysts because it extends Kullback's information theory approach to two-way, three-way, and higher 
order contingency tables. Moreover, Ref. 28 gives a number of informative examples of applications. We 
will return to the further use of information theory in connection with the analysis of two-way con- 
tingency tables with r rows and c columns in par. 5-8 after some relevant discussion about 2x2 tables. 
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5-6    SOME RELATED TOPICS AND THE POWER OF 2X2 CONTINGENCY TABLES 
In connection with a rather important problem concerning the selection of the "better" of two 

binomial populations, i.e., for example, the one with the smaller proportion of defectives, Berry and 
Sobel (Ref. 30) have suggested an "improved" procedure. Their recommendations are based on a 
"play-the-winner" sampling procedure for determining the better of the two Bernoulli populations 
under consideration. The procedure these authors have developed is designed to select the better 
population (call it number 1 with "success" parameter p\) and with probability P, whenever the dif- 
ference between the two binomial population parameters {p\ — pi) is greater than or equal to a speci- 
fied value A, where the quantities P and A are preassigned constants. The truncation procedure used 
by Berry and Sobel is designed to minimize both the expected total number of trials and also the 
number of trials for one of the populations, i.e., number 2. Moreover, Berry and Sobel's procedure 
is designed with special reference to the problem of small p's, an important problem in practice. 
Hence this technique may have application to a number of Army problems. 

Darroch (Ref. 31) has discussed the concepts of "multiplicative" and "additive" interaction in 
contingency tables—the 2x2 table is a special case. The multiplicative and additive definitions of no 
interaction are compared according to whether they possess or fail to possess the properties of being 
partitionable, closest to independence, implied by independence, or of placing no constraints on the 
marginal totals. Further research in this area may be needed to establish the superiority of either the 
multiplicative or additive interaction concept. 

In Ref. 32 Mantel and Hankey update the concept of odds ratios related to 2X2 contingency 
tables, especially in terms of the three models of interest we have discussed in par. 5-3. Gart (Ref. 
33) discusses both point and interval estimates of the odds ratio in the combination of 2x2 tables, 
and Copas (Ref. 34) gives an account of randomization models for the matched and the unmatched 
2X2 tables. 

An important topic for practical considerations to which we have barely alluded is that of the 
power function of 2X2 contingency tables and the related area of determination of proper sample 
size. With regard to this topic, Casagrande, Pike, and Smith (Ref. 35) give the power function of the 
exact test for comparing two binomial distributions and include tables of the exact sample sizes (n = 
m) required to test a variety of values for the population proportions />: and pi {p\ >pi), at the one- 
sided significance levels 0.05, 0.025, 0.01, and 0.005, and power requirements of 80%, 90%, and 95%. 
Their tables also may be used to calculate sample sizes for two-sided tests by entering the tables with 
half the desired significance level. 

5-7    THE GENERAL TWO-WAY CONTINGENCY TABLE (/-Rows and c Columns) 

5-7.1    INTRODUCTORY FORMULATION 
The general two-way contingency table involves a distribution of frequencies in a second order matrix of 

cells for which there are two or more rows and columns. Our primary desire in this connection is to 
analyze the observed cross-classification of frequencies to determine whether the row and column effects 
are independent or unassociated, so to speak. Also for the two-way table we may desire to test for the possi- 
ble existence of homogeneity and interaction effects as discussed in the sequel. It will be helpful to present 
the tabular form of frequencies as in Table 5-8. 

For the rXc contingency table one might look at the overall table as a "total" variance based on {re — 
1) df from which the row effects based on (/- - 1) df—or the column effects based on (c — 1) df—may be 
subtracted to give the "conditional" term of fewer total rows (or fewer total columns), and then subtract- 
ing the column effects (or row effects) finally gives the interaction or "independence" effect, which is used 
to judge whether dependence of the cross-classifications does indeed exist. In other words, one might 
visualize the entire analysis as a two-way ANOVA problem. 

In the sequel we will analyze the observed data of Table 5-8 from two points of view. The first ap- 
proach will be the classical chi-square, where, as previously stated, we sum the squares of the observed 
minus the expected frequencies divided by, or corrected by, the expected values for each cell. The second 
will be Kullback's information theory approach. We will also make a comparison of the two by means of 
an example. 
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TABLE 5-8 

THE GENERAL TWO-WAY CONTINGENCY TABLE 

I " 

Column Effects 
III c Totals 

Row Effects 

411) 
421) 

4'-i) 
4-1) 

412) 
422) 

x{r2) 
x{2) 

413) 
423) 

x(r3) 
4.3) 

41c) 
x{2c) 

x{rc) 
x{.c) 

A 
B 
• 
• 

r 
Totals 

41.) 
42.) 

x{r.) 

4..) 
= Norn 

5-7.2    THECLASSICALCHI-SQUARE ANALYSISOFTWO-WAY CONTINGENCY TABLES 

It is well-known from the statistical literature, or the reader may find it in any standard textbook on 
statistical methods, that the classical test of independence between the two characteristics specified in a 
two-way table is based on the statistic 

x\{r-l) (c-1)] ^lii [xW) - x(i.)xU)INfl[x{i.)x{-J)IN] (5-33) 

where the expected cell frequencies are estimated from the product of appropriate row and column totals 
divided by the table total. Eq. 5-33 clearly measures the overall amount of the deviations from expectations 
on a scale consistent with the usual chi-square statistic that is distributed with (/• - 1) (c - 1) df, i.e., the 
same df as for the normal interaction term in the ANOVA. A number of examples of the application of chi- 
square associated with contingency tables are given in Ref. 1 although we will give a rather special example . 
(Example 5-8), which is quite subjective in nature and, therefore, could raise a number of questions con- 
cerning its real validity. 

Example 5-8: 
In research and development work the Army instituted the practice of a series of in-process reviews 

(IPR's) for many of its major development programs. The IPR's were considered an effective means of aid- 
ing the development process—a good way to assess correctly the status of a project and to bring about ef- 
fective command coordination. To study the overall effectiveness of IPR's, a series of questionnaires was 
prepared and distributed to all of the Department of Army (DA) participants for completion. The ques- 
tionnaires were answered by managers, supervisors, engineers, policymakers, and technicians to obtain a 
wide spectrum of opinions. The questions were only four in number for a particular phase of the survey— 
i.e., whether the IPR's were "good in theory and good in practice", "good in theory but poor in practice", 
"poor in theory but still good in practice nevertheless", or finally "poor in theory and poor in practice 
both". The whole study with accompanying analyses is covered by Bell, Mioduski, and Belbot in Ref. 36. 
However, we discuss only a particular contingency table, which is a summary of the results of the IPR 
Questionnaire. The results we will analyze by using the classical chi-square method for contingency tables 
are given in our Table 5-9. 

An examination of Table 5-9 raises any number of questions about the questionnaire itself! For ex- 
ample, are the categories sufficiently mutually exclusive for a good survey? Are not some or many of the 
managers really supervisors, and are not many of the policymakers either managers or supervisors, so that 
the choice of major functions leaves much to be desired? Perhaps the four categories of answers are suffi- 
ciently distinct to judge whether the IPR's are really worthwhile although another possible problem is evi- 
dent, which revolves around whether the answers can be absolutely objective! Indeed, are not the 
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respondents more or less motivated to answer only two of the rows, namely, that IPR's are good in theory 
or principle whether good or poor in practice? The last two rows of Table 5-9 are so sparse that the survey 
appears to encourage only "bureaucratic" answers! Nevertheless, we will look into whether or not inde- 
pendence or association exists between the four forms of answers on one hand and the major function or 
type of position of the respondents on the other. For this purpose one calculates the chi-square of Eq. 
5-33 using the proper row and column totals for expected cell frequencies. In Table 5-9 we have listed the 
expected cell frequencies in parentheses; an example is the expected value in the second row and third 
column, i.e., (61)(27)/(137) = 12.0. The calculated value of chi-square is 

X\n) = 10.86 

whereas the upper 5% point of chi-square for 12 df = 21.0. Hence our judgment is that the answers given 
and the major functions or jobs are not associated, i.e., are independent. This further means that, whether 
or not the table of data and the conditions under which the data were taken might appear suspicious, we 
are not able to document conclusively that the lack of objectivity is estabhshed. Thus IPR's must be 
worthwhile. 

TABLE 5-9 

SUMMARY OF RESULTS OF IPR QUESTIONNAIRE 
(By major function) 

Manager Supervisor Engineer   Policymaker   Technician      Totals 

Answer (Number responding as indicated by cells) 

Good in Theory and 45 12 10 1 6 74 
Good in Practice 

Good in Theory and 27 9 16 6 3 61 
Poor in Practice 

Poor in Theory and 
Good in Practice 

Poor in Theory and 1 0 1 0 0      • 2' 
Poor in Practice 

Totals 

45 
(39.4)* 

12 
(11.3) 

10 
(14.6) 

1 
(3.8) 

6 
(4.9) 

27 
(32.5) 

9 
(9.4) 

16 
(12.0) 

6 
(3.1) 

3 
(4.0) 

0 
(0) 

0 
(0) 

0 
(0) 

0 
(0) 

0 
(0) 

1 
(1.1) 

0 
(0.3) 

1 
(0.4) 

0 
(0.1) 

0 
(0.1) 

73 21 27 7 9 137 

*The numbers in parentheses are expected values. 

As an afterthought, the reader will notice that the last two rows of Table 5-9 appear to be superfluous 
and really give no information whatever. Moreover, some readers would question our not using the Yates 
continuity correction. With regard to the latter point, we could refer our calculated value of chi-square to 
a table of the cumulative probability integral of chi-square for 12 df and use Cochran's recommendation, 
which places the observed chance at the 53% or 54% level. Therefore, the observed chi-square, with or 
without the continuity correction, is so far from the 95% point of 21 that adjustment hardly seems worth- 
while. 

With regard to the lack of positive responses in the last two rows of Table 5-9, we urge the reader, as an 
exercise, to use only the first two rows of data and to obtain new column totals and a new table total. He 
may calculate the newly observed chi-square and then draw his own conclusions. 

Finally, for the so-called classical method of chi-square analysis, we come to an interesting point. We 
have used only 12 df; since there were 19 df originally, what about the others? It is easy to see in this con- 
nection that the number of df for rows amounts to 3 df, and for columns it is 4 df, which accounts for all 
19 df. We could make a further analysis of the row and column variations although it seems to be of little 
interest, and we will explore this problem further in the sequel by using Kullback's information theory ap- 
proach to analyze two-way tables. 
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5-7.3    KULLBACK'S INFORMATION THEORY ANALYSIS OF TWO-WAY TABLES 

In contrast to the classical procedure for analyzing the data of a two-way contingency table, we 
will apply the principles of Kullback's MDIS approach to the problem, i.e., an extension of the 
analysis in par. 5-7 for 2X2 tables. Refs. 26 and 28 are cited as two of the major pertinent articles con- 
cerning the rXc contingency tables. 

In connection with the information theory approach for analyzing rXc tables, we should keep in 
mind that originally in par. 5-5 we started with "probability" tables of TT, p, and p* and converted 
the analysis to deal with the observed numbers, i.e., x{ij) and the marginal predictions x*0;)- In 
fact, we used the MDIS 

2nI{p:p*) = 2I{x:x*)=l^I.x{ij)\n[x{ij)lx*{ij)] (5.34) 

which is distributed asymptotically as chi-square under the null hypothesis with an appropriate 
number of df depending on its composition of terms. Recall also that the minimum discrimination 
information statistics are used to measure the closeness of resemblance of one table to another since 
this is their basis for analysis of independence, no interaction, or association, etc. We see, therefore, 
that for a rXc table the x*{ij) are determined from the appropriate marginals just as they were for 
the classical procedure because this provides the minimum discrimination information, and then Eq. 
5-34 may be used to test for independence of row and column effects. 

The MDIS of Eq. 5-34 is quite a general one indeed since it extends to a three-way table involv- 
ing x{ijk), ox to a four-way table with frequencies x{ijkl), and to many-way contingency tables as 
well. Thus KuUback's approach applies to many, many different Army problems involving con- 
tingency table analysis. 

For the general many-way contingency tables, the MDIS's have a very important property—the 
Pythagorean property—which is very useful in analysis. The simplest form of the Pythagorean 
property is expressible in a fundamental theorem by Kullback, which states that 

ll{x:x*) = ll{x*2.x*) + ll(x:x*) (5-35) 

where the subscript 1 refers to a set H^ of given marginals and the x* corresponds to a set Hi of 
given marginals, which is included in the set H\, which will be illustrated in the discussion that fol- 
lows. The fundamental theorem states that the MDIS under consideration can be divided into two 
parts; one is referred to as the measure of effect term represented by the first term on the right-hand 
side (RHS) of Eq. 5-35, and the second is referred to as a goodness of fit term represented by the 
second term of the RHS of Eq. 5-35, which results in a test for the existence of any interaction ef- 
fects. Moreover, this unique Pythagorean property also extends generally to contingency tables of 
any order (Refs. 26 and 28). This means that a very general analysis is available through the Kull- 
back information theory approach, which proceeds from first testing the significance of one-way 
marginal effects and a first-order interaction to a test of two-way marginal effects and a second- 
order interaction, etc., and finally to the highest order interaction term. For two-way contingency 
tables either the row total effects, using a hypothesized value ofp,..or the column total effects, using 
a hypothesized value of p.^, could be tested for significance, and in practice they would most often 
be significant. Then one would proceed to test the first-order conditional: and finally by subtracting 
the two-way marginal variations and first-order interaction, one usually would obtain the second- 
order interaction as the primary test of independence. It is important to know the appropriate 
number of df of chi-square at each stage or for each test. Unless one is familiar with this approach, 
he will want to study Refs. 26 and 28. For the two-way table the determination of the number of df is 
relatively straightforward—there are {r - 1) df for the rows; (c - 1) df for the columns; r{c - \) df for 
the first conditional interaction when row variations are first subtracted from the total or c{r - 1) df 
for the case in which the column variations are first subtracted from the initial total; and finally 
when row, column, and conditional information is subtracted from the initial total, one reaches the 

5-40 



DARCOM-P 706-103 

residual interaction or independence test based on (r - 1) (c - 1) df. The entire process and a routine 
for the general analysis are best illustrated by means of an "analysis of information" table, or 
ANOVA, along with a suitable example (Example 5-9). 

Example 5-9: 
The Army invited competitive proposals from three of the better machine gun (MG) manufacturers for 

a new, lighter weight MG to replace the current standard MG. We designate the competing manu- 
facturers by A, B, and C and the standard MG by S. To select the best MG, it was decided with the ad- 
vice of high Army officials that pop-up targets in a simulated combat environment would be fired upon 
with each competitive MG, and the number of hits or "kills" recorded. For the experiment each manu- 
facturer would produce 10 prototypes, from which one MG would be randomly selected to compete with 
a current standard MG also randomly selected from available MG's. All four competitive MG's would be 
fired randomly by one of the Army's top machine gunners. As a secondary part of the experiment, each 
MG would be fired until a stoppage of some kind occurred, in which case, and as another issue, the re- 
liability of operation would be evaluated even though the primary focus in the simulated combat environ- 
ment test is on the analysis of the proportion of hits. The final results of the experiment are brought to- 
gether in Table 5-10, which is a 2x4 contingency table to be analyzed to test the hypothesis that the pro- 
portion of hits is independent of the different MG's. 

TABLE 5-10 

RESULTS OF MG FIRING EXPERIMENT 

Machine Gun Identification 
A B C S Total 

Results 

Number of Hits 
Number of Misses 

Total 45 76 67 13 201 

Table 5-10 indicates that a stoppage for manufacturer A's machine gun occurred at 45 rounds fired, 
that his MG obtained 31 hits in the 45 rounds fired, etc., and finally that the current standard MG gave 7 
hits in 13 rounds fired before a stoppage occurred. The number of rounds to a stoppage could be analyzed 
as a rehability evaluation by using the methods of Chapter 21 of Ref. 3, for example. Although for the 
purposes of a contingency table study or analysis, we will study only the number of hits and misses. Also 
as a more complex type of problem, one might consider truncating the experiment at points of stoppage 
in a more refined analysis. In any event, we will view the problem only as a two-way contingency table to 
illustrate whether the different MG's do in fact show dependence concerning the number, or proportion, 
of hits and misses. 

As a preliminary view of the contingency table experiment, we might expect some differences between 
the MG's of the different manufacturers—especially since they are possibly competing for a production 
contract for the best weapon. Moreover, as far as the two rows are concerned, these involve only the 
number of hits and misses and thereby require no special analysis of such a variation. Thus it seems clear 
that one would be concerned primarily with the analysis of the interaction term. Nevertheless, all per- 
tinent and ancillary information is brought together in Table 5-11, which includes the general equations 
for the computation of information for two-way contingency tables. (Chapter equation numbers are at the 
RHS.) 

Note that for Example 5-9 we have calculated the numerical value of the information for only the final 
interaction term, i.e., the independence test of Eq. 5-40.* As contrasted to the observed chi-square value 
of 12.34, one may calculate the observed value of the classical chi-square statistic according to, for ex- 
ample, the next to last factor of Eq. 5-31 for the whole table of Table 5-10. If this were done, one would 

*Eq. 5-40 is in Table 5-11 on p. 5-42. 
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TABLE 5-11 

TWO-WAY ANALYSIS OF INFORMATION TABLE 

Component Calculation of 
Due to Information df Information!/df 

Total 2SSx(y) In{x(y)/[«/?((/■)]} re - \ 7 (5-36) 

Rows 2SSx(i.)ln{x(/.)/[«/'(/.)]} r-\ 1 (5-37) 

Conditional 

(T«talless 22Sx(ty)lnr^<'>jP<':n r(c - 1) 6 (5-38) 
rows) ^      l_-^('-^^(^/M 

Columns 27:1X{.J)\D {x(.j)/ [np(.j)]\ c-l 3 (5-39) 

Independence 

(Conditional 27:i:x{ij)\n\   """^j'l   1 (r-l)(c-l)    12.34 3 (5-40) 
less columns) lx{i.)x{.j)   J 

find that the observed classical chi-square would be 12.13. By way of comparison, the two calculations of 
chi-square by the two different approaches to the analysis of contingency tables are about equal, as one 
might expect, and therefore, serve as a check. Moreover, the observed value of chi-square, i.e., of 27, with 
3 df is highly significant because the corresponding probability is about 0.007. Consequently, we conclude 
that the results of the test are highly dependent on the MG manufacturers and, in particular, that differ- 
ent manufacturers' weapons will give different true hit probabilities. It appears, therefore, that manu- 
facturer A may have the higher hit probability, i.e., about 31/45 = 0.69, and that the standard weapon 
has a hit probability of perhaps as low as 0.54 in addition to fewer rounds to a stoppage. It also could be 
that manufacturer A may have a problem in reliability as compared to manufacturers B and C since the 
number of rounds to a stoppage is lower, i.e., 45 versus 76 and 67, respectively. We will not go into an 
analysis of rounds to stoppage, i.e., the reliability, any further in this example. (See Ref. 3.) 

Finally, we return to the numerical calculation of information for the total table based on {re - \) df, 
the row variations, the first conditional term, and the columns. For these terms, or Eqs. 5-36 through 
5-39, the true unknown probabilities piij), /?(/.). and p(.j) are needed. If sound values for the these param- 
eters were available from the physical aspects of the problem, they could be used and all information cal- 
culations could be made. However, since this is not the case, we have tested for significance only for the 
independence, or final interaction, term of Eq. 5-40 since no information beyond that available from the 
experiment is required. We also remark in this connection that it does not seem at all desirable to hy- 
pothesize that the individual cell probabilities/>(//) should be taken to be \/{nrc), or, that is, the condition 
of a uniform distribution of hits. In fact, there is a much more logical procedure by which to obtain 
theoretical frequencies for this particular test or experiment, especially if one has appropriate data on the 
performance of the weapons from past or ancillary tests. By knowing the delivery accuracy of the 
weapons and the target size and shape, one could calculate the probabilities of hitting and use these as the 
basis for the/?(//), pii.), and p{.j). Thus many experiments could exist for which appropriate theoretical cell 
probabilities may be determined; however, on the other hand, there also will be many, many cases in 
which only the observed data of the experiment at hand can or should be used. In summary, care should 
always be exercised in determination of appropriate theoretical frequencies if such information is to be 
used to draw sound inferences. Finally, one sees the desirability of planning the experiment beforehand to 
be sure not only that the best or appropriate observations are taken, but also that any possible important 
physical theories or conditions are tested for significance. 

Having covered two-way contingency tables, we now direct our attention to three-way and higher order 
contingency table analysis procedures. 
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5-8    COMMENTS ON THE ANALYSIS OF THREE-WAY AND HIGHER ORDER 
CONTINGENCY TABLES 

The principles we have discussed so far in this chapter for the statistical analysis of 2X2 and two-way 
contingency tables extend, but often with some difficulty, to three-way and higher order tables. In fact, 
both the classical chi-square approach and Kullback's information theory approach may be used, and 
even as a check, for the higher or-der tables. Even though both techniques result in the final use of a chi- 
square computation, the reader may see that the information theory approach does indeed appear to 
handle problems of interest in a more elegant manner than the classical chi-square developments. An ex- 
cellent reference for the analysis of higher order contingency tables using the information theory approach 
is that of KuUback, Kupperman, and Ku (Ref. 28). This reference gives the theory and several illustrative 
examples for the two-way and the higher order contingency tables, which the Army analyst may follow 
and use to advantage in his work. The classical chi-square approach to similar problems is covered and 
documented in the references and especially in the bibliography. Hence we will conclude this introductory 
account of modern analyses of contingency tables by citing some typical examples that the reader may 
find of some value in his applications of higher order tables. 

With reference to some of the recent, typical Army applications, it seems that the US Army Opera- 
tional Test and Evaluation Agency, with Kullback as a consultant, has made an extensive number of ap- 
plications of the information theory approach to experiments involving operational test type data for 
Army personnel and equipment. For example. Withers (Ref. 37) cites the use of the Kullback funda- 
mental theorem, or the Pythagorean relation, with applications to several particular operational test and 
evaluation programs. One covered an operational test of the DRAGON antiarmor weapon and involved 
the use of a 3X2X2 contingency table. A principal point of inquiry concerning this test was the selection 
of the best of three different training programs to produce DRAGON gunners capable of engaging both 
stationary and moving targets. In this operational test 108 missile firings by three groups of 36 gunners 
were arranged into a 3X2X2 contingency table for analysis. It was learned that although the three dif- 
ferent training procedures had significant effects, the target mode, i.e., stationary or moving, had larger 
effects on hit probability. Moreover, some quantitative information on the relative importance of both the 
training procedures and the target mode was extracted from the experimental data. 

Another operational experiment involved the squad automatic weapon, and the statistical analysis is 
discussed by Withers (Ref. 37). The purpose of this test was to determine the operational effectiveness of 
three different types of squad automatic weapons. In a subtest of the overall experiment, 40 silhouette tar- 
gets depicting enemy fire teams of squad size at four different ranges were randomly presented for engage- 
ment. The response variable for this test program and analysis involved the percent of targets hit. The 
total amount of data represented over 9000 firings, of which 263 targets were hit out of 1804 engagements, 
and was arranged into a four-way contingency table for analysis. As a result, there were insufficient data 
to show, even for such a large sample, that the three different types of squad automatic weapons had any 
effects on target hitting capability. Target range and weapon burst size effects were also analyzed and are 
reported in Ref. 37. 

Another operational experiment for which a contingency table analysis was advantageous involved two 
candidate target location radars for artillery; these data are also reported in Ref. 37. In this case, opera- 
tional test data for the two target location radars were collected over six ranges to the various targets and 
against four threat levels for the detected and the missed locations; this gave a 2X4X6X2 contingency 
table for analysis. The interested reader may consult Ref. 37 for further details. 

Finally, and with reference to the analysis of contingency tables in general, the Army analyst could well 
use both the classical chi-square approach and the information theory approach in many of his applica- 
tions to compare the two to determine which continuing method of analysis is preferable. A new reference 
to study is that of Gokhale and Kullback (Ref. 38). 

5-9    LOGLINEAR ANALYSES OF CONTINGENCY TABLES 

In the interest of a more complete and up-to-date account of some of the basic principles for the analysis 
of contingency tables, many of the models or equations used to determine statistical significance invariably 
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involve products. Thus it seems quite reasonable to take logarithms and perform the analysis on a loglinear 
scale. In fact, this would often amount to transforming the original data to a scale that could be more 
amenable to meeting the assumptions of the analysis of variance technique. Moreover, the KuUback infor- 
mation theory approach to the analysis of contingency tables more or less naturally involves the use of 
logarithms in a rather basic way, as indicated, for example, in Table 5-11. Indeed, we have already referred 
to a paper (Ref. 8) that describes and relates the loglinear methods, or models, of analysis to some of the 
other approaches. Finally, it is also true that the loglinear techniques invariably lead to the ultimate use of 
equivalent, approximate chi-square values for the determination of statistical significance! Have we not 
really seen all along in this chapter that although there are what appear to be some different approaches to 
the problems of the analysis of contingency tables, we appear to wind up with equivalent analyses, more or 
less? Thus our approach has been through the application of some of the more classical techniques that 
have been published. 

Nevertheless, the loglinear approach does represent a very important recent treatment of contingency 
table analyses, and many readers will no doubt find wide use of the techniques. In this connection, Fien- 
berg has published a book (Ref. 7) on loglinear methods we heartily recommend to the reader. 

As we have indicated, our purpose in this chapter cannot be to discuss extensively each and every 
method of analysis that the various authors have advanced. In fact, we find especially for contingency 
tables analyses that one very competent statistician will favor the classical approach, another one may 
favor the information theory approach, and still another the loglinear approach. Moreover, often there 
will be very little advantage of one method over the other. Thus we believe and take the position that 
what may well be needed is a very solid comparison of each approach, perhaps with real data, to show the 
advantages of one over the other in both the more simple and the multidimensional areas. Nevertheless, 
we might conclude the loglinear discussion with a useful significance test involving Fisher's odds ratio or 
the observed "cross-product" ratio. 

Fisher's odds ratio, based on the true, underlying/?: and pi for the 2x2 contingency table, was defined in 
Eq. 5-24. Let us now, for the sake of somewhat shortened notation, define jc^as the observed frequency in 
the ith row andyth column of a contingency table. (Here ij = 1,2 only.) The observed odds ratio then be- 
comes 

a = XiiX22/(xi2X2i). (5-41) 

We recall in this connection that if the true a = 1, the variables corresponding to rows and columns are in- 
dependent, whereas if a 7^ 1, they are dependent or associated. Consequently, we have available a chi-square 
test for the null hypothesis (Ref. 7), which is 

X^ =  (Ina)V'Ss 
=  (lnA:ii-l-lnx22-lnxi2-lnx2i)- (5-42) 

X(l/xi,+ I/X12 +I/X21+ I/X22)"'. 

Hence it is seen that in terms of a loglinear-type model we also have a very useful approximate chi-square 
statistic for applications. 

The reader is encouraged to read widely on these issues concerning contingency table analyses and to 
develop the better methods for his own applications. 

5-10    SUMMARY 

We have presented a discussion of both the classical chi-square approach and the more recent informa- 
tion theory approach by Kullback on the analysis of contingency tables. The very important and widely 
used 2X2 contingency tables have been covered in some depth to indicate modern methods of analysis, 
and the concepts of the Fisher exact test, the comparative binomial trials, and the double dichotomy 
methods of analysis are presented for the analyst. Moreover, for the 2x2 tables, methods of finding confi- 
dence bounds on the difference of two proportions, the ratio of the two proportions, and the odds ratio 
are covered along with tables to apply to these statistical problems. 
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Analyses of two-way contingency tables by using both the classical chi-square and the Kullback infor- 
mation theory approach are given in sufficient detail so that the Army analyst may have a readily avail- 
able authentic account for his applications. Finally, some discussion is given of three-way and higher 
order tables so that the analyst may be prepared to select appropriate literature as required for his par- 
ticular problems. 

Many illustrative examples are presented to give a view of just how the general theory may apply to the 
analysis of contingency tables in broad Army use. 
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CHAPTER 6 

LEAST SQUARES, REGRESSION, AND FUNCTIONAL RELATIONS 

The use of least squares procedures to fit lines, curves, or functional relations to observational data 
represents one of the oldest forms of statistical endeavor. The topics of least squares and regression, therefore, 
are presented in considerable statistical detail so that the analyst can have available a very comprehensive 
coverage of the subject. Presented first are the simpler concepts of fitting a line to data for the case in which 
only the dependent variable is subject to error and the independent variable is free of error. This is extended to 
cover the case in which for linear fits both the dependent and independent variables are subject to errors of 
determination. Estimation problems and the use of appropriate significance tests are discussed in detail. 

The fitting of planes, hyperplanes, and polynomials are next covered in detail, along with the case in which 
the independent variables are spaced equally and orthogonal polynomials can be used. 

Functional relationships, or the physics of the appUcations, are stressed along with least squares procedures 
in order to obtain sound predictive equations. Moreover, in nonlinear or generalized least squares problems 
relating to particular applications, the clever choice of the function form may lead to best results, especially for 
the important practical case of errors in both dependent and independent variables. 

Many applications of the theory to observed data are discussed in the form of examples. 

6-0    LIST OF SYMBOLS 

Ai = transformed coefficients determined for the ortiiogonal polynomials Pr{ti) as in Eq. 6-123 

Axx = ntx^ — (l.xf 
Axy = n'S.xy — il.x){ly) (may use any letter subscripts) 

a = estimate of a 
a, = coefficient of polynomial term in Eq. 6-132 

flo = value of a 
BHN = Brinell hardness number ' 

BL = ballistic limit of armor 
BL = barrel length, in. 

b = estimate of P, as is )3 
bi = original coefficients in a polynomial, / = 0,1,2, ..., as in Eq. 6-121 
bj = estimate of the j8, 

bxy = slope of regression line of x on j 
by  = slope of regression Hne of >' on x 

[C] = inverse matrix given in Eq. 6-147 
Cov = denotes covariance of a quantity 

c = constant 
c = estimate of y 

Cij = represents the //th element of the inverse matrix [C] 
[A] = denotes the /th iterative stage of a computation to determine the vector value [/x]—see 

Eqs. 6-170 through 6-173 
d = constant 
di = /th error in y, i.e., for the observation yi = 17, + di 

dxi = Xi — Xi-\ = first forward difference in the jc, 
dyi = yi — yi-\ = first forward difference in the yt 
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E() = expected value of ( ) 
e = constant value 
e = designation of error 

e = q vector of errors, some of which could be zero 
e, = error (of measurement) in x,, if applicable 

Fo{2,n — 2) = function in Eq. 6-27 following the F distribution 

Fy = Fy(2,n - 2) = upper y probability level of the Fisher-Snedecor F distribution for 2 and 
^ {n — 2) degrees of freedom 

/ = fiz.d) = k vector of functional forms 
/= constant value (or a function) 

[/] — [/(-^.M)] = vector of functions 
/(M) = function of the true part of the independent variable x when it contains error; the function 

/is fitted to data. 

fz = fz{z,d) = Jacobiari matrix of partial derivatives of/with respect to z 

fe =fe{z,6) = Jacobian matrix of partial derivatives of/with respect to 6 
[/'(M)] = denotes the Jacobian matrix of Eq. 6-169 

h = constant 

Ii = first instrument 
h = second instrument 
k = constant (also degree of a polynomial) 

k = denotes the number of components of a functional vector {k is a scalar) 
MR = mass of residual fragment or projectile 

MV = muzzle velocity 

rris = striking mass of projectile against armor 

N(0,o^) = designates a normal distribution with mean of zero and variance o^ 
n = sample size 

Pr(ti) = orthogonal polynomial in t, for the rth degree (likewise for 5 in place of r) /• = 0,1,2,... 
p = denotes the number of parameters fitted in least squares (p is a scalar) 

plim = probability limit 
q — denotes the number of components of the z vector {q is a scalar) 
R = variance-covariance matrix of the errors e 
r = degree of a polynomial 
r = Kxy = sample correlation coefficient 

r = designates readings of the first instrument Ii 
Sdxdy — sample covariance of dx's and c/y's 

Sxy = sample covariance of x and y = Axyl[n(n — 1)] 

S — Sy^ = sample variance of residuals from least squares fit, i.e., observed minus fitted points 
Sdx = sample variance of the differences dxi 
Sdy = sample variance of the differences dyt 
Sx — sample variance of x (likewise for other subscripts) 

5 = designates readings of the second instrument h (two or more instruments) 
tb = Student's / for the subscript b—similar for a or other letter 
ti = linear transformation of the x, for orthogonal polynomials 

'7/2("~2) = upper 7/2 probability level of Student's / for {n — 2) degrees of freedom 
Ui = independent variable 
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Var(Z?) = Ob = E{b — pf — variance of 6 
VR — residual velocity 
Vs — striking velocity 
Vi = independent variable 

[X] = used to denote n observational values of the independent variable x in polynomial form as 
inEq. 6-151 

T 
[X] Q — general type of vector representing either the linear form of the Xi in Eq. 6-149 or compo- 

nents of an (/• — l)st power polynomial in x as in Eq. 6-150. No observations on x are 
included. 

x = usually an independent variable 
jc* — preselected or standard value of x 

x,j = /th measurement of the /th independent variable 
xo = specified value of x 
X = Xxjn = mean of x 

(x 1, J'l) = coordinates of the means of the lower third of n pairs of points (xi, yi) for /= 1, 2,..., n 
(xi, yi) — coordinates of the means of the upper third of the points {x, y) 

X  = Xx In = mean value of the x^ observations 
y = usually a dependent variable - ^ 
y' = another value of or designation for j 
y, = /th (dependent variable) observation 

z = letter to denote a dependent variable when x and y are independent variables 
z, = /th iterative stage for the vector z 

Zm — vector of measurements on the dependent and independent variables 
z, = true values of z when z is subject to error and is used as a g vector 
a = constant intercept true value 
/3 = true slope of a line 
j3, — true unknown coefficients of the linear regression terms 
^0 = specified value of ^ 
/3 = an estimate of /? 
7 = true unknown coefficient or a probability level 

Ai = determinant of ^^y-type calculations 
b = true unknown coefficient 

17, = true unknown part or component of j', 
rjo = specified value of r? ; 

d = p vector of unknown parameters in generalized least squares 
0, = /th iterative stage for the vector d 
X = Odjoc = ratio of variances of errors my to errors m x 
k, = coefficients used in orthogonal polynomials of Eq. 6-130 

[ij.] = denotes a vector of components /JL, of /x 

m — true value of the independent variable for the /th observation'—free of error 
/x, = denotes the /th iterative stage of [/u] 
f' = A.,^, = transformations of the ti as in Eq. 6-130 
p = population correlation coefficient 

p\ = designates the population serial correlation coefficient of lag 1 
Ohc = population covariance of the estimates h and c of ^ and 7, respectively 
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Oev — Standard error of measurement in y (the first subscript means "error") 
Oxy — true covariance of x and y 

a — estimate of a 
CT^ = population variance „ 
o\ — ad = o~ = population variance of errors di or residuals 

(/) = function of observed minus fitted values of the sum of squares to be minimized in Eq. 6-5 
d(t>lda — derivative of 4> with respect to a {b may be substituted for a) 

[ ] = denotes a vector or matrix 
[ J''^ = denotes the transpose of a vector or matrix. (The transpose of a column vector gives a 

row vector.) 
[ ] ' = denotes the inverse of a matrix 

6-1    INTRODUCTION 

A frequent and important practical problem in research and development is to determine an appropriate 
relationship, or the best fitting law, between variables of interest, i.e., fitting equations to data, and testing 
various hypotheses concerning the physical values or the relation of the parameters studied. In addition, and 
as usual, we would like to summarize experimental data in the form of an equation or "law" and be able to 
predict future or expected occurrences from our fitted or empirically determined law. Indeed, in many 
problems it is important to be able to place confidence bounds on the various physical parameters that can be 
estimated or inferred from the data developed in an experiment. 

Needless to say, this is a more involved problem than it may appear initially. Indeed, one should expect that 
errors of measurement will be made in practically all determinations of the values of the variables in any 
experiment. Also in many cases we encounter the additional problem of properly treating the random or 
unaccounted-for variations in addition to the underlying physical laws—or functional relations—we seek to 
sort out of the "noise". Of course, we might say that we would prefer to establish a law of enduring relationship 
between the key variables or parameters of interest, which is actually free of any measurement error or other 
variations of extraneous interest. In addition, it becomes important to know just how precise or accurate our 
final prediction is since it might be desirable to conduct more experiments, but this would depend especially 
on our subsequent uses of the fitted equation. A general but simple and enduring law makes a very definite 
contribution to science and technology. 

We should remark initially and keep in mind that the practice of transforming variables to linear functions 
or relations, as is often done in the physical sciences or in engineering—i.e., attempts toward "linearizing the 
data"—is an excellent one indeed, as we will see in the sequel, because it helps to establish relationships 
between complex quantities and to simplify much of the resulting analysis. Furthermore, it usually is not 
difficult to transfer statistical or physical statements about the transformed data back to equivalent ones 
about the original variables. For this reason, we will cover the case of linear least squares, or linear regression, 
in considerable detail and then consider the functional or "structural" relations of the variables involved. We 
will, therefore, start with the case of the simple linear regression between an independent variable that is 
assumed to be free of measurement error and the dependent variable that is measured or found with error of 
determination. After covering some particular points of practical significance, we will proceed to a discussion 
of the more complex cases. It is highly desirable in this connection to distinguish between "controlled" or 
"fixed" variables, random variables or variates, and the errors of measurement that may be either of a random 
or systematic nature. 

Chapter 5 (Ref. 1) contains an excellent introduction and very useful account of the problem of fitting 
straight lines to data. In fact, it gives step-by-step procedures that may be easily followed along with all of the 
statistical tests of significance needed for a rather complete linear analysis. Hence in our approach we will 
repeat only that coverage of Ref. 1 deemed necessary to review or to establish a sufficient background for 
more advanced topics needed to update the contents of Ref. 1 for more recent applications. Also we will 
discuss some especially useful aspects of regression and curve fitting not included in Ref. 1 and will emphasize 
the more modern statistical analyses of possible errors of measurement in one or both variables. Moreover, we 

6-4 



DARCOM-P 706-103 

will dwell at some length on linear least squares since they will continue to be very widely applied and the linear 
methods are prerequisite to the analysis of many of the nonlinear techniques. 

In many ways our approach to least squares and curve fitting is different from the usual methods or forms of 
computation practiced as a result of some of the usual textbooks on statistics. We recommend a rather special 
form of key parameters in the course of the calculations that are free of rounding error until the last few steps. 
This, we believe, is an advantage in many applications. 

6-2 LINEAR LEAST SQUARES OR REGRESSION FOR A DEPENDENT VARIABLE 
(MEASURED WITH ERROR) AND AN INDEPENDENT VARIABLE (WITHOUT 
ERROR) 

6-2.1    GENERAL 

In dealing with experimental data involving two variables x and y—for example, time and distance 
measurements or muzzle velocity and range relations—there may appear to be a trend or some mathematical 
relation (linear or otherwise) between the plotted values of x and y. We will therefore be interested in 
estimating the best relation between x and y and in judging statistically whether or not the determined relation 
is a significant one. The method used is generally referred to as the "least squares"technique, i.e., the process 
of finding an appropriate "regression" of >> on x, although there are other methods of fitting a selected law 
between two or more variables, e.g., the technique of maximum hkelihood (ML). In the method of least 
squares, we assume a model or relation between the variables—such as the linear, quadratic, or exponential 
forms—which involves certain unknown parameters or coefficients, and then fit the hypothesized curve to the 
two or more variables so that the sum of squares (SS) of the residuals or (vertical) deviations from the fitted 
curve is a minimum. The significance of the fitted curve, or its key parameters, will be tested statistically and 
otherwise established. Also if considered desirable, confidence bounds may be placed on the estimated 
parameters or coefficients, the fitted curve, and the predictions for future observations. 

Our approach will consist of combining the physical and statistical points of view insofar as possible. Thus 
our models and assumptions will consider both the functional or structural relation between true values of the 
variables and the statistical treatment of variates or errors of measurement and their probability distributions. 
In the model of this paragraph the independent variable is assumed to be free of error, and hence only the 
dependent y variable is subject to error. 

6-2.2    THE LINE—ONE VARIABLE (j) SUBJECT TO ERROR 

Suppose we are dealing with two observable variables, x and y, which are connected by an apparent linear 
relation. Suppose further that the dependent variable >' not only depends on x but is also subject to (random) 
errors of measurement. That is, y as measured physically includes an error of measurement, whereas x is a 
controlled or "fixed" (mathematical) variable that is free of any measurement errors or almost completely free 
of errors as compared to the measured dependent variable y. Over the interval of physical interest in an 
experiment, it will be assumed that the variability, or the variance, in the errors of >' is essentially constant. The 
mean value of ^^ depends on the value of x considered, and the variance of >' about the hypothesized linear 
relation is independent of the value of x, i.e., the variance or standard error about the hypothesized linear 
relation or fitted line is independent of the value of x, i.e., constant over the range of x used in the experiment. 

To illustrate some of these points more clearly, we have selected a particular, yet rather simple, example 
from the American Society for Testing and Materials (ASTM) Manual on Fitting Straight Lines (Ref. 2). The 
observed data were obtained in a calibration experiment of a new method (gravimetric determination) for 
estimating the amount of calcium in the presence of large amounts of magnesium. The experimental data are 
given in Table 6-1 for known amounts of CaO (x) and the observed amounts of CaO found by the new method 
(y). Thus we can say that x is free of (measurement) error and that the new method y may be subject to errors of 
determination. 

The basic reasons for selecting this particular example should be clear—the independent variable x should 
be quite free of error and the dependent variable^ for any new method should be judged along with the known 
X in order to study its properties, especially to learn of its precision and accuracy in case the new method is 
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TABLE 6-1 
GRAVIMETRIC DETERMINATION OF CALCIUM IN THE PRESENCE OF MAGNESIUM 

X y 
CaO Actually Present, mg CaO Found by New Method, mg 

20.0 19.8 
22.5 ■ ■■■^    • 22.8 
25.0 24.5 
28-5 27.3 
3L0 31.0 
33.5 35.0 
35.5 35.1 
37.0 37.1 
38.0 38.5 
40.0 39.0 

Copyright, ASTM, 1916 Race Street, Philadelphia, PA 19103. Reprinted/Adapted with permission. 

adopted. A plot of ;^ against x would indicate a nearly linear relation, as it should. Also since x and y may be 
considered to be measurements of the same quantity, the slope of the fitted line should be 45 deg, and 
moreover, the line should pass through the origin for the assumption of linearity and good calibration of'both 
methods. In addition, the error of determination or measurement of the new method should be acceptable. It is 
our purpose, therefore, to consider each of these questions in detail. 

Furthermore, we should remark that the measured x and j are not random variables, but there is a physical 
(linear) or mathematical relation between the two. In this particular calibration experiment, the CaO actually 
present, or x, has been varied purposely over the range so that y will correspondingly vary but with the 
probable addition of random measurement errors. In fact, the precision of measurement of the new method j 
could be determined by the techniques of Chapter 2 because those models include the measurements of the 
same quantities. However, we will delay any such calculations using the methods of Chapter 2 until we have 
fitted the line. 

The n observed values of x and j are represented algebraically by {xuyx), (^2,72), (ATJ, J3),..., {xi,yi),..., (x„, 
yn). 

The linear model or assumption considered for the relation between jc and j, i.e., the observed pairs (x„ >>,), is 

Xi = ixi (6-1) 

yi = a-\- Pni + d, = r]i + di (6-2) 

where 
Mi = true value of the independent variable for the /th observation—free of error 
a = constant intercept true value 
/? = true slope of line 

di = /th error in y, i.e., for the observation y, = TJ, + dt 

r;, = true unknown part, or component, of >',. 

We use the notation of Eq. 6-2 to indicate that the measured value y contains a true part T?, and possibly an 
error of measurement designated by di. Moreover, x, is considered to be free of any measurement error since 
we can set its true value M< in this case. (If x, were to contain an error of measurement under the hypothesis, we 
would write it as x, = m + e„ in which the first factor is the true value and the second is an error in the 
measurement of x.) The relation given by 
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r] = a + Pn (6-3) 

is called the true (functional) relation between the parts of jc and>' in which we are interested. It is also the true 
regression in our simple model. 

The errors dt have mean or expected value, E{di) = 0, and variance in the errors E[di — E{di)f = al=al or 
simply a , the constant variance about the fitted regression line. 

Thus the mean value of an observed y for a given value of jc is 

E{y) = E(a + px + d) = a + px = a + pfjL 

as in Eq. 6-3. 
The variance ofy about its population mean, a + fix = a + Pn/is E(y — a — fixf = E{d]) = oj, = oX i.e., the 

population "variance of residuals", or the variance of an individual observation about the regression Hne. 
Of course, for a small sample of n observed pairs {Xi,yi), it will not be possible to estimate a and ^ very 

precisely. OUT fitted line will therefore be of the form 

y = a + bx (6-4) 

where a and b are estimates of a and p, respectively, and are therefore subject to "error" or statistical variation. 
We estimate a and fi from a and b, respectively, by determining a and b so that 

0= f (yi-a-bxif •• (6-5) 

is a minimum. • 
Now •. - ■■. 

-^ = -2 £ (y, - fl - bxi) = -2(Xyi - na - bXxd (6-6) 
da i = 1 .       , ,-. 

and we find also that ,        . 

-^ = -2X^(yi-a-bxi)xi--2{'Xxiyi-aXxi-bXx^). (6-7) 

Equating d(f>/da and dcjyjdb, respectively, to zero, we obtain the well-known normal equations: 

na + {Xxi)b = Xyi (6-8) 

(Xxi)a + {Xx^i)b = Xxiyi. (6-9) 

Solving Eqs. 6-8 and 6-9 for a and b, we find 

a = esta _ (Xydaxj) - gxivdaxi) 

= y - bx, or ^ (Xyi - bXxi) .     (6-10) 

^ = '^'^=^7 ^     . (6-11) 

where 
A^^ = nXx] - i^Xi)^ (6-12) 
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A,y = nXxtyi - {Xxi){Xy,). (6-13) 

These quantities are established for computational purposes since they may be used free of rounding error and 
have advantages the reader will appreciate in what follows. 

The variance of residuals oj^ = a\ i.e., the variance of an individual deviation from the fitted line, is 
estimated from 

n{n-2)\ A,, I 

(6-14) 

The quantity 

_      _     A ̂xy (6-15) 

V AxxAyy 

is called the product moment correlation coefficient. For very large samples 

ol^ = ol = ol{\-p')* _ (6-16) 

where p is the population correlation coefficient between the variables x and y. Note that also 

P = pOylox. (6-17) 

where 
Ox = standard deviation of x 
Oy = standard deviation of y. 

Now it can be shown that the mean, or expected, values of a and b are a and P, respectively, and therefore are 
unbiased estimates. 
That is, 

Eia) = a (6-18) 

and 
Eib) = P (6-19) 

since A^x is a constant, EiA.y) = PAxx + EiA^d), E{Axd) = 0, and E{a) = E(y - bx) = a + Px - px = a 
where 

X = 2JC/« = mean of X 
y = XyIn = mean of y. 

Under these assumptions, the following can also be proven: 

• Var(^) = ol = E(b - pf = {^d = U^o' (6-20) 

and 
E{Ald) = no^Axx (6-21) 

*To determine the goodness of fit of the Une, many texts advocate—based on this equation—the use of /?^ = 1 - SljSUince, when R- 
is near unity, the variance of residuals is near zero and a "good fit is obtained" for the overall line. 
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2 —2   2 2^    2 

Var(a) = al = E{a - af = E{y - bx - af = — + —— = —— (6-22) 
'* ^xx ^xx 

the expectation of the cross-product term vanishing. Finally, the expectation of Eq. 6-14 is 

EiS}j = o'd = o\ (6-23) 

Since the x's are free oferror under the assumptions, it can be seen from Eqs. 6-10 and 6-11 that a and b are 
both linear functions of the errors, c/,. 

Eqs. 6-23, 6-22, and 6-20 give, respectively, the mean value of the computed variance of residuals Sy , which 
is based on {n — 2) degrees of freedom (df), and the variances of the estimates a and b. Thus if we assume that 
the errors di are normally distributed—and since Sy^ = S^ is an estimate of a^ based on (n — 2) df—then for 
independence of the dt, and b and 5, we have that 

tb = t{n — 2) =         (6-24) 
'n 

follows Student's t distribution with {n - 2) df. Hence Eq. 6-24 can be used for testing the hypothesis that /3 = 0 
or that the true slope ^ equals any other constant value y3o we may choose. Moreover, a confidence bound on 
the true unknown value of fi may be found from Eq. 6-24. 

The customary test of significance for the intercept widely used in textbooks on statistics is—in a manner 
similar to Eq. 6-24—given by 

f. = f(.-^^= (^-a)v^   ^ a-a (6-25) 
Sy^XxJ S^/l/n+nx^Axx 

which follows Student's / distribution with (n — 2) df under the null hypothesis. Futhermore, a confidence 
bound is found on the true unknown intercept a from Eq. 6-25. The use of Eq. 6-25 in this connnection is quite 
proper if, before examining the data, we decide in advance to use the t test for a hypothesized value of a in Eq. 
6-25 or to place a confidence bound on the true unknown intercept a. It is also proper if we intend to place 
confidence bounds on ryo = a + /3xo for selected xo, in which case we would replace a in Eq. 6-25 by c + bxo, a 
by a + /3xo, and x by {xo — x). However, if we make multiple statements about the line by picking several or 
many values of x, then ?^/2 (n - 2) must be replaced by \j2Fy{l,n -2), where Fy (2, n - 2) is the upper y 
probability level of Snedecor's F with 2 and {n - 2) df. Here the probability is now > I — 7 that all such 
statements are simultaneously correct. The reader is referred to Scheffe' (Ref. 3). Thus if a confidence bound 
on a is one of many such statements, one should use, instead of Eq. 6-25, 

a ± V2F(2,« - 2)(5)\/l/« + nx^lAxx (6-26) 

where F{2,n ~ 2) follows the Fisher-Snedecor /"distribution with 2 and (« — 2) df. 
If we pick some values of x, say x* (including x = 0) and substitute this value of x = x* into the equation of 

the fitted line, i.e., into >> = a + Z)x*, then all confidence bounds desired may be found from Eq. 6-26 by 
replacing a by a + bx*, the x^ under the radical by (x* - x)^ and proper selection of the percentage point of F 
by using Scheffe's theorem (Ref. 3). 

To test the joint hypothesis that a = ao and /? = /So, we use the F distribution with 2 and {n - 2) df, i.e., 

Fo(2, n - 2) = [n{a - aof + 2nx{a - ao)ib - Po) + (W) {b - y8o)']/(25''). (6-27) 

A joint confidence region on a and fi may be found from Eq. 6-27 by determining various pairs of ao and /So for 
which Eq. 6-27 gives the values of F not exceeding the selected confidence level Fy (2, n ~ 2). 
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A confidence region on any number of future values of;' for given values x = xo may be found from 

a + bxo+ \/2F{2, n - 2){S)^\ + 1/n + n{xo - xf IA,^ (6-28) 

where we have simply added the variance of an individual, i.e., the factor one under the last radical of Eq. 6-28. 

Example 6-1: 
Given the data of Table 6-1, fit a line for the gravimetric determination of calcium on the values x actually 

present; find the standard error of residuals, and test whether the slope j8 = 1 and the intercept a = 0. 
Using the data of Table 6-1, we calculate the following: 

«=10,XA: = 311,SX'=10,100,X = 31.10,5. = 6.90,/I,, = 4279,S>' = 310.10,2/=10,055.09,>^=31.01,5^ = 
6.98, Ayy = 4388.89, Ixy = 10,074.80, A,y = 4306.90, \fs^= y/A,yl[n{n-l)] = 6.92, b = A,y/A,, = 1.0065, a 
= y-bx = ~0.2922, Sy^ = (Ayy - Alyl A,,)l\n(n - 2)] = 0.6739, and 5",,^ = 0.8209. As already indicated, we are 
particularly interested in whether the true slope of the line is 45 deg (/3 = 1) and whether the true intercept can 
be considered to be zero, indicating proper calibration for the gravimetric determination (new) method. To 
test whether /? = 1, we compute tb from Eq. 6-24 

tb = (1.0065 - 1.0000) V4279/[(0.8209) y/W] = 0.16 

which is not statistically significant at the 95% level. To test whether a = 0, we compute ta by Eq. 6-25, 

ta = (0.2992 - 0)/{0.8209[l/10 + 10(31.l)'/4279]'/'} = -0.23 

which is not significant either. Hence we conclude the slope is unity and the calibration also is correct for « = 10 
items. 

To make the joint test of hypothesis that a = 0, j8 = 1, we use Eq. 6-27 and find that the observed F{2, n — 2) 
= F(2,8) = 0.074, which is not significant at the 95% level; we, therefore, conclude that the line is indeed a good 
fit to the data. 

For any given level of CaO actually present, such as x = x* = 20, or 40, the standard error of prediction for 
that value from the fitted line, y = a + bx = -0.2922 + 1.0065JC*, is given by 

Sy^\/\ln + n{x*-x)'lA,,. (6-29) 

Thus if we take x* = 20 and substitute this value in Eq. 6-29 of the fitted line, we get its standard error 

Sy (predicted) = 0.8209 V 1/10+ 10(20 - 31. l)'/4279 = 0.51 mg. 

As already indicated, the confidence interval for a future (individual) observation vo on y, corresponding to 
a given true value of x = xo, may be found from Eq. 6-28*. Thus a 95% confidence bound on a new observed >> 
for x = XQ = 20, /o.975(8) = 2.306, is given by 

-0.2922 + 1.0065(20) ± ?a975(8) (0.8209) VH/IO + 10(20 - 31.l)'/4279 

= 19.84 ± 2.23 = 17.61 to 22.08 mg. 

(Note that the standard error for the single future observation is 0.97 compared to the value of only 0.51 mg 
based on the same point substituted into the equation of the fitted line.) 

Since x is regarded as the "true" value, measured or determined without error, then of more particular 
interest might be confidence bounds on the true amount of CaO for a given measurement by the (new) 
gravimetric method. Thus suppose we have measured y io he y = y' — 20.1 mg, then the approximate 

♦With \J2F replaced by t for a particular a priori value oi x = xo. 
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confidence bound on x, obtained by substituting j' in the equation of the line y' = a + bx and solving for x, may 
be found for the a priori y' from 

(y'-a)/b + tyi2{n-2)(S/b) \/l/n + n[{y'- a)/b - xf/A,,. (6-30) 

Thus for>-' = 20.1, substitution in Eq. 6-30 in which /„/2(« - 2) = 2.306, gives a confidence bound on x of 20.26 
± 1.15 = 19.11 to 21.41, so that the appropriate probability statement on x for y'= 20.1 mg is 

Pr[19.11 mg < True CaO < 21.41 mg] = 0.95. 

Note that we have used the fitted line to improve the accuracy of prediction, as compared to that of a single 
determination, by the new method. If the error of prediction is too large for the practical problem involved, we 
might improve on precision by taking more points (especially at the ends for a fitted line) or by concluding that 
a better measurement method is needed. 

Finally, concerning the example, we did not have a physical law or hypothesis for the fitted equation. 
Therefore, we had to use the line. In some of the later examples in this chapter, we will consider functional 
relationships or appropriate physical laws in our analyses. 

At this particular point it is interesting to use the two-instrument model of Chapter 2 and to estimate the 
standard deviation of the errors in determining both x andy. In this connection, the variance of the errors in 
the determination (or measurement) of 7 with the new method is 

^^'- 5"^^ = 4388.9/90 - 4306.90/90 = 0.911 
or the 

esta.j. = VO.911 = 0.95 mg 
where 

estCT,.,, = estimate of the standard error of measurement of _y (first subscript means error). 

On the other hand, the variance of the errors in the determination of jc, assuming the two-instrument model of 
Chapter 2, is 

(4279-4388.89)/90<0 

which is negative. Thus we must conclude that a„ = 0, or the errors of measurement in the determination of A: is 
indeed zero, as was assumed at the start. 

6-2.3    USE OF DEVIATIONS FROM THE MEAN 

Suppose that instead of fitting the line>' = a + bx, we had fitted y = ao + (xi - x), i.e., measure each Xi from its 
mean. In this case, our normal equations become 

nao + [X{xi — x)]b = Xyt 

and 

[X(x, - x)]ao + [S(x, - ^']b = Xixi - x)yi = Xxiyi - xXy, = ^f " 

But since 

S(x, — x) = Xxi — nx = 0, then nao = Xyi or 
, _ (6-31) 

«o = - Xyi = y . 
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Moreover, 

S(x; — x)yi Axy       _ Ax 
b = 

X{Xi — x)        nX{xi — x) 

which is the same as Eq. 6-11. 
Note, however, that a-ao-bx = y-bx, which agrees with the intercept a fitted from the equation y = a + bx 
as before. The importance of this result is that by a simple transformation of the independent variable, i.e., by 
choosing the origin of the analysis for x at its mean value, we can always eliminate the constant term if desired. 

In Eq. 6-25 the variance of the intercept a without transformation of data is 2x /Axx = Od. The variance of 
ao, however, is odIn, as one might surmise since it is simply the variance of an average value. 

6-2.4    TRANSFORMATION OF ORIGINAL DATA FOR LINEAR LEAST SQUARES 

In many problems the original observed variables x and y may be so large (or small) that it would be 
inconvenient to work directly with them. Hence we may want to subtract some constant from one or both 
variables or to multiply or divide the original numbers by some constant factor. Thus suppose we transform 
the Xi and yi as follows: 

Ui = ciXi-h)    ■       Vi = d(yi-k) (6-32) 

where c, d, h, and k are selected constants, which bring about workable values, and M, and Vi are independent 

variables. 
Making these transformations, we find: 

Auv = nXuv- {tu){Xv) = cdAxyOX Axy = AuvKcd) (6-33) 

Auu = c^Axx,oxAxx = Auulc^ (6-34) 

Aw = d^Ayy, or Ayy = Awjd (6-35) 

Xui = cXxi-nch    ;   %Vi = dXyi-ndk. (6-36) 

Hence the slope b becomes 

Axy _ Auv        C     _   C   ^  Auv (6-37) 

Axx Cu ^uu M J^UU 

and the intercept a is then 

a = -L (Sj. - blxi) = -^ [2v, + ndk-^ {tu, + nch)\ 
fi net riuu 

V       AuvU chAuv 
+ k- 

(6-38) 

luu d      Auud dAu 

The variance of residuals S^ will be affected only by the scale constant d, i.e. 

n(n — 2)d 
.2 1 (Aw -^ik\ (6-39) 
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The SS on the original scale becomes 

-^Xuf+(^)Xw + nh' (6-40) 

Therefore, by using these equations, we may work with the transformed variables u and v and find the 
required parameter estimates for the original variables x and>-. Indeed, such transformations are often very 
convenient or necessary in regression analysis calculations. 

6-2.5    EQUAL SPACING OF THE INDEPENDENT VARIABLE • 

In some problems it may be that the x's are equally spaced, i.e., the x, may be represented algebraically as 

-       Xi=e;x2 = e+f-Xi = e + 2f,...-x, = e + ii- l)f,...;       . 
and 

x„ = e + {n-l)f      _.- :   (6.41) 

where/is the width of the uniform interval and e is a convenient origin. In this case, it can be shown that 

(6-42) 
2 1 = 1 

Xx] = ne' + 2ef ^ ^' f \^-^in)i2n - 1) 

and 

Hence for the slope h we obtain 

b = 

A..= ^in'-\) 

nf  n 

A.y       6Xpi-u-l)y^ 

and for the intercept a we have 

a=—(Xy.-bXxd^—\Xyi 
n n 

and finally the variance of residuals S^ is 

nfin' - 1) 

'6e-3fin-l) 

fin' - 1) 
S (2/-«-!)>., 

(6-43) 

(6-44) 

(6-45) 

(6-46) 

(6-47) 

^2 _ 

n{n - 2) 

1 

'Ayy   -     ^ 

n{n - 2) 

3[X (li - n - l)y]' 
A,  — —'-^^ lyy (6-48) 
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Hence for equal spacing of the independent variable x, the key eguations involve the v's, e,f, and n. These 
equations give all the information required to find the values of ai al, ta, th, etc.. as needed. 

Although wc have dealt with x andj- to the first power, either or both variables may be more complicated as 
we will see in the sequel. 

Although par. 6-3 relates to a special case of linear regression, it is frequently applied in the physical sciences 
and indeed in many Army problems. 

6-3    LINEAR REGRESSION AND FUNCTIONAL RELATIONS—BOTH VARIABLES 
SUBJECT TO ERROR, BUT INDEPENDENT VARIABLE CONTROLLED 

6-3.1    PRELIMINARIES TO ESTABLISH "FREE OF ERROR" IN INDEPENDENT VARIABLE 

The problem of fitting lines or linear functional relations of some physical significance becomes much more 
complex for the important case in which both the dependent and independent variables are subject to 
(random) measurement error. Here, one has the problem of finding the physical or functional relation for the 
true unknown parts of x and y in the presence of "noise", and it clearly becomes important to have some 
knowledge of, or to be able to estimate, the relative sizes of the errors in y as compared to those in x, whether 
these errors are correlated with each other, or whether errors of measurement in the variables depend on the 
magnitude of physical values studied, etc. Indeed, there are more parametric quantities of interest than can 
possibly be estimated without rather severe assumptions on what may actually be happening. The reader will 
appreciate this in what follows; however, it will be instructive to first return to the data of Table 6-1 and Eq. 6-1 
to check our assumptions in the analysis of that data. In particular, we assume that x, the amount of CaO 
actually present, was "free of error" and further "verified" this with the aid of the principles of Chapter 2. 
However, let us now pursue an allied, but somewhat different, analysis. In this connection, suppose we now 
replace Eqs. 6-1 and 6-2 by the model 

JC, = Hi + ei (6-49) 
and 

yi= a + PH, + di = r)i + di. (6-50) 

In other words, x is not now (as) free of error but is measured with (random) error e\ in addition, _y has error d 
as before, so that our problem is to estimate the true, but unknown, relation r] = a + PH, which is "covered" 
with noise, ju is not considered a random variable here, but rather a mathematical variable or a physical one (a 
"controlled" variable, i.e., purposely varied). 

In the analysis of par. 6-2, we considered that the errors e, were zero, or quite inconsequential, and that the 
variance of errors was zero, i.e., ol = 0. For the observed x, in Eq. 6-49, we have from the definitions of 
variances and covariances that 

S'. = X{Xi -^'lin-\) = Sl + 2S^, + si (6-51) 

Likewise, for the observed yt in Eq. 6-50, we have 

Sy = p'sl + 2pS,^ +Sd=Sl+ 2\d + Sd (6-52) 

and for the covariance between the observed x's and y\ we have 

S,y = l3Sl+ S^j+ pS^e+ Sde. (6-53) 

For the hypothesized or true linear relationship, rj = a -|- /S^, we must be able to estimate a and fi accurately 
from the data. The expected values of Sd and Sl are Od and ol, respectively, i.e., the variances in errors (of 
measurement) of >' and JC, and the quantity S^ (= al also), or S^,, is a measure of the variation over the range of 
interest of the experiment. It is certainly important to know something about the relative magnitudes of Od, Oe, 
and a^ for such information is, in fact, needed for the best estimates of a and 13. Finally, the problem is made 
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more difficult because of the covariances Sf,d, 5'^f, and Sde, which could have nonzero expectations equal to 
Ofid, Of,e, and Ode, respectively, in some applications. Thus we have the formidable problem of being interested 
in eight parameters—a, /8, al, a], o^, a^ci, o^e, and a^/^—and having far too few conditions from which to 
estimate them! By assuming that the errors are not correlated with each other or with the levels of the values 
taken by n and that they have constant variance over the range, the expectations of all the covariance terms 
vanish, and we are left with the expectations of Eqs. 6-51, 6-52, and 6-53, which are 

o^= o^+ O^e (6-54) 

Oy = p^o'^ + o^ (6-55) 
and 

Oxy = fiol. . (6-56) 

Even though a is absent from these three equations, we still have four unknowns—/?, od, al, and a^. Thus it is 
quite evident that some knowledge, even from past experience of the relative sizes of the variances in errors, Od 
and ai becomes critical indeed. If we know for the problem at hand Od = Oe, solutions are forthcoming 
(although from small samples we could still run into negative estimates of the variances). With this back- 
ground, however, we may proceed with the analysis of the data of Table 6-1 and later discuss needed aspects of 
the overall problem of estimation. 

For the example of Table 6-1, we found that b = 1.0065 for the estimate of ^ and that this value did not 
depart significantly from unity. Thus since S,y = A,yl[nin - 1)], we might estimate a^from equation Eq. 6-56, 
ix., from Sxylb = 47.85/1.0065 = 47.54, (or even from S^yl 1 = 47.85), and a\ from Eq. 6-54. We get h\ = Sl - 
ol = 47.54 - 47.54 = 0, so our assumption that Oe - 0, or that x is "free of error" (except for possible 
calibration bias), certainly seems valid for the analysis of Table 6-1 data. We are therefore confident in treating 
X as "free of error", as we did. Hopefully, this makes clear what we mean by "free of error". 

6-3.2    THE CONCEPT OF A CONTROLLED INDEPENDENT VARIABLE 

Next, in approaching the possibility of error in both variables, we proceed with a very important result from 
Berkson (Ref. 4), which has a profound effect on regression problems in the physical sciences. Berkson's result 
states that if the independent variable J: is "controlled", even though it is otherwise "measured with error", the 
ordinary least squares estimate of the slope in Eq. 6-11, i.e., b = A^yjA^x, gives an unbiased estimate of/3 for 
the linear fit, and a = y-bx\s. also an unbiased estimate of a. To appreciate this result, we first note that so far 
we have considered only the errors dt and e, to be random variables, which have zero means, and variances a] 
and a], respectively. We have not yet considered the possibility that /x. could be of a random character because 
in the physical sciences there are so many cases of interest in which random sampling with respect to the /n, is 
not carried out—i.e., the xt are varied systematically over some particular range of interest in the experiment. 
This being the case, the xi are brought to nearly fixed, or "controlled", levels by setting the dial of an 
instrument, presetting the time or distance measurement, etc., or aiming for a fixed, or preset, level, which is 
measured as Xi. Thus from Eq. 6-49 we have as before that et is a random variable but also the ;u, has been in 
effect made to be random about xi by controlhng the x,. Hence /x, = Xi - ei, and, upon substituting this relation 
in Eq. 6-50, we have 

yi = a + I3x, + {di - fie,). (6-57) 

But since the expectations of di and et are zero and x, is fixed or controlled, we havethe problem of fitting;^, = 
a + Pxi + (a random error), which reduces to that of par. 6-2, so that the ordinary least squares slope b 
becomes an unbiased estimate of the true and unknown slope fil This means that because of the imposed 
method of sampling or taking the data, we have controlled the )u, to narrow random ranges about the selected 
or set x„ which are brought to given levels, so that linear regression with error only in the dependent variable is 
still appropriate. Moreover, since the expectations of the errors are zero and that of Z? is equal to fi,a = y--bx 
is an unbiased estimate of the intercept a as well! Berkson's (Ref. 4) result is, therefore, of great importance in 

6-15 



DARCOM-P 706-103 

wide fields of scientific investigation and experimentation since (1) relatively the variance in errors of x, or ol, 
is small compared to the overall variance of the /u, (made possible by varying and controlling the x, over a 
suitable range) and (2) the measured x, consequently average out over the imposed range to give an unbiased 
estimate of /3 anyway. In summary, therefore, we are fortunate indeed for a wide class of problems in which we 
can simply ignore the errors in the independent variable. (The experience in Army research and development 
(R&D) is that controlling the independent variable is very widely practiced in curve fitting problems, and one 
infrequently encounters the case in which the /i, are random or statistical variates except in the narrow range 
about the controlled x, previously discussed. Hence the Berkson model has very wide application.) Finally, as 
will be seen, we may still estimate the values of the variances in errors of x and y, i.e., al and aX respectively; 
however, the most critical problem is estimating P accurately. 

In view of the Berkson development, we will give an example in penetration mechanics, the data for which 
we are indebted to Mr. Chester Grabarek of the Terminal Ballistics Division, US Army Ballistics Research 
Laboratories (USA BRL). Furthermore, the data are not linear, but lie on the branch of a hyperbola, so that 
we will transform the variables to near linearity for analysis and also will attempt to illuminate our analysis 
with some physical meaning or functional relationship. 

The data are given in Table 6-2, covering an experiment on striking velocities and residual velocities for a 
27-g penetrator fired at 0.5-in. armor plate. 

TABLE 6-2 

STRIKING VELOCITIES, RESIDUAL VELOCITIES, AND RESIDUAL MASSES FOR 27-g 
PROJECTILES FIRED AGAINST 0.5-in. ARMOR PLATE 

Striking Residual Residual 
Velocity Velocity Mass y = x = 

Vs, ft/s VR, ft/s MR, g VijW' Ki/lO' 

2487 0 — 0 6.185 
2508 0 — 0 6.290 
2611 0 — 0 6.817 
2631 0 — 0 6.922 
2680 950 14.267 0.903 7.182 
2732 1102 16.572 1.214 7.464 
2735 1154 14.204 1.332 7.480 
2718 1265 12.527       . 1.600 7.388 
2646 1273 11.816 1.621 7.001 
2707 1292 12.276 1.669 7.328 
2846 1648 18.419 2.716 8.100 
3023 2036 18.894 4.145 9.139 
3051 2157 16.064 4.653 9.309 
3331 2522 17.970 6.360 11.096 
3579 2859 19.604 8.174 12.809 
3971 3382 19.627 11.438 15.769 
4274 3702 19.837 13.705 18.267 

Striking velocities and residual velocities are plotted on Fig. 6-1. For the higher striking and residual 
velocities at the upper part of the curve, the slope should approach unity (angle of 45 deg), whereas it becomes 
infinite at the value of F^for which VR = 0. For the higher striking velocities, all rounds penetrate the plate 
until the knee of the curve is reached, at which point the chance of complete penetration varies from nearly 
100% down to zero or near zero percent at the "limit" or "critical" striking velocity for which the residual or 
exit velocity is zero, i.e., partial penetration. In this particular problem, one is very interested in fitting an 
appropriate curve or law so that not only can he estimate but also place confidence bounds on the limit or 
critical striking velocity (x intercept). Ahhough one might be tempted to exclude the K?for the four cases 
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where VR ~ 0, i.e., the partial penetrations, these are nevertheless vahd points and will be included in our least 
squares analysis procedure. 

A plot of the square of the residual velocities versus the square of the striking velocities (last two columns of 
Table 6-2) indicates a nearly linear relationship. Therefore, we will analyze the transformed variables v = 
F/j/lO and x = F^/IO . Also since the independent variable may for practical purposes be regarded as a 
controlled variable, we may treat it as being essentially "free of error" by using Berkson's model, and moreover 
it seems natural to regard any function of the residual velocity VR as the dependent variable. 

For the transformed variables x and y we obtain 

«= 17, 
«= 17, 

2JC= 154.546, 
^y=   59.530, 

Sx' = 1598.068, 
2>'' = 484.163, 
Sx>'=   770.092, 

A,, = 3282.690 
Ayy = 4686.950 
/lxv = 3891.441 

b = A.yjA,, = 1.185,    a=y-bx = 3.502 - (1.185)9.091 = -7.271. Therefore, substitution intoj^ = a + bx 
yields 

Vl= 1.185 K|-7,271,000. 

4000 I- 

3000 

^ 

o o 
o       2000 
> 

3 

8 
a: 

1000 

A — VR= 1.185 Fi-7,271,000 

0 l- 
0 

I 
1000 4000 2000 3000 

Striking Velocity Vs, ft/s 

Figure 6-1. Residual Velocity vs Striking Velocity of Projectiles 
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When VR = 0, FS = 2477 ft/s, the estimated "limit" velocity. The variance of residuals is 

Sl = (A,.Ayy-Aly)I[nin-2)A.,] = 0.290, or Sy^ = 0.53S. 

95% confidence bounds on the true unknown "limiting" x, i.e., for j = 0, are obtained from Eq. 6-30, where 
>'' = 0, or that is, from 

-alb ± ty,2{n - 2) {Syjb){\ln + n{-alb - x)'/Aj'^'. (6-58) 

This gives for/„; 2( 15) = 2.131 

Pr\_5.%2A < x.i^u < 6.448] = 0.95 

and since Vlj 10^ = x, we have for the original data that 

^^[2413 ft/s < Fu^i, < 2539 ft/s] = 0.95 

so that the 95% confidence bound on the true unknown limit or critical velocity is 2539 - 2413 = 126 ft/s wide 
for the Vs intercept. 

Had the previous statement been one of many similar ones about confidence bounds for various points on 
the line, Student's ty^jin - 2) should be replaced by sj2Fy(l,n-2), using the upper level of the Snedecor F, 
and the resulting confidence bounds for Fumit would be 2396 - 2555 ft/s, or 159 ft/s wide, or an increase of 33 

ft/s. 
The variance of residuals on the transformed scale is S^^ = 0.290, but since VR = 1000V>', we have dVR - 

500v''''Jv, and upon squaring and taking mean values we have the variance of residuals on the original scale 

of VR, which is 

or 

a\ - (250,000/>^)a^'^ = (250,000/3.502) (0.290) = 20,702 

(7^- = 144 ft/s (for an individual value). 

At this stage we might ask whether our assumption that x is "free of error" is met, or nearly so. In this 
connection we note from Eq. 6-56 that al = a^yl^ and, hence, that 

al = t%ial^A,yl{n{n-\)b-\=n.01. 

Now from Eq. 6-54 we take 

a' = al - al = A..l[n{n - 1)] - aj = 3282.69/(17) (16) - 12.07 = 12.07 - 12.07 = 0 

which gives us considerable confidence in our procedure. We also observed from Eq. 6-55 that our observed 
estimate of a^ becomes a^ = 0.28 or a^ = 0.53, which converted to the original scale of F« is 141 ft/s versus the 
144 ft/s previously calculated, or a good check. 

In fitting the equation 

Fi= 1.185FI-7,271,000 

we merely observed that the original data fall on the branch of a hyperbola type of curve, and hence we could 
linearize the data (or approximately so) by working with the squares of the striking and residual velocities. But 
what about the possibility of a "physical" fit or law? Here we might consider fitting the residual energy versus 
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the striking energy. In Table 6-2, note that a third or more of the weight of the projectiles wears away in the 
penetration process. Nevertheless, it might make considerable sense to treat the "measured" residual energy as 
th^dependent variable and the striking energy as the independent variable. We will actually take our new 
X - mjVsi W -21Vs/\0 and new v = m, Vll 10*; m« varies as given in Table 6-2. A plot of these new .v's and 
y syndicates a nearly linear relationship. Our key computations now become 
«-17,        /1„ = 239.301,        /I,,, = 187.103,        /(,, = 210.721        6 = 0.8806 « = -1523 
or>' =-1.523+ 0.8806X. " 

By using the average of the residua! masses {m, = 16.314 for the 13* penetrating rounds), we now have the 
equation 

VR = -9,335M0+ \A57Vi     ■ 

By setting F« = 0 in this equation, Ky = 2531 ft/s. Also since Sv^. = 0.078, 

Pr [2497 ft/s < P'^(limit) < 2565 ft/s] - 0.95. 

Thus by using the "physical" law, the confidence interval has a width of 2565 - 2497 = 68 ft/s or 58 ft/s shorter 
than the one based on FJand FJI (We note that this "law"does not fit as well as the other one at the upper end 
of the curve although the lower end is still of more interest. We also note that raising the "measured" residual 
energy and the striking energy to about the 0.90 or 0.95 power might produce a slightly better linear 
relationship, but this would begin to depart from physical considerations.) 

For the transformed data based on striking energy and "measured " residual energy, we have from Eqs 6-54 
6-55, and 6-56 that 

a^^ = 0.88, a^«-0.00,        and    cj^^^O.lO 

so that the assumptions still seem sufficiently valid, and the relation between striking and residual velocities is 

taken as K« - 1.457 K,-9,335,540. Moreover, the standard deviation of the random measurement error ^ is 
easily converted to the original scale of the residual velocity F« and is approximately 

a^, ^ 10V^/(2\/^) =60ft/s, ■        .    .■     . 

a value much less than the value of 144 ft/s previously obtained for Fi versus Vj 
In summary, we have demonstrated the importance of trying to seek a physical relationship, transforming 

the original variables to near linearity for the regression analysis, and then being able to make statistical or 
probability statements about the original variables of interest on the old scale 

If we knew that the slope of the line is unity from physical considerations, there would be little point in 
estimating it statistically, except for a check; consequently, the analysis would be much simplified Also for 
more complex problems one might consider using various functions of the physical variables, which result in 
linearity with only the error of determination of that variable following a statistical distribution  Indeed 
regression problems are not all statistical, nor are they all physical; rather they are a combination of both that 
may result in wider practical value and utility. 

We mentioned that proper estimation of the slope y3 was important and that unbiased estimates are needed 
As^ result, Eqs. 6-54, 6-55, and 6-56 are of considerably more help than might be realized. To begin with if 
oe - 0, we note by using Eqs. 6-54 and 6-56 that the proper estimate of 

i:z:::si T;::ZS; ::rn3S;e" a:o:r "^"^'^^'^ '■'-' '"^° '^-'"' ^-^ '^'^ -°""^ ^^ --^^ - --^ ^^"■-■--- ^^ese 
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as we established in Eq. 6-11. If a, is not zero but known, for example, from past data or experience, then Eq. 
6-54 indicates that 

■ ' 2 _      2 2 •     .- ' 
Of,— Ox— Oe 

SO that an unbiased estimate of ^ may be found (observing Eq. 6-56) from 

P = AxyliAxx-n'oh (6-59) 

If aj is known, observing Eqs. 6-55 and 6-56, we see that an estimate of /3 is found from 

p = {Ayy-n'o'j)IAxy. (6-60) 

If both od and Oe are known, from Eqs. 6-55 and 6-56 we obtain the estimate 

P = ^Ayy - n'olf'HAxx - n'olf\ (6-61) 

The estimates from Eqs. 6-59, 6-60, and 6-61 are not ML estimates, but they do enjoy the property of being 
"consistent"—i.e., for large samples, they tend in probability toward the true unknown linear slope parameter 

Since we have seen the importance of estimating the slope accurately and that the method of estimating it 
depends on the values of the (often unknown) variances in errors of measurement or determination, 
continuing knowledge of the precision of measurement of instruments—i.e., their capacity for repeatability, 
reproducibility, and also accuracy—becomes critical indeed. In fact, any worthwhile experiment could be 
planned and carried out more appropriately with such continuing knowledge of instrument precision 
capability since this would lead to improved analyses and predictions for the data taken. Moreover, we now 
see from the discussion and examples that the matter of trying to find even some linear relationship between 
true values of the variables studied can become complex. 

In our account we have not exhausted the methods of estimating the slope p. In fact, we should mention that 
for the linear relation and error in both variates, grouping methods, such as that of Wald-Bartlett (Refs. 5 and 
6), might be used to advantage. Grouping methods were developed primarily for the case in which the m are 
random variables (discussed further later), but they may also be used for the case in which they are varied 
systematically by the investigator over particular ranges of interest. The Wald-Bartlett method for estimating 
)3 involves dividing the data ordered in the x-direction into three approximately equal groups; computing the 
mean x's and /s of the two extreme groups, i.e., (xi,J^i) and (^3,^3); and estimating the slope ^ from 

)8 = (j3-Ji)/(x3-x,). (6-62) 

(Of course, totals could be used in place of averages.) To illustrate the measured energy versus striking energy 
fit, we will use the top five and bottom five points and compute mj?Fi/10* and 27 FI/10^ for each point. This 
results in the following estimate of slope: 

R= (2.72 + 2.24+ 1.60+1.14 +0.75)-(0.1288+ 0 + 0 +0+0) =0Qi 
(4.93 + 4.26 + 3.46 + 2.99 + 2.51) - (1.67 + 1.70 + 1.84 + 1.87 + 1.94) 

whereas from the linear least squares fit we obtained b = 0.88, which indicates rather good agreement 
(although it does distribute the error to the independent variable, which indicates the extreme sensitivity 
involved). 

We will not discuss the best methods of grouping and the various ramifications of the technique but will 
refer the reader instead to papers of Wald (Ref. 5), Bartlett (Ref. 6), Madansky (Ref. 7), and Neyman (Ref. 8). 
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For the case of error in both variables, we will mention finally an estimate of p that seems intuitive on 
practical grounds. This involves finding the slope by least squares from the linear regression of the "depen- 
dent" variable^ and averaging this with the reciprocal of the slope obtained by finding the regression of A: and 
>> since both contain error. From the former we have that/J^ =/Ixy//4;tx, and from the latter that 6^ =AxylAyy. 
Using the preceding data, we obtain 

by  =210.721/239.301        and        b^  =210.721/187.103 

= 0.8806 =1.1262 

so that 

)3 = (0.8806+1/1.1262)/2 = 0.8843. 

Moran (Ref. 9) treats this type of estimate. 

6-4    LINEAR LEAST SQUARES WITH BOTH VARIABLES SUBJECT TO ERROR AND 
BOTH VARIABLES RANDOM 

In this case the model of Eqs. 6-49 and 6-50 still applies, but instead of being a controlled or fixed variable, fj. 
is now random.* (There are some problems in the physical sciences or ballistics technology that fall into this 
category, but we believe the controlled variable case takes priority.) The errors di and ei are again considered to 
be normally distributed with zero means and variances a^and ol as before. It is easy to see that many of the 
equations developed in par. 6-3 still apply to the case of ju being randomly distributed. In fact, Eqs. 6-54, 6-55, 
6-56,6-59, 6-60, and 6-61 apply without alteration. It is very desirable for applications in the physical sciences 
that the variances in errors of measurement Od and o] be small compared to the variance in /x or a^ to guarantee 
sufficient precision of measurement. 

Although, as mentioned, we will not delve very deeply into this particular case—since the use of the 
controlled variable is widely practiced in the physical sciences—we will nevertheless estabUsh a few principles 
of interest and record them here. 

To begin with, if oj and ol are both known, Eq. 6-61 becomes the ML estimate of the slope /3 because then 
Eqs. 6-54, 6-55, and 6-56 are the basic ML estimates. We also see from these same equations that if oj and ol 
are both known, this case becomes an overidentified situation since actually we need to know only the ratio X 
= Odlal. In fact, if the ratio k is known, Madansky (Ref. 7) shows that the proper estimate of )3 is given by 

. Ayy   -   kAx,   +   [{Ayy   "   X^..)^   +   4\A',yf'' ..     ,,, 
^= (6-63) 

ZAxy 

This estimate of ^ also may be applied to the controlled independent variable case. For example, if we use the 
data for striking energy and measured residual energy previously discussed and assume k= 1, we have 

> _ 187.103 - 239.301 + [(187.103 - 239.301)^ + 4(210.721)']'^^ 
'^ 2(210.721) 

....    . =0.884     \ 

which is the same as the estimate from (iy -f 1/^^ )/2 = 0.884. 
Madansky (Ref. 7) gives a rather detailed discussion of the case in which the ya are random variables and 

includes grouping methods for estimating ^ et al. 

*For improved clarity we could replace M by x when it is a random variable. However, we believe the reader will easily grasp the proper 
concept when /ii is used. 
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For a case where the m are random and it is known that the slope 13=1, Grubbs (Ref. 10) gives methods for 
estimating the variances in the errors of measurement of x and y, i.e., techniques for estimating al and Od. In 
fact, this particular model becomes the subject of the two-instrument case of Chapter 2. We see this easily by 
examining Eqs. 6-49 and 6-50 in which, for a slope of unity, the quantity a simply amounts to a constant shift 
for the j' values so that the model is the same as for the two-instrument precision estimation case. In summary, 
we see, therefore, that the models for linear regression and the problem of estimating the precision of 
measurement of (two) instruments are very closely allied. 

Having covered these allied topics, indicating especially the importance of estimating the needed compo- 
nents of variance in both the linear regression models and the problem of estimating precision of measure- 
ment, we turn our attention to biases in estimation due to errors of determination of the independent variable. 

6-5    BIASES IN ESTIMATION AND BIASES IN SIGNIFICANCE TESTS DUE TO ERRORS 
IN THE INDEPENDENT VARIABLE 

When the independent variable x for the hnear regression case is subject to errors of determination or 
measurement, the use of equations for estimation, such as Eq. 6-11 for the slope, or a significance test for the 
slope, such as Eq. 6-24, becomes subject to biases and hence could be somewhat misleading in correct 
judgments. Thus when both the dependent and independent variables are subject to errors, it may become 
advisable to exercise special care in estimation and significance testing procedures. 

As an example of the existence of bias, consider estimation of the slope y3 by using Eq. 6-11 when the chosen 
model for the application is Eqs. 6-49 and 6-50. Here, the large sample value of the estimator b tends in 
probability to the ultimate value 

• plim b^lio^,I(o^. + ol) (6-64) 

as, for example, may be found in Goldberger's book (Ref. 11). In other words, the sample value b will 
underestimate the true slope p, depending on just how large the variance in errors of the independent variable 
happens to be, as is noticed in Eq. 6-63. Hence unless the variance in errors ol of the measurements of x are 
zero or quite small relative to the variance in the true values x, the amount of bias could be rather significant 
indeed. If, for example, we have that a^ = Oe, then the estimate b would approach 

which, of course, is quite a bias! Hence to keep the analysis simple, we see the desirability of keeping Oe small or 
otherwise varying x over a large range of values in linear regression. 

Biases occur and lead to inaccuracy in significance tests for linear regression when the independent variable 
x is subject to errors of determination. As an example, consider Student's / test of Eq. 6-24 for judging the null 
hypothesis that the slope of the fitted line is zero. Then, it can be shown, as in Bloch (Ref. 12), that the large 
sample value of Student's t, call it tt, tends toward 

tb- yjin - 1) Po',1 [(ai +ol)ioj+ p'ol)]"\ (6-65) 

Bloch (Ref. 12) shows that this means when there are errors in the independent variable x. Student's t tends to 
be too small. This results in lower probabilities of rejecting the null hypothesis that the coefficients of the 
imprecisely measured variables are actually zero. Hence we see that this really impHes that Student's t values 
could often be low enough to cause one not to reject the null hypothesis when it is actually false. Thus use 
caution when x is subject to any significant error due to lower than true i values. 

An illuminating discussion of the problem concerning the estimation of bias in the classical linear regression 
slope for the case in which the proper model is functional linear least squares is given by Reed and Wu (Ref. 
13). For this case Reed and Wu also use the specified model of Eqs. 6-49 and 6-50, which contain errors of 
determination of both x and >>, and cite the work of Richardson and Wu (Ref. 14), which shows that the 
expected value of the slope b in linear regression would depend on an exponential and hypergeometric 
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function although Eq. 6-63 is a sufficiently good approximation. Of perhaps further interest is that Reed and 
Wu (Ref. 13) give an approximate, one-sided confidence interval on the true unknown amount of bias in their 
Eq. 3.6, p. 411, and also discuss a "jackknifing" procedure. 

Hopefully, this discussion will give the reader some useful insight into the fact that the ordinary classical 
linear regression procedures may lead to errors of analysis if they are applied to linear regression problems for 
the case in which both the independent and the dependent variables are subject to error. 

6-6    A CONSISTENT ESTIMATOR OFTHE SLOPE IN A LINEAR REGRESSION MODEL 
WITH ERRORS IN BOTH INDEPENDENT AND DEPENDENT VARIABLES 

As pointed out by Eqs. 6-54 through 6-56, there are four key unknowns and only three equations available 
for the estimation procedure, and this is the source of much difficulty in Hnear regression for errors in both 
variables. Thus there exists a rather formidable difficulty to overcome. We also see that an additional 
parameter should not be introduced to complicate the problem unless the estimation of that parameter leads 
to a technique that not only gives an estimate of the new parameter but also includes estimation possibilities 
for one of the old parameters in Eqs. 6-54 through 6-56. This problem has, over the years, been given much 
thought, and some results of interest to the Army analyst have been achieved. For instance, Kami and 
Weissman (Ref. 15) have advanced the idea of using the serial correlation coefficient of lag 1 of the first order 
(forward) differences of the independent and dependent variables, and this procedure does lead to consistent 
estimators of the slope along with estimators of the variances of errors of the x and y and also the serial 
correlation coefficient. Thus, in effect, it provides all five estimates. However, the estimators of Kami and 
Weissman (Ref. 15) apply primarily to the case in which the true values M< are nonstochastic. When, for 
example, the pair (x,,v,) follows a bivariate normal distribution and the intercept term a of Eq. 6-50 is not zero, 
an underidentified situation arises again, and hence all parameters of interest cannot be legitimately esti- 
mated. Some authors have tended to circumvent this problem by relaxing the assumption of normality. The 
approach of Kami and Weissman in Ref. 15, on the other hand, suggests relaxing the independence 
assumption, namely, that the first order serial correlation p, should not be zero. Thus, for example, it might be 
expected that the Kami and Weissman model would apply to the two-instrument precision case discussed in 
Chapter 2, and indeed we will illustrate it in Example 6-1. 

In order to outline the Kami-Weissman model, we are dealing with an independent variable x subject to 
error and a dependent variable/ subject to error as usual. We will need the variances and the covariance of 
both X and y in our calculations. Also we will need the (forward) first order differences of each of the x and y 
observations. Hence we will define the symbols 

dx,^Xi-Xi-i (6-66) 
and 

dyi=yi~yi-i (6-67) 

for the forward first order differences and then use the usual symbols SL Sl, and S.^^y to represent 
respectively, the variance of the dx\ the variance of the dy\ and the covariance of the dx's and the df^. With 
these definitions the key estimators for the Kami-Weissman model are 

"2        ^x^dxdy SdxSxy 
^'—-c _-.o (6-68) 

^=-^V^^ '(6-69) 
Sx ~ Sdx/2 

"2         2 *2 
Of, - Sx- Oe (6-70) 

' Pi = I -Sdxdy/{2(So^) . (6-71) 
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and 
ol = Sy - P^o^ (6-72) 

Therefore, if the assumptions of the Karni-Weissman linear regression model are justifiable, the four key 
parameters in which we are interested and the first order serial correlation coefficient can be estimated as 
shown in Example 6-1. 

Example 6-1: 
Return to the two-instrument precision of measurement Example 2-1 of Chapter 2 and the data of Table 2-2 

for the first two instruments Ii and I2, i.e., r and s observations. Then treat s as the independent variable and r 
as the dependent variable (both measured with error) for the purpose of estimating the key linear regression 
parameters and as a check on Example 2-1. 

Note under the assumptions of Example 2-1 the slope is expected to be unity, and also since there is no 
intercept to estimate, we expect the Karni-Weissman assumptions to apply with the additional assumption 
that perhaps the difficulty with the measurements of Ii may relate to some serial correlation. Recall that for 
Example 2-1 we obtained a slightly negative variance in the errors of measurement for the instrument h. Of 
course, for the Karni-Weissman linear regression model we will, using their theory, have to estimate the slope 
P and then use it for estimation of some of the other parameters to see in advance that, if it is not equal to unity, 
there would be a different distribution of the precision of measurement parameters. 

We exhibit the relevant data for this example in Table 6-3 and obtain the following pertinent calculations 
using only 29 observations for Ii by deleting the value 10.01 for the corresponding lost round of h: 

Sy = 0.04675448 S^ = 0.045112315        S,y = 0.045581897       Si = 0.069108995 

Sdxdy = 0.06SS2328. 

(Note in our problem there is no need to use the clyi alone.) By using Eqs. 6-68 through 6-72, we obtain these 
estimates: 

Oe = 0.0020296 (which makes the second instrument less precise) 

y8= 1.058008,    a; = 0.0430827 (less product variability) 

pi = 0.24506 and 0^ =-0.0014715 (to be taken as zero). 

We observe that with the Karni-Weissman analysis, the slope is slightly larger than unity, and this results in 
switching the negative variance of errors of measurement to the first instrument. Also the product variance is 
decreased slightly, and the second instrument is made less precise since the variance in errors for instrument Ii 
seems near zero! In summary, we should say that we did not gain a great deal more understanding about our 
two-instrument precision of measurement problem by using the Karni-Weissman linear regression model 
although there could be some serial correlation in the readings of Ii, and there could be other applications to 
which the Karni-Weissman model would apply better.* Finally, perhaps we are trying to get too much out of 
the slightly different approaches! Moreover, we expect to encounter the problem of negative estimates of 
variances in such studies anyway. 

Hopefully, this background on the linear regression problem with error in only the dependent variable on 
one hand, and errors in both variables on the other, may give the Army analyst sufficient background to make 
rather extensive applications or may lead him to further literature as needed. We now proceed to other models 
of interest. For example, we will discuss the fitting of planes, parabolas, and the use of orthogonal polyno- 
mials for equally spaced independent variables before finally touching upon the problem of nonlinear 
regression. 
* We do not particularly recommend the use of grouping methods, such as the use of Eq. 6-62, because Neyman and Scott (Ref. 16) 

have shown that schemes based on the orders of the observations do not lead to consistent estimation. 
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TABLE 6-3 
FUZE BURNING TIMES AND FORWARD FIRST ORDER DIFFERENCES 

FOR TWO INSTRUMENTS 

Observer I 1 Observer I2 

y (^r), s dy, s xi=s), s dx, s 
10.10 10.07 
9.98 -0.12 9.90 -0.17 
9.89 -0.09 9.85 -0.05 
9.79 -0.10 9.71 -0.14 
9.67 -0.12 9.65 -0.06 
9.89 0.22 9.83 0.18 
9.82 -0.07 9.75 -0.08 
9.59               ■ -0.23 9.56 -0.19 
9.76 0.17 9.68 0.12 
9.93 0.17 9.89 0.21 

*" ■ 9.62 -0.31 9.61 -0.28 
10.24 0.62 10.23 0.62 
9.84 -0.40 9.83 -0.40 
9.62 -0.22 9.58 -0.25 
9.60 -0.02 9.60 0.02 
9.74 0.14 9.73 0.13 

10.32 0.58 10.32 0.59 
!         9.86 -0.46 9.86 -0.46 

9.65 -0.21 9.64 -0.22 
9.50 -0.15 9.49 -0.15 
9.56 0.06 9.56 0.07 
9.54 -0.02 9.53 -0.03 
9.89 0.35 9.89 0.36 
9.53 -0.36 9.52 -0.37 
9.52 -0.01 9.52 0.00 
9.44 -0.08 9.43 -0.09 
9.67 0.23 9.67 0.24 
9.77 0.10 9.76 0.09 
9.86 0.09 9.84 0.08 

Note: dy — yi — y,-\ and dx — x, — Xi-\. 

6-7 THE PLANE: ONE VARIABLE z (THE DEPENDENT VARIABLE) SUBJECT TO 
ERROR 

In this case, we seek the relation between a dependent variable (subject to some error of determination) and 
two independent variables x and y. which are relatively free of error, or we seek the regression of z on .Y and v 
by the method of least squares. Also, from the physical standpoint, we are very interested in whether the fitted 
plane is unbiased, i.e., can be regarded as representing the functional or structural relation between the true 
values of z, and x and y. We will assume that the measured values of x and j are both "free of error", whereas 
the observed values of z are subject to a (random) error of measurement. Thus the functional relation may be 
represented by 

where 
z — a + [Sx + yy (6-73) 

a — true unknown coefficient. 
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The model, or assumption, considered for the observed values (x„>'„z,) is 

X, = a variable, free of error 

yt = a variable, free of error 

Zi — a + Pxi + yyi, subject to error et =« N{0,Oe). 

We propose to fit the equation 

z = a + bx + cy (6-74) 

to the observed data by determining a, b, and c (which will be estimates of a, )3, and 7, respectively) by the 
method of least squares, i.e., such that the SS of the deviations (observed minus fitted values) are a minimum. 
We have 

(j)= 2 (zi — a — bxi — cyi) 
i = 1 

(6-75) 

to be minimum. Note that for observed means z = a + bx + cy. Hence since the Auv are not origin dependent 
and to simplify the algebra, we make this substitution in (/> and obtain 

(f>= 1 [(z, -i) - b{Xi -x)- c'iyi - y)f 
i = 1 

which is to be a minimum. (Note that only b and c need estimation initially.) 
Differentiating with respect to b and c, we get 

db 
= -2S(x, - x)[{zi - z) - b{x, -x)- ciyi ->-)] = 0 (6-76) 

dc 
-2X{yi - j)[(z, - z) - b{xi -X)- c{yi - y)-\ = 0. (6-77) 

Solving for b, c and a, we get 

b = 
/ixz-^yy A-yz-A.xy 

A.xx-r\yy ^xy 

^xx^yz A^xy-r\xz 

y^xx^ xX'Tiyy        y^xy 

a = z — bx — cy = 1 [Sz, — bXx, — cXyi] 
n 

The variance of residuals is given by 

•>2 _ 

«-3/' = i 
-T\l2 S [(z, - z) - b{xi - x) - c{y, - y)] 

or 

estae = S^ — 
n{n - 3) 

{Azz — bAxz — CAyz) 

(6-78) 

(6-79) 

(6-80) 

(6-81) 

(6-82) 
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Under the assumption Eq. 6-73, it can be shown that the mean or expected values of a, b, and c are, 
respectively, a, fi, and y. Hence for the model assumed the method of least squares gives an unbiased estimate 
(with minimum variance) of the functional or structural relation between the true values of z and the (fixed, 
i.e., "free of error") variates x and y if Eq. 6-73 is the proper law. 

Also by methods indicated previously for the line, it can be shown that 

(6-84) 

(6-85) 

We now have all the information required for the usual Student's / tests to judge the hypotheses concerning 
whether the true parameters a, p, and y can be regarded as being equal to zero or any selected constant values 
of some particular physical interest. 

For example, to test whether the true slope ^S — in the functional or structural relation z = a + Px + yy—h 
equal to zero, we use Student's t test based on . 

■  " '   -   ._ b-0 

taiuo 
/{. xx-^yy ■^xy 

estaft = 
nAyyS^ 

■^xx-^yy         ^xy 

estac = 
nA,,S^ 

' '      .  ■" .; 

■^xx-f^yy         ^xy 

by AxxAyy     Axy f6-86"> 

Ob S\JnAyy 

with(« -3)df. ■    - .. - . - - 

Example 6-2: 
The data in Table 6-4 give the ballistic limits* (BL) for various thicknesses and Brinell hardness numbers 

(BHN) of armor plate when tested with cal .50 armor-piercing (AP) bullets. (The plates of armor were placed 
at an angle of obliquity of 42 deg from the line of fire.) It is desired to find the linear regression equation of the 
BL z on the thickness x and BHN y. 

We have 
TV   =20 
i:x,= 4.996 Xx\ = 1.249116 Sx,>', = 1837.670 
S>'/=7356 ty] = 2,749,670 XxiZi = 5900.253 
Sz, = 23,583 Xz] = 28,468,483 XyiZi = 8,795,787 
^:.;,= 0.022304 Axy = 2.824 X       =0.2498 
Ayy= 882,664 Axz = 184.392 y       =367.8 
/lzz= 13,211,771 A.yz = 2,439,192 z        =1179.15. 

To determine the coefficients a, b, and c in z = a + bx + cy, we have from Eqs. 6-78, 6-79, and 6-80 that 

, ^   155,867,902.08 _ 
. 19,678.96288 ^^^"-^-^^ 

53,883.0154      _ 2738,02 
'       19,678.963      ; ~ 2.^38102 

*The BL of armor plate represents that striking velocity for which 50% of the projectiles penetrate the plate. BL is known to be highly 
variable as compared to thickness and BHN measurements. 
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TABLE 6-4 

BALLISTIC LIMIT vs ARMOR THICKNESS AND BRINELL HARDNESS 

BL z, Thickness AT, BHNj 
ft/s in^  

927 0.253 317 
978 0.258 321 
1028 0.259 341 
906 0.247 350 
1159 0.256 . 352 
1055 0.246 363 
1335 0.257 365 
1392 0.262 375 
1362 0.255 373 
1374 0.258 391 
1393 0.253 407 
1401 0.252 426 
1436 0.246 432 
1327 0.250 469 
950 0.242 275 
998 0.243 302 
1144 0.239 331 
1080 0.242 355 
1276 0.244 385 
1062 0.234 42'6 

and 

a =  z - bx - cy =-\S06A13.        ;     ^ 

The tentative regression equation we fit is taken as 

BL = -1806.473 + 7920.534 (thickness) + 2.738 (BHN). 

The variance of residuals is calculated to be 

and 

Then 

S' =   ,   '   ., (/Iz. - bA,, - cAy,) = 14,919.2 
n{n — 3) 

nS^ ^ 298,384.2. 

nS^A 
o\ = ^^  =0.33819 and ac== 0.58154 

^xx^yy ^xy 

Ob= f^-7- = 13,383,479.26 and dt, = 3658.344 
^xx^yy ^xy 

ol = — —^  = 873,756.3 and ba = 934.749. 
i^xx^yy        Axy 
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Moreover, Student's t tests of the intercept and coefficients are 

/„=—=-1.933 
da 

Ob 

r<:=-^= 4.708. 
a, f ■ 

Since ?o.o5 = 2.11 for i^^ 17df, the slope Z? is significantly different from zero at the 5% level. The coefficient of 
BHN is highly significant (/'< 0.005). Thus we would adopt the previously given equation for predicting BL 
from thickness and BHN under condhions similar to those of the executed test. (In this particular case, the 
thicknesses appear to vary randomly in character, as do the BHN to some extent. If the thicknesses had varied 
over a wide range, the slope b would have been highly significant.) 

The variance of a value of z predicted from Eq. 6-74 is given by the following equation for any selected values 
X and y: 

oz = -^  +ix- xfal + (>- - yfal + 2{x - x){y - y)obc. (6-87) 

Estimates of Oa, ot, and Oc are given by Eqs. 6-83, 6-84, and 6-85, whereas an estimate of ate is given by 

^xx^yy        ^xy 

6-8    THE PARABOLA: ONE VARIABLE z (THE DEPENDENT VARIABLE) SUBJECT 
TO ERROR 

Here we desire to fit a second-degree curve, or parabola, to the observed data—i.e., we assume that the 
functional relation between the dependent variable z and the independent variable x is of the exact form of a 
parabola: 

z = a + px + yx\ (6-89) 

Again, we postulate that the independent variable x is "free of error", whereas the dependent variable z is 
measured or obtained with error. Thus the model considered for the observed values x, and z, is 

Xi — Ui (free of error) (6-90) 

z, = a + j3x, + 7^; + e, (contains error). (6-91) 

We will fit the parabola 

z = a^-bx^- cx^ (6-92) 

to the observed data by determining a, b, and c (which will be estimates of a, p, and y, respectively) in such a 
way that the SS of the deviations of the observed values from the fitted values will be a minimum, i.e., by the 
method of least squares. Actually, we do not have to go through the procedure of finding a, b, and c so that 
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<f> = X (zi — a — bx — ex ) is a minimum 
( = 1 

since the method of least squares is very general and we can, as a matter of fact, replace y in Eq. 6-74 for the 
plane by x^. Thus we have in a straightforward manner that the coefficients are 

h =     (0-93) 
AxxAxh^ - AIX^ 

_   AxxAxh — Axx^Axz (6-94) 

Axx-r\x^x Axx^ 

Then the intercept a is found from 

a=l-blt-c'? = }i{^Zi-bXxi-c^x^{) (6-95) 

where x^ denotes the average value of the x^ observations. The variance of residuals is calculated as the 

quantity 

S' = esta'. = ^ (/4.. - bAx. - cAx^.). (6-96) 
n {n — 3) 

The variances of the calculated intercept and coefficients are determined from 

.  , _ nS'qx'lx'- jXxY] ■■-.:■- (6-97) 
6Sl<7a j      Z      I 7^ 

AxxAx X -rlxx^ 

estafc 2_ nS^AxV ''"'' (6-98) 

H     .^    ■:l::-,:*■,-»'  i 

AxxAxV — Axx^      '■ ' .■   ■ 

,,.„;=     _ii5lfL__.       ., (6-99) 
AxxAxV  —  AxX^ V , 

The variance of a value of z predicted from Eq. 6-92 is given by ..   , 

ol=-+{x-xfol + {x'-'?fol + 2{x-x){x'-x^)a,c..     . •■ .        (6-100) 

Estimates of ai al, and ol are therefore given by Eqs. 6-97,6-98, and 6-99, respectively, whereas an estimate of 

Obc is given by ^   , 

-nAxx^S^ (6-101) 

.    AxxAxh^ — AxX^ 

Example 6-3: 
A test was conducted* to determine the effect of barrel length on muzzle velocity (MV) for a cal .22 long rifle 

(Model 37 Remington). The observed data are given in Table 6-5 and each average MV is based on 10 rounds. 

*by W.O.L.F. Moore—See APG Firing Record Misc. 017. 
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TABLE 6-5 

RIFLE BARREL LENGTH vs AVERAGE MUZZLE VELOCITY 

Barrel Length Average Velocity 
X, in. z, ft/s 

28 1084 
26 1075 
24 1091 
22 1096 
20 1100 
18 1098 
16 1085 
14 1088 
12 1085 
10 1079 
8 1067 
6 1040 

For the pertinent calculations we find: 

n=\2 A,, = 6%e4 

^x = 204 A,, = 35,528 
Xz = 12,988 A,. = 8928 

Sx^ = 4040 ^A2 = 8,191,040 
Sx' = 88,128 A2, = 233,248 
Xx' = 2,042,720 A,,2 = 233,376 
S;cz = 221,540 

2x^2 = 4,392,064 

Xz^ = 14,060,306 

Using Eqs. 6-93 through 6-99, we find 

^7= 10.6286, c =-0.27435, 0=994.0115, 5'= 42.8464 

06=1.547, ac = 0.0448, a. = 11.920. 

Hence 

tb= T- = 6.87 
Ob 

\c\ 
/c=T^ = 6.12 

- . .'.' ta= T- = 83.39. '     ,. 
On 
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Since fl, *, and c are significant at the 0.01 level, we adopt the equation 

MV = 994.01 + 10.629(BL)-0.2744(BL)^ ft/s. 
where 

BL = barrel length, in. 

Since it may be desirable to make linear transformations on the original variables (to reduce effectively the size 
of numbers in the calculations), the pertinent equations that follow may be of value. Suppose we change the 
original variables x and z as follows: 

Ui = c{xi-h),       Vi = d{zi-k) (6-102) 

where c, d, h, and k are constants. Then it can be shown that 

'^'''''"" V/      '  Ac^/'^"" (6-103) 

A.2.2=(^\^AUV+{^A.U2-^1^\AUU (6-104) \^,^-uu-    I    y      2    /^"« 
(^ / V / \c 

2h 
AA={^UU2,+1^]AU.. (6-105) 

We had previously shown in Eq. 6-34 that 

6-9    THE REGRESSION OF A DEPENDENT VARIABLE (SUBJECT TO ERROR) ON 
THREE INDEPENDENT VARIABLES (FREE OF ERROR) 

For the regression of a dependent variable z containing error on three independent variables—x, y, and 
u—free of error, we use the model 

Zi = a + p (Xi -x) + y(yi -y) + 6(«, - u) + e, (6-106) 
where 

d = true unknown coefficient. 

We will estimate z from the equation 

z = a + b(x - x) + ciy -y) + d(u - u) = (a - bx - cy - du) + bx + cy + du   (6-107) 

where a, b, c, and d are to be determined by the method of least squares. 
In par. 6-8 we extended the model for a plane type of fit in par. 6-7 to that of a quadratic adjustment by 

simply substituting the square of x, i.e., x\ for the new variable;^, which was added to the previous linear fit of 
par. 6-2 to obtain the plane. Hence the rather general and useful form of least squares procedures for 
applications was indicated. Moreover, any number of new or independent variables may be added to the basic 
line, or the plane, to obtain an extended model with any new variables desired if they seem to give a better or 
more physically meaningful fit to the original data. However, continuing to add terms to the regression 
equation obviously will bring up the question of just where to stop with a useful and "best" fit of the data. 
Moreover, if one continues to add terms, he will, of course, run out of basic data; eventually, he might reach 
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the point at which all of the parameters cannot be estimated from the least squares procedure. We will briefly 
discuss in the sequel what is an appropriate number of terms. Moreover, if there is only one independent 
variable and we are fitting a line, or a quadratic, or a cubic, etc., the use of orthogonal polynomials fits nicely 
into the use of statistical tests of significance for stopping rules. 
If we let 

n 

^xx ^xy Axu 

^yx Ayy ^yu 

■/^ux ^uy ■^uu 

41 

say, then from the method of least squares, we find straightforwardly that 

The constant term of Eq. 6-107 is z — bx — cy - dii. 
The coefficients b, c, and d are determined from 

(6-108) 

(6-109) 

b = 

Axz Axv Ax xz ^^xy J^xu 

yZ  Ayy   Ayu 

uz ^uy Auu 

J_ 
Ai 

Ai 

Axx Axz Axu 

Ayx Ayz Ayu 

Aux Auz Auu 

Axx Axy Axz 

^yx ^yy Ayz 

^ux Auy Auz 

(6-110) 

(6-111) 

(6-112) 

The variance of residuals is found from 

•^2 _ 1 

n {n — 4) 
{Azz - bAxz - cAyz - dAuz). (6-113) 

The estimated variance of a is 

estaa = n 

The estimated variances of the coefficients b, c, and a'are determined from 

(6-114) 

2 _ 
estob = [nS\AyyAuu - /1^)]/Ai 

esta? = [nS\AxxAuu - Axu)]/^^ 

estod = [nS\AxxAyy - Axy)]/Ai 

(6-115) 

(6-116) 

(6-117) 
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Eqs. 6-106 through 6-117 give the needed computational forms to fit the linear regression of the dependent 
variable z on the three independent variables x, y, and u and to make / tests. 

Note that if we wanted to fit the cubic 

z = a + b{x~x) + cix'-x^) + dix'-x') (6-118) 
where ___ 

X = Xx^ / n = mean of x^ 

we could simply replace yt and M, in Eq. 6-106 by x] and x], respectively. 

6-10    FITTING OF ORTHOGONAL POLYNOMIALS FOR THE CASE IN WHICH 
OBSERVED VALUES OF THE INDEPENDENT VARIABLE ARE AT EQUALLY 
SPACED INTERVALS 

As mentioned in par. 6-9, if we are interested in the regression of a dependent variable on a single 
independent variable which is observed at equally spaced intervals, the fitting of polynomials can be made with 
much facihty. Thus if we are interested in fitting a polynomial of the form 

z = ao + aix + aix^ + • • • + arx' (6_119) 

for the relation between the variables z and x, and the independent variable x is equally spaced, i.e., 

Xi^e + {i - \)f;    i=l,2,...,n (6-120) 

then the computations for a least-square fit can be simphfied considerably by the use of orthogonal polynom- 
ials. Following Fisher and Yates (Ref. 17), we consider polynomials defined as follows: 

Pritd = bo +bit, + b2t]+■ • ■ + brfi (6-121) 

where / = 1,2 ,n represents the number of points; r is the degree of the polynomial (r = 0,1,2,...); and the ZJ'S 

are fitted constants to be determined. The variable r, will be a linear transformation or function of the observed 
values of the independent variables x„ which are equally spaced (free of error). Polynomials of the form of Eq. 
6-121 are called orthogonal if 

■ i Pr{t,)Ps(ti) = 0 for r 7^ s. ' (6-122) 

Our procedure will be to fit 

z, = AoPoiti) + AiP,{t,) + AiPiiU) + • • • + ArPriU) (6-123) 

by the method of least squares. Hence we determine the coefficients AQ, A\, etc., so that 

(t> = %f,z> - AoPoiti) -AiPiit,)  ArPrit,)V (6-124) 

is a minimum. 

Differentiating Eq. 6-! 24 with respect toAoMi Ar and setting the derivatives equal to zero, we find the 
normal equations: 

AoiPl (td + A^iPoitdPliti) + ■■   ■+ Ari PoitdPriti) = i  PoitdZi 

AoXPo(t^P^{t^ + A 1 XPiiti) + ■  ■  ■  +Ari P.itdPriti) = I PiitdZi (6-125) 
n 

,=, -     ,1,- 
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Ao X Po(tdPr(td +AlX Pl(ti)Priti) + ■   ■   ■   +ArX P^d =   S Pr{ti)Zi. 
1=1 / = 1 1 = 1 1=1 

Note that the cross-product terms not on the principal diagonal are of the type 

n 
S Pr(/,)/'5(?i), where we have that r ?^ 5. 

But these cross-product polynomials for which r 7^ s are zero if the polynomials are orthogonal. Thus for 
orthogonal polynomials we have solutions immediately for the/I's, which are 

Ao = 
X Po{t,)Zi 

1=1 

1 = 1 

(6-126) 

X pmzi 
1=1 

X P\u) 
1=1 

(6-127) 

Ar = 
X Pr{ti)Zi 

i = 1 

n 

X 
1 = 1 
X P'riU) 

(6-128) 

The problem then is to find the polynomials Pr{ti) that result in orthogonality. This can be done if we put 

ti = {xi-x)lf (6-129) 

(where/is the width of the interval between the observations x,) and choose the Pr{ti) as follows: 

^0(^1) = I = f0   (in Table 6-6 taken from Fisher and Yates, Ref. 17)   \ 

Pi(/,) - X,/, = ^,' 

P2(r,)=X2[d-('^)] = 6' 12 

—   \   r.3 Psiti) = ki[ti 
3n' 

20 ti\ = 6' 

P4{ti)  -   K^lti -  [ j4    ti + J^  ] - ^4 

.   (6-130) 

etc. 
The X,'s are constants that depend on the number of points n and are chosen so that for values of/, (which 

are positive or negative integers or 0), the polynomials in the brackets of Eq. 6-130 are whole numbers. The 
general recurrence equation for the Pr{ti) or fr is 
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6^1 = ^i& - ''^''[     ''^ ^r-u    r=l,2,... 
4(4'- - 1) (6-131) 

where 

Fisher and Yates' (Ref. 17) Table XXIll, entitled "Orthogonal Polynomials", pp. 62-8, gives the required 
values of the orthogonal polynomials Pr{t), or ^r, for r = 1,2, . . .,5 (i.e., through the fifth degree) and for the 
number of points n up through n = 52. We reproduce, with permission. Fisher and Yates' Table XXIII as 
Table 6-6. The values of ^2 and ^4 are symmetrical about their middle values, and the f 1', ^3, and ^5 are also 
symmetrical except that the values in the first half of each sequence are the negatives of those in the last half. 
For this reason, only half of the values (i.e., the upper ones) are tabulated for n>9. The first two rows under 
each table give values of the sum of the squares of the ^'r, and the third or last row just below each table gives 
values of the A^. 

It can be shown that an ordinary polynomial 

y-ao + aix + aix^ + ■ ■ •+akx'' (6-132) 

can always be expressed in terms of orthogonal polynomials for any specified set of values of x For example, 
when X = 1,2,3, . . .,7 

>' = -35 + 59A:-21X^ + 2JC^ 

can be written in the form 

y = 5 + {-4 + x) + 3il2-Sx+x^)+ 12(-6 + ^ JC - 2JC' + 1 x') 
0 6 

where the polynomials in parentheses are orthogonal, as seen in Table 6-7. 
Table 6-7, therefore, exhibits the required properties of the orthogonal polynomials. 

Example 6-4: 
Using the data of Example 6-3 for length of barrel of the cal .22 long rifle versus the average muzzle velocity, 

we arrange the computations as in Table 6-8, where the values of ^; are taken from Table 6-6. 

Calculations follow with x = 17, n = 12, and the data from Table 6-6: 

ti = ii = {Xi-x)/f =(xi-l7)/2;    ^[=\,ti = 2ti 

6'= ^2[/'- («'- 1)/12] = 3(d - 143/12) 

etc., as in Eq. 6-130. 
The mean velocity from Table 6-8 data is 

7 = 2183 + 2188 + 2181+ 2170+ 2142 +2124)/12= 1082.33 

z = a + b^[ + c^2 + d^l    where a = z= 1082.33 '■   .. 

6 = Sf,',.af,/572 = 744/572= 1.3007 '" " 

c = 26>.712,012 =-4394/12,012 =-0.3658 

c/= S6V//5148 = 582/5148 = 0.1131. 

The analysis of variance (ANOVA) is put in the form of Table 6-9. 
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TABLE 6-6 

TABLES; OF ORTHOGONAL POLYNOMIALS (Ref. 17) 
(Values from « = 32 to « = 51 are due to V. Satakopan) 

3 4 S 6 7 8 

(\  f. i'l f. f, fi r. f, f. fi f. f, f«   f. fi f, ^'» i\ ,f. fi f. fs f«     f. 

-7 +7 -7 + 7     -7 

-2 +2 -I + T -s +5 -5 +1    -I -3 
-2 

+S 
0 

-I 

+ 1 
+3    -I 
-7   +4 

-5 + 1 +S -13   +23 
-^ + 1 -I -1 -I + 7 -3 +S -1 -^ + 7 -3   -17 -1   +1 -I -I +2 -4 -r -3 + 1 + 1   -s 

0     -2 
-1 -I +3 

Oi -2  0 +6 
-I -4 +4 +2 -10 

0 -4 0 +6     0 
-I -s +3 +9   -IS 

+ T -I -3 + T -4 -4 +2 +10 + 1 -S -^ +9   +15 
+ 1    +1 + 7,- -I -2 -4 + r -3 -T + 1   +5 

+3 + 1 + 1 
+;j +2 +1 + T +3 -I -7 -3    -S + 7. 0 -I -7   -4 

+3 -3 -7 -3   +17 

+S +S +S + 1   +1 
+3 +s + 1 +3   +1 

+S 
+7 

+ 1 

+7 
-5 
+ 7 

-13    -23 
+7     +7 

2        6 20 4 20 10 14 10 70 70 84 180 28   252 28 84 6 154   84 168 168 264 616   2184 

«      3 2 I ¥ I I   f !f 2 f f A H I I i TV   ^'5 2 I J A   iV 

Q 10 II 12 

fi e. ^3 f4 r. Ti  f 2 fs ^\ f« fi i'2 fa i\ f'5 fi ^2 fs ^4       f* 

0 -20 0 + 18 0 +1   -4 -12 + 18 +6 0 -10 0 +6 0 + 1 -35 -7 +28  +20 

+1 -17 -9 +9 +9 +3  -3 -31 +3 + 11 + 1 -9 -14 +4 +4 +3 -29 -19 + 12    +44 

+2 -8 -13 -II +4 +s -1 -35 -17 + 1 +2 -6 -23 -I +4 +5 -17 -25 -13   +39 
+3 + 7 -7 -21 -II +7 +2 -14 -22 -14 +3 -I -22 -6 -I + 7 + 1 -21 -33   -21 

+4 + 28 + 14 + 14 +4 +9   +6 +42 + i8 +6 +4 +6 -6 -6 -6 +9 + 25 -3 -27    -57 
+5 + 15 +30 +6 +3 + 11 +55 +33 +33   +33 

60 
2,772 

990 
2,002 

468 330 
132 

8,580 
2,860 

780 no 
858 

4,290 
286 

■56 572 
12,012 

5.148 0    „'5'9'2 
8,008 

I 3 1 /i ^v 2      i « A TV I I i A A 2 3 1 TT     A 

13 14 IS 

fr l'2 fa r. fa fi i'2 fs r* ^5 fl e. fs f4 fs 

0 -14 0 •*-84 0 + 1 -8 -24 +108 + 60 0 -56 0 + 7S6 0 

+ 1 -13 -4 +64 + 20 +3 -7 -67 +63 + 145 + 1 -S3 -27 +621 +675 
+ 2 -10 -7 + 11 + 26 +5 -5 -95 -13 + 139 + 2 -44 -49 + 251 + 1000 

+3 -s -8 -54 + 11 + 7 -2 -98 -92 + 28 +3 -29 -61 -249 + 751 
+4 + 2 -6 -96 -18 +9 + 2 -66 -132 -132 +4 -8 -5« -704 -44 

+5 + 11 0 -66 -33 + 11 + 7 + 11 -77 -187 + 5 + 19 -35 -869 -979 
+6 + 22 + 11 +99 + 22 + 13 + 13 + 143 +143 + 143 +6 

+ 7 
+52 
+91 

+ 13 
+91 

-429 

+ 1001 

-1144 

+ 1001 

182 
2,002 

572 
68,068 

6,188 910 

728 
97,240 

136,136 
235.144 280 

37.128 
39,780 IC 

6,466,460 
,581,480 

I I * A riir 2 i 5 A ^ I 3 1 « U 

16 17 18 

f. f2 i:'3 r. r. fi fa fa f. i\ fi ^2 fa f4 f5 

+ 1 -21 -63 +189 +45 0 -24 0 +36 0 + 1 -40 -8 +44 +220 

+3 -19 -179 +129 + 115 + 1 -23 -7 +31 +55 +3 -37 -23 +33 +583 
+ 5 -IS -'■■65 +23 + 131 +2 -20 -13 + 17 +88 + 5 -31 -35 + 13 + 733 
+ 7 -9 -301 -lOI + 77 +3 -15 -17 -3 +83 + 7 -22 -42 -12 +588 

+9 -I -:267 -201 -33 +4 -8 -18 -24 +36 +9 -10 -42 -36 + 156 

+ 11 +9 -143 -221 -143 + 5 + 1 -IS -39 -39 + 11 +5 -33 -51 -429 
+ 13 +21 +91 -91 -143 +6 + 12 -7 -39 -104 + 13 +23 -13 -47 -871 

+ 15 +35 + 455 + 273 + 143 + 7 + 25 + 7 -13 -91 + 15 +44 +20 -12 -676 
+8 +40 +28 + 52 + 104 + 17 +68 +68 +68 +884 

1.360 
5.712 

1,007,760 
470,288 

201,552 408 

7.752 
3.876 

16,796 
100,776 1,938 

23,256 
23.256 6 

28,424 
953.544 

a I ^ TV A I I * iV ^a 2 i i I'lf A 

(cont'd on next page) 

6-37 



DARCOM-P 706-103 

TABLE 6-6 (Cont'd) 

19 20 21 

fl i\ f, f. f. fi r. 1'. i'i f. i\ f. ,    ^'» i\ f. 
o -3° 0 +396 0' + 1 -33 -99 +1188 +396 0 -110 0 +594 0 

+1 -29 -44 +35^ +44 +3 -31 -287 +948 +1076 +1 -107 -54 +540 + 1404 
+ 2 -26 -83 + 227 +74 +5 -27 -445 +503 +1441 +2 -98 -103 +38S + 2444 

+3 -21 -112 +42 + 79 + 7 -21 -553 -77 +1351 +3 -83 -142 +150 + 2819 

+4 -14 -126 -168 +54 +9 -13 -591 -687 +771 +4 -(52 -166 -130 +2354 

+5 -s -120 -354 +3 + 11 -3 -539 -1187 -187 +5 -35 -170 -406 + 1063 
+6 +6 -89 -453 -S8 + 13 +9 -377 -1402 -1222 +6 -2 -149 -615 -788 

+7 + 19 -28 -388 -98 + 15 +23 -85 -1122 -1802 + 7 +3? -98 -680 -2618 
+8 +34 +68 -68 -68 + 17 +39 +357 -102 -1122 +8 +82 -12^ -510 -3468 

+9 +SI + 204 +612 + 102 + 19 +57 +969 +1938 +1938 +9- 

+ 10 

+ ^33 

+ 190 

+ 114 

+ 285 

0 

+969 

-1938 

+3876 

57° 213,180 89,148 2,660 4,903,140 31 ,201,800 770 ♦32,630 121 ,687,020 
3.S66 2, 288,132 I 7,556 22 ,881,320 !OI,894 5,726,330 

I I 1 12 JV 2 I Y M I'u I 3 s A if* 

22 23 24 

fi f2 I'a r* f5 i\ i'. fa ^4 I's i\ i\ fs ^'1 f» 

+1 -20 -12 +702 + 390 0 -44 0 + 858 0 +1 -143 -143 + 143 + 715 
+3 -19 -35 +585 + 1079 + 1 -43 -13 + 793 +65 +3 -137 -419 + 123 + 2005 

+5 -17 -55 +365 + 1509 + 2 -40 -25 +60S + 116 + 5 -125 -66s + 85 + 2893 

+7 -14 -70 +70 + 1554 +3 -35 -35 +315 + 141 + 7 -107 -861 +33 +3171 

+9 -10 -78 -258 + 1158 +4 -28 -42 -42 + 132 +9 -83 -987 -27 + 2721 

+ 11 -5 -77 -563 + 363 +5 -19 -45 -417 +87 + 11 -53 -1023 -87 + 1551 

+13 + 1 -65 -775 -663 +6 -8 -43 -747 + 12 + 13 -17 -949 -137 -169 

+ 15 +8 -40 -810 -1598 + 7 +5 -35 -955 -77 + 15 +25 -745 -165 -2071 

+ 17" + 16 0 -570 -1938 + 8 +20 -20 -95° -152 + 17 +73 -.391 -157 -3553 
+ 19 + 25 +57 +57 -969 +9 +37 +3 -627 -171 + 19 +127 + ^^33 -97 -3743 

+21 +35 + 133 +1197 + 2261 + 10 +56 +35 + 133 -76 + 21 +187 +847 +33 -1463 
+ 11 + 77 + 77 + 1463 + 209 + 23 +253 + 1771 +253 +4807 

3M^ 96,140 40,562,340 1,012 32,890 340,86o_ 4,600 17,760,600 177,928,920 
7,084 8,748,740 35,420 13 123,110 394,680 394,680 

2 * J A 3^ I I i iV B-O 2 3 -3~ iSr A 

25 
SI       £2       Cs ?i tsISi      '2 

26 

fa i\ i\ I   f 1 f2 
27 

fs f.     r» 
0 -52 0 + 858 0 + 1 -p8 -84 +1386 +330 0 -182, 0 + 1638 0 

+1 -51 -77 +803 +275 +3 -27 -247 + I22I +935 + 1 -179 -18 + 1548 +3960 
+ 2 -48 -149 +643 +500 +5 -25 -395 + 905 + 1381 + 2 -170 -35 ->i28s +7304 
+3 -43 -211 +393 +631 + 7 -22 -518 + 466 + 1582 +3 -155 -50 +870 +9479 
+4 -36 -258 + 78 +636 +9 -18 -606 -54 + 1482 +4 -134 -62 +338 + 10058 

+5 -27 -28s -267 +501 + 11 -13 -649 -599 + 1067 + 5 -107 -70 -262 +8803 
+6 -16 -287 -597 +236 + 13 -7 -637 -1099 +377 +6 -74 -73 -.867 + 5728 

+ 7 -3 -259 -857 -119 + 15 0 -560 -1470 -482 + 7 -35 -70 -1400 + 1162 

+8 + 12 -196 -982 -488 + 17 +8 -408 -1614 -1326 +8 + 10 -60 -1770 -4188 

+9 + 29 -93 -897 -753 + 19 + 17 -171 -1419 -1881 +9 +61 -42 -1872 -9174 

+ 10 +48 +55 -517 -748 + 21 + 27 + 161 -759 -1771 + 10 + 118 -IS -1587 -12144 

+ 11 +69 + 253 +253 -253 + 23 +38 +598 +506 -506 + n + 181 + 22 -782 -10879 
+ 12 +92 +506 + 1518 + 1012 + 25 +50 + 11C0 +2530 + 2530 + 12 

+ 13 

+250 

+325 

+ 70 
+ 130 

+ 690 
+2990 

-2530 
+1644s 

1,300 I, (80,050 7,803,900 5,850 7,803,900 48,384,180 1,638 01,790 2,032,135,560 
53,820 14,307,150 6,380 40 ,060,020 > 12,530 56,448,210 

I I i A A 2 i s A A I 3 ,i iV a 

(cont'd on next page) 
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TABLE 6-6 (Cont'd) 

28 29 30 

fl Ta fa f4 i\ fi fa fa $\ fa fx fa fs fi fs 

+1 -65 -39 + 936 +1560 0 -70 0 + 2184 0 + 1 -112 -112 +12376 +1768 

+3 -63 -115 + 840 +4456 +1 -69 -104 + 2080 + 1768 +3 -109 -331 +11271 +5083 

+5 -59 -185 + 655 +6701 +2 -66 -203 + 1775 +3298 +5 -103 -535 +9131 +7753 
+7 -53 -245 +395 +7931 +3 -61 -292 + 1290 +4373 +7 -94 -714 +6096 +9408 

+9 -45 -291 +81 +7887 +4 -54 -366 +660 +4818 +9 -82 -858 +2376 +9768 

+ 11 -35 -319 -259 +6457 +5 -45 -420 -66 +4521 + 11 -67 -957 -1749 +8679 

+ 13 -23 -325 -590 +3718 +6 -34 -449 -825 +3454 + 13 -49 -1001 -5929 +6149 

+ 15 -9 -305 -S70 -32 + 7 -21 -448 -1540 + 1694 + 15 -28 -980 -9744 +2384 

+ 17 + 7 -25s -1050 -4182 +8 -6 -412 -2120 -556 + 17 -4 -884 -12704 -2176 

+ 19 + 2S -171 -1074 -7866 +9 + 11 -336 -2460 -2946 + 19 + 23 -703 -14249 -6821 

+ 21 +45 -49 -879 -9821 + 10 +30 -215 -2441 -4958 +21 +53 -427 -13749 -10535 

+ 23 +67 + 115 -395 -839s + 11 +51 -44 -1930 -5885 +23 +86 -46 -10504 -11960 

+ 25 +91 +325 +455 -1495 + 12 + 74 + 182 -780 -4810 + 25 + 122 +45° -3744 -9360 

+ 27 + 117 + 585 + I75S +13455 + 13 +99 +468 + 1170 -58s +27 + 161 + 1071 +7371 -585 
+ 14 + 126 +819 +4095 +8190 +29 + 203 + 1827 +23751 +16965 

7,3Q8 2,103,66c 1,354.757,040 2,030 4,207,320         500,671,080 8,990 21,360,240        2,145,733,200 
95,004 19,634,16c 113,27'! 107,987,880 302,064 ,671,587,920 

2 I § HT 
7 I I f A 15 2 n 5 H T\ 

31 32 33 

fl fa fs f4 f5 fl fa fs f* fs fl fa fs f4 fs 

+0 -80 0 + 408 0 + 1 -85 -51 +459 + 255 0 -272 0 + 3672 0 

+1 -79 -119 + 391 + 221 +3 -83 -'51 +423 + 737 + 1 -269 -27 +3537 + 2565 
+ 2 -76 -233 + 341 + 416 +S -79 -245 +353 + 1137 + 2 -260 -53 +3139 +4864 

+3 -71 -337 + 261 + 561 + 7 -73 -329 +253 + 1407 +3 -24s -77 + 2499 + 6649 

+4 -64 -426 + 156 + 636 + 9 -65 -399 + 129 + 1509 +4 -224 -98 + 1652 + 7708 

+5 -55 -495 +33 + 627 + 11 -55 -451 -II + 1419 +5 -197 -115 +647 + 7883 
+6 -44 -539 -99 + 528 + 13 -43 -481 -157 + 1131 +6 -164 -n7 -453 + 7088 

+7 -31 -553 -229 +343 + 15 -29 -485 -297 +661 + 7 -125 -133 -1571 + 5327 
+8 -16 -532 -344 +88 + 17 -13 -459 -417 +51 +8 -80 -132 -2616 + 2712 

+9 + 1 -471 -429 -207 + 19 + 5 -399 -501 -627 + 9 -29 -123 -3483 -519 

+ 10 + 20 -365 -467 -496 + 21 + 25 -301 -531 -1267 + 10 + 28 -105 -4053 -3984 
+ 11 +41 -209 -439 -715 + 23 +47 -161 -487 -1725 + 11 + 91 -77 -4193 -7139 
+ 12 +64 + 2 -324 -780 + 25 + 71 + 25 -347 -1815 + 12 ^-I6o -38 -3756 -9260 

+ 13 +89 + 273 -99 -585 + 27 +97 +261 -87 -1305 + 13 +235 + 13 -2581 -9425 
+ 14 + 116 +609 + 261 0 + 29 + 125 +551 +319 +87 + 14 +316 + 77 -493 -6496 

+15 + I4S + 1015 + 783 + 1131 +31 + 155 +899 +899 + 2697 + 15 
+ 16 

+403 
+496 

+ 155 
+ 248 

+ 2697 
+ 7192 

+ 899 

+ 14384 

5,480 6,724,520 9,536,592 10,912 5,379,6 6          54,285,216 2,992 417,384 1,547,128,656 
158,224 4,034,7 12 185,504 ;,379,6i6 1,947,792 348,330,136 

I I 1 i^ 1 
JIT 2 I 1 iV BV I 3 J 7 

1¥ ^ 

(cont'd on next page) 
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TABLE 6-6 (Cont'd) 

34 

*1      £2 Ss £l f6 

I      -48 

3 -47 
S -45 
7 -42 
9 -38 

II -33 
13 -27 
IS -20 
17 -12 

19 -3 

ii +7 

23 +18 

^5 +30 
27 +43 

29 +57 

31   +72 

33   +88 

-144 

-427 

-695 
-938 

-1146 

-1309 

-1417 

-1460 
-1428 

-13W 

-1099 
-782 

-350 
+ 207 

+899 

+ 1736 

+ 2728 

+4104 +6840 0 -102 

+3819 + 19855 I -lOI 

+3263 +30917 2 -98 
+2464 +38864 3 -93 
+ 1464 +42744 4 -86 

+319 +41899 5 -77 
-901 +36049 6 -66 

-2II2 + 25376 7 -53 
-3216 + 10608 8 -38 
-4101 -6897 9 -21 

-4641 -25067 10 -2 

-4696 -41032 II + 19 
-4112 -51040 12 +42 
-2721 -50373 13 +67 
-341 -33263 14 +94 

+3224 + 7192 15 + 123 

+ 8184 + 79II2 16 + 154 

fl 
35 

e. 

17 

o 
-152 

-299 
-436 
-558 

-660 

-737 
-784 
-796 
-768 

-695 
-572 
-394 
-156 
+ 147 

+23256 
+22496 
+ 20251 

+ 16626 

+ 11796 

+6006 
-42^ 

-7124 

-13624 
-19404 

-23869 

-26354 
-26124 

-22374 
-14229 

o 
+3800 
+ 7250 

+ I002I 

+ 1I826' 

+ I244I 

+II726 

+9646 
+6292 

+ 1902 

-3II8 

-8173 
-12458 

-14937 
-14322 

+520      -744    -9052 
+ 154     +968   +19096     +2728 

+ 187   +1496  +46376  +23188 

fl 
36 

f« 

I -323 
3 -317 

s -305 
7 -287 

9 -263 

II 

13 
15 
17 

-233 
-197 

-155 
-107 

19 ~5i 

21 +7 

23 +73 

25 +145 
27 +223 
29 +307 

31 +397 
33 +493 
35 +595 

-3003 
-3289 

-3445 

-3451 
-3287 

-2933 
-2369 

-1575 
-531 

+ 783 

+ 2387 
+4301 

+6545 

+429 
-286 

-1014 
-1706 

-2306 

f. 
--323 +2584 +12920 

-959 +2424 +37640 
-1565 +2111 +59063 
-2121 +1659 +75201 

-2607 +1089 +84381 

+85371 
+ 77506 
+60814 
+36142 

+528^ 

-2751 -28903 
-2971 -62353 

-2889 -89685 
-2421 -104067 

-1476 -97092 

+44 -58652 
+2244 +231S8 

+5236 +162316 

13.090       51,477,360       46,929,569,232:3,570 
62,832 456,432,592 290,598 

I 

"S.775.320 
14,834,059,240 

4,045.652,520 15,540 307,618,740      199,046,103,984 
3,011,652 

3 

191,407,216 
7 

37 3^ 39 
^'1 f2 fa i\ ^5 i\ e. i\ e. fs fl i\ fs f. fs 

0 -114 0 +5814 0 I -60 -36 +918' + 1530 0 -380 0 + 1026 0 

I -113 -34 +5644 + 680 3 -59 -107 +867 +4471 I -377 -189 +999 +5049 
2 -IIO -67 +5141 + 1304 5 -57 -175 +767 + 7061 2 -368 -373 +919 +9724 
3 -105 -98 +4326 + 1819 ' 7 -54 -238 +622 + 9086 3 -353 -547 + 789 +13669 
4 -98 -126 +3234 + 2178 9 -50 -294 +438 + 10362 4 -332 -706 +614 + 16564 

5 -89 -150 +1914 + 2343 II -45 -341 +223 + 10747 5 -305 -845 +401 +18143 
6 -78 -169 +429 + 2288 13 -39 -377 -13 + IOI53 6 -272 -959 + 159 + I82I2 
7 -65 -182 -1144 + 2002 15 -32 -400 -258 + 8558 7 -233 -1043 -101 +16667 
8 -5° -188 -2714 + 1492 17 -24 -408 -498 + 6018 8 -188 -1092 -366 +I35I2 
9 -33 -186 -4176 + 786 19 -15 -399 -717 + 2679 9 -137 -IIOI -621 +8877 

10 ^14 -175 -5411 -64 21 -5 -371 -897 -I2II 10 -80 -1065 -849 +3036 
II + 7 -154 -6286 -979 23 +6 -322 -1018 -5290 II -17 -979 -1031 -3575 
12 +30 -122 -6654 -1850 25 + 18 -250 -1058 -9070 12 + 52 -838 -1146 -10340 

13 +55 -78 -6354 -2535 27 +31 -153 -993 -11925 13 + 127 -637 -1171 -16445 
14 +82 -21 -5211 -2856 29 +45 -29 -797 -13079 14 + 208 -371 -1081 -20860 

15 + 111 +50 -3036 -2596 31 +60 +124 -442 -11594 15 + 295 -35 -849 -22321 
16 + 142 + 136 +374 -1496 33 + 76 +308 +102 -6358 16 +388 +376 -446 -19312 

17 + 175 + 238 +5236 + 748 35 + 93 +525 +867 + 3927 17 +487 +867 + 159 -10047 
18 + 210 +357 +11781 +4488 37 + 111 +777 +1887 + 20757 18 

19 

+ 592 
+ 703 

+ 1443 
+ 2109 

+999 
+ 2109 

+7548 

+35853 

4,21 8 932,178 152,877,192 18,278          4 ,496,388 3,286,859,628 4,940 33,722,910 9,860,578,884 
383,838 980,961,982 09,668 25,479,53 2 4 496,388 32,224,114 

I I i T'3 x\ 2 * i T^I TV I 3 i A ^\ 

(cont'd on next page) 
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TABLE 6-6 (Cont'd) 

40 41 

fl f^ fs r* fs fi f. fa f* 
I -133 -399 +39501 +627 0 -140 0 +8778 
3 -131 -1187 +37521 +1837 I -139 -209 +8569 
5 -127 -1945 +33631 +2917 2 -136 -413 + 7949 
7 -121 -2653 +27971 +3787 3 -131 -607 +6939 
9 -113 -3291 +20751 +4377 4 -124 -786 +5574 

II -103 -3839 +12251 +4631 5 -115 -945 + 3903 
13 -91 -4277 +2821 +45i'i 6 -104 -1079 + 1989 
IS -77 -4585 -7119 +4001 7 -91 -1183 -91 
17 -61 -4743 -17079 +3111 8 -76 -1252 -2246 
19 -43 -4731 -26499 + 1881 9 -59 -1281 -4371 

21 -23 -4529 —34749 +385 10 -40 -1265 -6347 
23 -I -4117 —41129 — 1265 II -19 -1199 -8041 
25 + 23 -3475 —44869 -2915 12 +4 -1078 -9306 
27 +49 -2583 —45129 -4365 13 + 29 -897 -9981 
29 + 77 -1421 —40999 -S365 14 +56 -651 -9891 

31 + 107 +31 -31499 —5611 15 +85 -335 -8847 
33 + 139 + 1793 -15579 —4741 16 + u6 + 56 -6646 
35 + 173 +3885 +7881 -2331 17 + 149 + 527 -3071 
37 + 209 +6327 +40071 + 2109 18 + 184 + 1083 + 2109 
39 + 247 + 9139 +82251 +9139 19 + 221 + 1729 +9139 

f5 

O 

+ 4807 
+ 9292 

+ 13147 
+ 16092 

+ 17889 

+ 18356 
+ I7381 
+ 14936 
+ II09I 

+ 6028 

+55 
-6380 

-12675 
-I8060 

-21583 
-22096 
-18241 

-8436 

+9139 

20   +260   +2470   +18278   +36556 

^i 

42 

f4 f's 

-220 
-217 
-211 

-202 
-190 

II      -175 

13      -157 
15 
17 

19 

-136 
-112 

-85 

21 -55 
23 -22 

25 +14 
27 +53 
29 +95 

31 +140 
33 +188 

35 +239 
37 +293 
39 +350 

-44 
-131 
-215 

-294 

-366 

-429 
-481 
-520 

-544 
-551 

-539 
-506 

-45° 
-369 
-261 

-124 

+44 
+ 245 
+481 

+ 754 

+9614 +48070 
+9177 +I4iis'i 
+ 8317 +225181 
+ 7062 +294546 
+5454 +344262 

+ 3549 +370227 
+ 1417 +369473 
-858 +340418 

-3178 +283118 

-5431 +199519 

-7491 
-9218 

-10458 

-11043 

-10791 

-9506 

-6978 

-2983 
+ 2717 

+ 10374 

+93709 
-27830 

-155970 
-278685 
-380799 

-443734 
-445258 

-359233 
-155363 
+ 201058 

41 +410 +1066 +20254 +749398 

21,320   644,482,280    644,482,2805,740    47,900,710 
567,112    49,625,135,560        641,732 

43 
f 1 S 2 £3 ^4 ^'5      ^'1 ^'2 

0 -154 

1 -153 
2 -150 

3 -145 
4 -138 

5 -129 
6 -118 

7 -105 
8 -90 

9 -73 

10 -54 

11 -33 
12 -10 

13 +15 
14 +42 

15 +71 
16 +102 

17 +135 
18 +170 

19 +207 

20 +246 

21 +287 

o 
-46 
-91 

-134 

-174 

~2IO 
-241 

-266 
-284 

-294 

-295 
-286 

-266 

-234 
-189 

-130 

-56 
+34 

+ 141 

+ 266 

+410 

+574 

+ 10626 

+ 10396 

+ 9713 
+8598 
+ 7086 

+ 5226 

+ 3081 

+ 728 

-1742 

-4224 

-6599 

-8734 
-10482 

-11682 

-12159 

-11724 

-10174 

-7292 

-2847 
+3406 

+ 11726 

+ 22386 

o 
+ 8740 
+ 16948 
+ 24113 

+ 29766 

+33501 

+34996 

+34034 

+30524 
+ 24522 

+ 16252 

+6127 

-5230 
-16965 

-27972 

-36872 

-41992 

-41344 
-32604 

-13091 

2,481,256,778 

44, 
fa 

10,376,164,708124,682    9,075,924  4,389,117,671,484 
,629,012    3,084,805,724 

45 
f4 S 5  S 1   £ 2 f4 i\ 

I 

3 
5 
7 
9 

II 

13 

15 

17 

19 

21 

23 

25 

27 
29 

31 

33 
35 
37 
39 

I 
+ 20254 I 41 

+ 70889 i 43 

-161 

-159 

-155 
-149 

-141 

-131 
-119 

-105 

-89 

-71 

-51 
-29 

-5 
+ 21 

+49 

+ 79 
+ 111 

+ 145 
+ 181 
+ 219 

+ 259 
+ 301 - 

-483 
-1439 
-2365 
-3241 
-4047 

-4763 
-5369 
-5845 
-6171 
-6327 

+5796 +1380 
+ 5556 +4060 
+ 5083 +6503 

+4391 +8561 
+3501 +10101 

+ 2441 +11011, 
+ 1246 +11206 

-42 +10634 

-1374 +9282 
-2694 +7182 

^6293 -3939 

-6049 -5039 

-5575 -5917 
-4851 -6489 
-3857 -6664 

+4417 
+ 1127 

-2485 
-6147 

-9512 

-2573 
-979 
+ 945 
h32i9 

H5863 

-6344 -12152 

-5424 -13552 
-3792 -13104 
-1329 -lOIOI 
+2091 -3731 

+8897    +6601    +6929 
■12341   +12341   +22919 

6,622 2,676,234 39,541,600,644 
814,506 3,815,417,606 
II" V IJ 40 

28,380 1,257,829,980        4,162,273,752 
913,836 1,173,974,648 

0 -506 

1 -503 

2 -494 

3 -479 
4 -458 

10 

II 

12 

13 

14 

-431 

-398 
-359 
-314 
-263 

-206 

-143 

-74 
+ 1 
+82 

15 +169 
16 +262 
17 +361 
18 +466 

19 +577 

20 +694 
21 +817 
22 +946 

o 
-252 

~499 
-736 
-958 

-1160 

-1337 
-1484 
-1596 
-1668 

-1695 
-1672 

-1594 
-1456 

-1253 

-980 
-632 
-204 

+309 
+912 

+ 9108 

+8928 

+8393 
+ 7518 
+ 6328 

+4858 

+3153 
+ 1268 

-732 
-2772 

-4767 
—6622 

-8232 

-9482 
-10247 

-10392 

-9772 
-8232 
-5607 

-1722 

+ 1610 +3608 

+ 2408 +10578 
+3311   +19393 

+4500 

+8750 
+ 12509 

+ I5SS4 

+17689 

+18754 
+18634 
+ 17268 

+14658 

+ 10878 

+6083 

+S18 

-5473 
-11438 

-16808 
-20888 

-22848 
-21714 

-16359 

-5494 
+ 12341 
+38786 

7,59° 92,036,340 12,006,558,900 
9,203,634 2,934,936,620 

13        ^ A        A 

(cont'd on next page) 
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TABLE 6-6 (Cont'd) 

46 47 .48 

fl f2 ^3 i\ i'. fi e. fs e. e. fi f, ?', f. f'. 

I -88 -264 + 1980 +3300 0 -184 0 +15180 0 I -575 -"5 +I644s +82225 

3 -87 -787 +190S +9725 1 -183 -55 +1490S +3S75 3 -569 -343 +15873 +242671 

5 -8S -1295 + I7S7 +15631 2 -180 -109 +14087 +6968 5 -557 -565 +14743 +39I23I 

7 -82 -1778 + 1540 +20692 3 -17s -161 +12747 + 10003 7 -539 -777 +13083 +520401 

9 -78 -2226 +1260' +24612 4 -168 -210 +10920 + 12516 9 -51s -975 +10935 +^«33o7 

II -73 -2629 +925 +27137 5 -159 -255 +8655 + 14361 II -485 -1155 +8355 +693957 
13 -67 -2977 +S4S +,28067 6 -148 -295 +6015 + 15416 13 -449 -1313 +5413 +727493 

IS -60 -3260 +132 +27268 7 -135 -329 +3077 + 15589 15 -407 -144^ +2193 +720443 

17 -52 -3468 -300 +24684 8 -120 -356 -68 +14824 1.7 -359 -1547 -1207 +670973 

19 -43 -3591 -735 +20349 9 -103 -375 -3315 + 13107 19 -305 -1615 -4675 +579139 

21 -33 -3619 -"55 +14399 10 -84 -385 -6545 + 10472 21 -245 -1645 -8085 +447139 

23 -22 -3542 -1540 +7084 II -63 -385 -9625 +7007 23 -179 -1633 -11297 +279565 

25 -10 -3350 -1868 -1220 12 -40 -374 -12408 +2860 25 -107 -1575 -14157 +83655 
27 +3 -3033 -211S -9999 13 -\s -351 -14733 -1755 27 -29 -1467 -16497 -130455 
29 + 17 -2581 -2255 -18589 14 + 12 -315 -16425 -6552 29 +55 -130S -18135 -549479 

31 +32 -1984 -2260 -26164 15 +41 -26s -17295 -11167 31 + 145 -1085 -1887s -556729 

33 +48 -1232 -2100 -31724 16 +72 -200 -17140 -15152 33 +241 -803 -18507 -731863 

3S +65 -315 -1743 -34083 17 + 105 -119 -15743 -17969 35 +343 -455 -16807 -850633 

J7 +83 +777 -1155 -31857 18 +140 -21 -12873 -18984 37 +451 -37 -13537 -884633 

39 + 102 +2054 -300 -23452 19 + 177 +95 -8285 -17461 39 +565 +455 -8445 -801047 

41 + 122 +3526 +860 -7052 20 +216 +230 -1720 -12556 41 +685 +1025 -1265 -562397 

43 + 143 +5203 +2365 +19393 21 +257 +385 +7095 -3311 43 +811 + 1677 +8283 -126291 

4S + 165 + 7095 +4257 +58179 22 +300 +561 + 18447 + 11352 45 +943 +2415 +20493 +554829 

23 +345 + 759 +32637 +32637 47 + 1081 +3243 +35673 +1533939 

32,430       429,502,920         27 214,866,84c '8,648 4,994,220 8,629,104,120 36,848        92^620,080 19,208, 385,771,120 

28i;,384 143,167,640 I ,271,256 8 518,474,5s 0 12,712,560         10,301,411,1 20 

2 1 5 TV TV I I I 15 i^ 2 3 i T'TJ !J 

49 49—continued 

i\ f2 fa fi fs fi e. fs r4 fs 

0 -200 0 + 17940 0 15 +25 -1685 -19935 -24083 

I -199 -299 + 17641 +9867 16 +56 -1384 -20524 -36336 
2 -196 -593 +16751 +19272 17 +89 -1003 -19919 -46461 

3 -191 -877 + 15291 +27767 18 +124 -537 -17889 -53016 

4 -184 -1146 + 13296 +34932 19 +161 + 19 -14189 -54321 

5 -175 -1395 + 10815 +40389 20 +200 +670 -8560 -48444 
6 -164 -1619 +7911 +43816 21 +241 + 1421 -729 -33187 

7 -151 -1813 +4661 +44961 22 +284 +2277 +9591 -6072 

8 -136 -1972 + 1156 +43656 23 +329 +3243 +22701 +35673 

9 -119 

-100 

-2091 

-2165 

-2499 

-6185 

+39831 

+33528 

24 +376 +4324 +38916 +95128 

10 9,800 167,230,700         74,451,107,640 
11 -79 -2189 -9769 + 24915 1,566,040 2,408,517,940 

12 -56 -2158 -13104 +14300 I I * A ^     1 
^3 -31 -2067 -16029 + 2145 

14 -4 -1911 -18369 -10920 

(cont'd on next page) 
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TABLE 6-6 (Cont'd) 

i\   ^2 

II 

13 

IS 
17 

19 

21 

23 

25 
27 
29 

31 
33 
3S 
37 
39 

Jo 
S 5      Si S 2 

I -104 -312 

3 -103 -931 
5 -loi -IS3S 
7 -98 -2114 
9 -94 -2658 

-89 -3IS7 
-83 -3601 

-76 -3980 

-68 -4284 

-59 -4503 

-49 
-38 
-26 

-13 
+1 

+ 16 

+32 

+49 
+67 
+86 

41 +106 

43 +127 

45 +149 
47 +172 
49 +196 

-4627 

-4646 

-4550 

-4329 

-3973 

-3472 
-2816 

-1995 

-999 
+182 

+ 1558 
+3139 
+4935 
+6956 
+9212 

+96876 +10764 

+93771 +31809 

+87631 +S1419 
+ 78596 +68684 
+66876 +82764 

+52751 

+36571 
+18756 

-204 

-19749 

-39249 
-58004 

-75244 
-90129 

-101749 

-109124 

-111204 

-106869 
-94929 

-74124 

+92917 

+98527 
+99132 

+94452 
+84417 

+69195 
+49220 
+25220 

-1755 

-3030s 

-58652 

-84612 

-105567 

-11843.7 
-119652 

-43124 -105124 

-529 -70219 

+SS131 -9729 
+ 125396 +82156 

+211876 +211876 

^3 

51 

f« £ IS   £ 1      s a 

10 

II 
12 

13 
14 

15 
16 

17 
18 

19 

-650 o +21060 o 

-647 -324 +20736 +7452 

-638 -643 +19771 +14582 
-623 -952 +18186 +21077 
-602 -1246 +16016 +26642 

-575 
-542 
-503 
-458 

-407 

-350 
-287 

-218 

-143 
-62 

+ 25 
+ 118 
+217 

+322 

+433 

-1520 +13310 +31009 
-1769 +10131 +33946 

-1988 +6556 +35266 

-2172 +2676 +34836 

-2316 -1404 +32586 

-2415 
-2464 

-2458 
-2392 

-2261 

-2060 

-1784 
-1428 

-987 
-4S6 

-5565 +28518 
-9674 +22715 

-13584 +15350 

-17134 +6695 
-20149 -2870 

-22440 -12848 

-23804 -22616 
-24024 -31416 

-22869 -38346 
-20094 -42351 

20 +550 +170 -15440 -42214 

21 +673 +896 -8634 -36547 
22 +802 +1727 +611 -23782 

23 +937 +2668 +12596 -2162 
24 +1078 +3724 +27636 +30268 

25 +1225 +4900 +46060 +75670 

41,650        770,715,400 372,255,538,2001 
433.160 372,255.538>2oo 

2      * S f5 ,\ 

1,050 221,375,700 47,861,426,340 
17,218,110 17,803,525,740 

1 3 f iv ilr 

52 
f* 

1 -225 -135 +1620 +2700 

3 -223 -403 +1572 +798S 

5 -219 -665 +1477 +12943, 

7 -213, -917 +1337 +17353 

9 -205 -1155 +1155 +21021 

■195 -1375 

•183 -1573 
169 -1745 

17 -153 -1887 

19 -13s -1995 

II 

13 
15 

21 

23 

25 
27 

29 

31 

33 

-115 -2065 

-93 -2093 
-69 -2075 
-43 -2007 

-15 -1885 

+ 15 
+47 

-1705 

-1463 
35  +81 -1155 

37 +117 

39 +155 

-777 
-32s 

41 +195 +205 

43 +237 +817 
45 +281 +1515 

47 +327 +23P3 

49 +375 +3185 

51 +425 +4165 

+935 + 23771 
+682 + 25454- 
+402 + 259S4 
+ 102 +25194 
-210 + 23142 

-525 +19817 
-833 +15295 

-1123 +971S 
-1383 +3285 
-1600 -3712 

-1760 -10912 
-1848 -17864 
-1848 -24024 

-1743 -28749 

-1515 -31291 

-1145 -30791 
-613 -26273 
+ 102 -16638 

+ 1022 -658 
+ 2170 +23030 

+3S70 +5S930 

46,852       162,342,180     26,358,466,680 
2,108,340 108,228,120 

2 I S 3lV -sV 

Table 6-6 is taken from Table XXIIl of Fisher and Yates: Statistical Tables for Biological, Agricultural, and Medical Research, 
published by Longman Group Ltd., London, (1974) 6th edition (previously published by Oliver & Boyd Ltd., Edinburgh) and by 
permission of the authors and publishers. 

TABLE 6-7 

EXAMPLE OF ORTHOGONAL POLYNOMIALS 

1 
2 
3 
4 
5 
6 
7 

Total 

P. Pi Pi 

(-4 + ;c) (12- - 8A: -f- JC2) (-6 + llx 
6 

-2x' + ijc') 
6 

-3 5 -1 
-2 0 1 
-I -3 1 

0 -4 0 
1 -3 ^1 , 
2 0 -1 
3 5 I 

Pi Pi plp, Ptpj 

-15 
0 
3 
0 

-3 
0 

15 

0 

3 
-2 
-1 

0 
-1 
-2 

3 

0 

-5 
0 

-3 
0 
3 
0 
5 
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Barrel 
Length, 

in. 

Sum 
of 

Velocities 
Si, ft/s 

TABLE 6-8 

EXAMPLE 6-4 COMPUTATIONS 

Difference 
of ii 

Velocities 
di, ft/s 

^ 

18, 16 2183 13 1 -35 - 7 

20, 14 2188 12 3 -29 -19 

22, 12 2181 11 5 -17 -25 

24,  10 2170 12 7 1 -21 

26,    8 2142 8 9 25 - 3 

28,    6 2124 44 11 55 33 

Part of Table 6-8 is taken from Table XXllI of Fisher & Yates: Statistical Tables for Biological, Agricultural, and Medical Research, 
published by Longman Group Ltd., London, (1974) 6th edition (previously published by Oliver & Boyd Ltd., Edinburgh) and by 
permission of the authors and publishers. ■ 

TABLE 6-9 

ANOVA TABLE FOR EXAMPLE 6-4 

Source of Variation 
Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Square F Ratio 

Linear Regression 
Quadratic Regression 
Cubic Regression 
Residual Error 

1 
1 
1 
8 

11 

967.72 
1607.33 

65.80 
319.82 

2960.67 

967.72 
1607.33 

65.80 
39.98 

24.21 
40.20 

1.65 

Note that the SS are found from 

(744)V572 = 967.72, (-4394)'/12,012 = 1607.33, etc. 

Since quadratic regression is highly significant, but cubic regression is not, we fit the quadratic, which, in 
terms of the original values of the x, becomes 

z = 1082.33 + 1.3007(2)(x - 17)/2 - 0.3658(3) [(x - 17)V4 - 143/12] 

= 994 + 10.63JC - 0.2744x^ as in Example 6-3. 

The advantageous use of orthogonal polynomials in least squares curve fitting for numerous applied 
problems is clearly seen, especially along with significance tests for the coefficients in the form of an ANOVA 
as illustrated in Table 6-9. 

For a generalized appHcation of least squares principles woven into the problems of imprecision and 
inaccuracy of measurement discussed in Chapter 2, see the appendix to this chapter on the sampling of 
atmospheric ozone concentrations. 
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6-11    MULTIPLE REGRESSION OR THE GENERAL LINEAR MODEL 

6-n.l    INTRODUCTION 

Although we have discussed linear regression or linear least squares, the fitting of a plane or one dependent 
variable on two first order variables, the fitting of a dependent variable to three variables of the first power, the 
fitting of a quadratic, or a cubic, etc., we actually are performing the task of multiple linear regression. This is 
also recognized as fitting the "general linear" model. In the case of equal spaces on the abscissa, we were able to 
use orthogonal polynomials for swift fitting and were even able to develop stopping rules by using the ANOVA 
technique, i.e., appropriate statistical tests of significance. Thus it may be seen that least squares based on the 
general linear model represents a very powerful tool to employ in applications. There is, nevertheless, the 
problem of how many linear terms to use and where the general linear model should stop for an appropriately 
useful, simple, and compact equation, or "law", for any possible future use. A tremendous background of 
statistical material on the multiple Hnear regression problem exists, and the reader should consult any 
standard text on the subject, such as Mood and Graybill (Ref 18). 

We will give a very brief account of the general multiple linear regression problem, perhaps useful to the 
Army statistician, so that he may have a quick reference to accompany this chapter. Since we will be dealing 
with any number of independent variables or linear terms, it is urgent to resort to vector and matrix notation 
for these general solutions. Such an account clearly will fit well with general calculations on electronic 
computers too. 

6-11.2    THE GENERAL LINEAR REGRESSION MODEL 

We will consider as many as r independent (linear or other) variates x, which are free of error and for which 
there are n sample observations on each and corresponding measurements for the dependent variable j^. Thus 
the independent variates x will be represented by the symbols 

Xij, /" = 1, . . .,n and j = 1,. . .,r . 

For the /th measurement of the/th independent variable, i.e., xy, there is a corresponding observed value of j, 
i.e., yi, say / = 1,2, . . .,n, which is subject to error. 

Suppose we let 

Pj{orj=\,2,...,r 

represent the true unknown coefficients of the linear regression terms and define 

e, for i— 1,2, . . .,n 

for the errors in the dependent variables y. 
The basic hnear regression model is then 

yi= i^pjXij + ei*, i=\,2,. . .,n   ' (6-133) 

for which we will fit the linear relation by the method of least squares 

y= i bjXj*      '■    ... (6-134) 

where the bj are the "best" estimates of the ^j. 

*The reader should note that we are using a rather general form, and to illustrate an intercept or have a constant term, say /3o, for 

example, we could employ the sum indicated by 't pjXij + f, as the model. 

6-45 



UM«OUIVI-K   /Ub-IUd 

As is usual and for use in significance tests, we will assume that the errors e, are normally distributed with 
mean value zero and common variance a , i.e., 

ei - NiOy). (6-135) 

Also we have that 

and 

E{yd=XfiXij 

VarO,) = o^. 

(6-136) 

It will be convenient, in view of the need for a constant term, to designate often that 

Xii = 1    for all /. 

We use the brackets [ ] to designate a vector or matrix, as the case may be; then we may define 

[J] 

[x] = 

yi 

yn 

X\\ X\2 

X2\ Xn 

[i3] = 

X\r 

X2r 

Xnl Xnl • • • Xn 

P2 

(6-137) 

(6-138) 

(6-139) 

{b] = 
(6-140) 

M = 

br_ 

ei 

en 

(6-141) 
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With these vector and matrix notations, the system of Unear equations (Eq. 6-133) becomes simply 

^:-,-...- l>] = W[i3] + M (6-142) 

which in effect needs solution for the /3,. The /3, are estimated by the 6„ which are determined by the method of 
least squares. 

It is well-known (see, for example, Ref. 18) that the least squares estimates bi = 4; of the )8, are determined 
from 

[b] = m = 

Pi 

Pr 

= {[xVlxWWiy] (6-143) 

or the vector solution of the ^'s is found by inverting the product of the transpose of the matrix of the jc's with 
the matrix of the x\ and this product is multiplied by the transpose of the matrix of the independent variables 
and the vector [y] of the dependent observations. 

Since there are many computer programs on file to multiply and invert nonsingular matrices, the solution of 
Eq. 6-143 for any number of unknowns is readily adapted to high-speed computation. 

It can be shown that the b, or )3, are consistent, efficient, sufficient, and minimum variance unbiased 
estimates of the true j8, for the model (Eq. 6-133). 

It can also be shown that the residual variance o^ is estimated from 

o' = {M - [x] mV{[y] - M m/in - r) 

which also is easily calculated on a computer. 
The quantity 

(6-144) 

2 I    2 in-r)o'/o' = x\n-r) 

follows the chi-square distribution with {n — r) df. 
The covariance matrix of the estimators of the /3's is given simply by the quantity 

Coym = o\[xY[x]}-\ 

(6-145) 

(6-146) 

Finally, the estimators y3, of the true coefficients and the estimator o^ of the variance of residuals are 
distributed independently in probability. Moreover, the vector [P] follows an r-variate normal distribution 
with mean equal to [/3] and covariance given by Eq. 6-146. 

With regard to confidence intervals on the unknown coefficients /?„ suppose we let cy represent the ijth 
element of the inverse matrix [C] defined as 

[C] = {[xV[x]Y (6-147) 

Then (1 - 27) confidence bounds on the /?,'s individually—but not all jointly—may be determined from the 
probability statement 

Pr [, tyyjciio < /3, < Pi + tyJc ■u^ 1 -27. (6-148) 
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The confidence bounds of Eq. 6-148 on any of the /S, in Eq. 6-136 are of considerable use in applied least 
squares or regression analyses, although the physical scientist and statistician will surely have more direct 
interest in overall confidence statements about the entire hyperplane or linear model (Eq. 6-136). Fortunately, 
such a confidence type of statement is possible because of some pioneering results of Henry Scheffe (Ref. 3). In 
fact they represent an extension of Scheffe's results for the fitted line, as in Eq. 6-26, which uses the 
Fisher-Snedecor F statistic. 

Recently, Taylor and Moore (Ref. 19) have added to inferences from Scheffe's results (Ref. 3) for the 
general linear model, which is our prime interest. 

We will record some of the key results, which should be of value in many Army applications, and these 
apply mainly to the (whole) fitted line (Eq. 6-134) or a polynomial of degree (r — 1). We will illustrate these two 
cases comparatively by the following definitions: 

Case I—Let the row vector [X] ^ be the linear form 

[X]; = [l,JC,,X2,...,x.-,] (6-149) 

where we have taken xo = 1, say. 
Alternatively, let us consider also the possibility of Case II—Let the row vector [A"]^ be the polynomial 

form 

[X% = [Ux,x\...,x'-'l (6-150) 

Note that we are now using a capital A'to represent either the linear form in independent variables, such as in 
Eq. 6-134, the polynomial form, such as for the row vector of Eq. 6-150, or we could use it to represent any sum 
of mathematical terms. 

For the row vector of linear terms in Eq. 6-149, the observed values of the independent variables take the 
form of the matrix [A'] in Eq. 6-138. On the other hand, for the polynomial fit of Eq. 6-150, the observed values 
of the independent variables may be represented schematically as the matrix 

m = 

1  Xi   Xi   ...   X\ 

1 2 r 
I X2   X2   ...    X2 

r-l 

1 Xfj   Xn Xn 

(6-151) 

In terms ofthe linear form of independent variables in Eq. 6-149, Eqs. 6-133 and 6-134still hold, of course. 
Also the least squares estimates ofthe ^,, or the P„ are given by Eq. 6-143. These statements merely represent a 
review for the purpose of leading up to and recording that the fitting of a polynomial—or actually any other 
sum of terms—is not different from fitting the ordinary linear terms. In fact, it is seen that the estimates ofthe 
j3, for the polynomial are given by the matrix manipulations 

m = {{xYiXY\xY{y] 

which is the same form or result as in Eq. 6-143 for linear terms. 
Note also that 

[.y] = m[)8] + M 

represents all of the n equations, given for a general / = 1,2, . . .,n by 

  yi = po + iSiJC, + p2x] + • • • + )8^ixr' + ei 
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or the true polynomial plus an error et. 

Continuing, the variance of residuals is still estimated by Eq. 6-144 or in this case for the polynomial (Ea 
6-154) by   , 

^' = {[y]~[X]Wm[y]-[X]m/in-r) (6-155) 

and confidence bounds on (or significance tests oO any individual, unknown coefficient A may be determined 
with the aid of the schematic form of Eq. 6-148. 

We can now make confidence statements about the entire fitted line, or a polynomial, or even a general 
Imear form by usmg the unique theorem of Scheffe (Ref. 3). As an example, consider any selected value of x 
say xo, representing a point of interest in the line or fitted curve. Then for example, for the polynomial and the 
row vector ' 

[A'o]^=(l,Xo, Xo,..., xS"'), (6-156) 

Taylor and Moore (Ref. 19) show that the quantity 

AXomxnXW'i^o] (6-157) 
gives an unbiased estimate of the variance of prediction from the fitted curve, and moreover  (1 - 2y) 
confidence bounds on the value >'o predicted from Xo are determined from 

rn'm - [rF,{r, n - rf" o^[X,-\'{[X]\x]}-\x,-\ 

^ IX.fm < (6-158) 

[XYm + [rFyir, n-r)-]'" a ^/VX,-\^{[X]\x]\\x]    ■ 
where 

Fy = upper 7 probability level of F with r and {n - r) df. 

For the line the reader may check that Eq. 6-154 reduces to 

^ + ^^xo±[2F,(2,n-2)V'a[il/n) + n{xo~xf/A..f' (6-159) 

which is equivalent to the result given in par. 6-2.2. 

In addition to the determination of confidence bounds or regions for a polynomial fit to the data Taylor and 
Moore (Ref. 19) also discuss the two-sample and the A:-sample cases for the linear and polynomial fits to the 
original data, along with the appropriate pooled variance of residuals and establishment of confidence bounds 
on the curve fitted. Thus this should represent some likely applications the Army analyst could use 

Chnstensen (Ref. 20) also discusses simultaneous statistical inference for the normal multiple hnear 
regression model from the standpoint of Scheffe's use of the F-tests and the Bonferroni ^-tests but neither is 
uniformly superior. If regressors can be controlled to be uncorrelated, the Bonferroni ^-tests are superior 

Breaux (Ref. 21) covers the subjects of "stepwise" multiple linear regression and the use of computers to fit 
curves at various stopping points. Initially, one may have only a hazy idea about the actual type of "law" he will 
fit to the data; therefore, stepwise procedures could be of considerable value. 

Clearly, this account of multiple linear regression or the general linear model brings up the very important 
question of which useful "law" should be fitted to the data taken and the critical point of where to stop if we are 
trying to use a number of terms that will best represent our final judgment, perhaps for future prediction 
purposes. With regard to which law to fit, it seems that this should depend on the physics or engineering of the 
situation; otherwise the statistician may be criticized for a "blind" fit. On the other hand, the demands of time 
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could call for a quick fit, which the statistician could develop as a "stopgap" rule or law, especially since the 
physicist or engineer might take too long, even years, to develop a perfectly acceptable law. Thus good insight 
and judgment are often called for in Army applications of curve fitting. 

Stopping rules very often apply to the "statistical" type of fit, and a number of papers on the subject have 
been published. A natural approach is to use a standard Student's t test for each coefficient of a term that is 
added to determine whether that particular coefficient differs significantly from zero. If the coefficient is not 
significantly different from zero, the corresponding term is not included, whereas if it does indeed differ 
significantly from zero, then the term is included. Effroymson (Ref. 22) recommends the use of Student's / or F 
type of test involving correlation and partial correlation coefficients of the next fitted term and gives very 
specific rules for the inclusion or rejection of that particular term. Also Forsythe, Engelman, Jennrich, and 
May (Ref. 23) recommend the use of a permutation type of test that offers a stopping rule for "forward 
stepping". Perhaps these references will be of some value to the analyst who is required to make such Army 
applications toward obtaining a useful fit to the data. 

6-12    FUNCTIONAL RELATIONS AND NONLINEAR REGRESSION OR GENERALIZED 
LEAST SQUARES (WITH OR WITHOUT ERROR IN INDEPENDENT VARIABLES) 

^12.1    INTRODUCTION 

So far, we have covered primarily the problem of "linear" least squares or regression and with some account 
of its relation to the use of physical laws in practice. Also we have shown how "hnear" regression extends easily 
to nonlinear forms. Our purpose has been to indicate a rather compact approach through the use of the 
/l„v-type computations or functions in the analysis and to show that in practice it is usually, or in many cases, 
highly desirable to work with physical relations or parameters, if at all possible, since such models are more 
informative, physically meaningful, and will be more enduring and of wider interest. It is, nevertheless, clear 
that we cannot begin to cover such an involved and wide field of interest in any depth here. In fact, the 
important objective of finding the most appropriate use or combination of statistical methods with models or 
laws in the physical sciences represents a field of interest that is always undergoing development. The best gains 
will likely resuh in bridging the gap between the science of statistics on one hand and the field of physical 
application on the other. Nonlinear or generalized least squares, with or without errors in the independent 
variables, is therefore a wide-open field that critically depends on particular applications. However, the 
decision to fit a hypothesized or developed model for the particular problem at hand seems to lie most 
frequently outside the normal judgment of the analyst or practicing statistician and often is dictated by the 
physical application or by a nonstatistician with much expertise otherwise, who works full time in a given field 
of application. Hence the need for a team effort and continual cross-fertilization of statistical principles with 
the physical sciences to develop superior, or even most useful, results. Thus we will have to limit our account to 
an introduction, a few principles, and some pertinent references to some of the current literature on the general 

subject. 
Initially, we will frequently encounter a variety of applications for which there will be observational errors in 

both the independent variable(s) and the dependent variable, so that the right-hand sides (RHS) of Eqs. 6-49 
and 6-50 will apply, especially for the situation when r; is not a hnear function of M- More concretely, the basic 
model might be represented as 

x=ii + e (6-160) 

y^■n + d=f{^i) + d. (6-161) 

Hence we can say that our primary problem is either to determine the best relation between ^ and TJ, i.e., to 
determine 

r,=/(M) (6-162) 
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or to hypothesize from physical considerations some appropriate relation (Eq. 6-162), and then to judge 
statistically whether the fitted law is suitable for general use. This means that we will be able, through 
calculations or appropriate iterations, to weed out the effects of the errors d and e. 

The physical law represented by Eq. 6-162 may relate, for example, to the penetration of armor, flight 
characteristics of a new projectile in term;s of its key parameters, a stress-strain diagram, or even the validity of 
Lanchester's square law for the estimation of battle casualties. In our example of Fig. 6-1 and the data of Table 
6-2, we selected fitting the residual energy on the striking energy of the projectiles as perhaps the "best" law, 
which also gave a rather simpile method of calculating confidence bounds on the critical velocity. We found, in 
fact, that rather tight conficlence bounds icould be found from this procedure. Of course, we must clearly 
explain that apphcations are such that oi'ten not even a single law will exist that is applicable, and the 
investigator may have to be very clever indeed to find the most appropriate, or even a very useful, relationship 
between parameters of major interest when ihe is fitting curves to observational data. Also it is fortunate and 
often true that any one of se;veral selected ilaws might be sufficient in any single application, at least as a 
"stopgap" procedure at the time and until the more appropriate physical rule can be found. 

Although it cannot always be guaranteed, it is, nevertheless, a very good and useful rule to control the 
independent variables at important or key leve Is of interest so that they can be relatively free of error insofar as 
the regression analysis is concerned. Naturally, if all the independent variables are relatively free of error 
compared to the dependent variable of interest,, the curve fitting problem would be simplified. However, if all 
of the independent variables do contain errors—the relative sizes of which are unknown—we face the more 
general and difficult problem. We believe that t he best choice of topics here would be to indicate two useful 
algorithms for the nonlinear or generalized least squares problem—one is the case in which the independent 
variables are entirely free of error, studied by Gal lant (Ref. 24); and the other is the outline of the complex case 
covering errors in all of the variables, both depen dent and independent, studied by Britt and Luecke (Ref. 25) 
and others. 

6-12.2    THE GALLANT ALGORITHM (ERROR-FREE INDEPENDENT VARIABLES) 

For the case of nonlinear regression with errior in the dependent variable only and a number of independent 
variables and parameters of interest. Gallant (Ref. 24) considers a generalization of Eqs. 6-160 and 6-161 with 
the letters now representing vectors or matrices but with the errors in the x's, i.e., e, all equal to zero. In other 
words, he considers the case 

b] = [/(.^,M)]+[«']*,        (1X«) (6-163) 

where the quantity [>>] is a vector of dependent variables with 
■      I 

[yf = iy^,y2,..■,yn^\,     («xi) (6-164) 

the n observations on the dependent variable subject to errors 

[dY = [dud2,...,dr;\^       {nX\) (6-165) 

and the function/, the best known physical relation be^tween y and the independent variables x {—n in this 
case), which is represented by the vector functiion of observations 

[/(■^,M)] = [f{xun),Ax2,fJi), . . .,/(JC„,)u)] ,        (« X 1) (6-166) 

and [fi] is the unknown vector of p parameters • , 

♦Actually, for the case in which f, — 0, the first vector on the RHS ma>' be written as/(/i) since the independent variable x attains its 
true value ix. 
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[M] = [MbM2, • • .,MPL (PXI) (6-167) 

to be estimated for the functional form fitted. 
The SS of deviations of the observed values of y minus the fitted function;■ corresponding to estimated 

values of the parameters [/Li] is given by 

SSE{n) = liy-f)' = [y-fiui)f[y-f(t^)] (6-168) 

Eq. 6-168 being in vector form. 
By analogy with the linear form of Eqs. 6-49 and 6-50, we might say in the generalized nonlinear regression 

problem that the function/replaces the Unear term of Eq. 6-50, otherwise serving the same purpose, but that 
to find the appropriate or best fit of the function/, we have to carry out an iteration process. Ordinarily, this 
type of iteration is done by the so-called Gauss-Newton method, or Hartley's modified Gauss-Newton 
technique (Ref. 26), or by Marquardt's algorithm (Ref 27). The Gauss-Newton method usually is based on the 
substitution or first-order approximation of a Taylor series ex.pansion of the fitted or response function/in 
the equation for the SS for error. This means that the Taylor series expansion is truncated at the term 
involving first derivatives of the function/with respect to the p unknown parameters [/x]. Thus we designate 
the « Xp matrix of derivatives with respect to the parameteirs given by Eq. 6-167 as 

where / indicates row index, and / indicates the column inde x—and calculate this matrix of derivatives for use 
in the iteration process. 

As pointed out by Gallant (Ref. 24), the iteration that del ermines the final fit, or the algorithm, proceeds as 

follows: -       -       . 
(0) Choose a starting estimate [^o] of the unknown vect.or [M], and compute 

\P,\ = {[/'(MO)] V(Mo)]}"'[/'(-"o)]'[;' -/(Mo)]. (6-170) 

Then find a \o between 0 and 1 such that 

SSE(MO + XODO)<SSE(MO). (6-171) 

(1) Let Ml = MO + ^oZJo. Next compute 

{D{\ = {[/'(M.)]'[/(Mi):jr'[/'Oixi)]^[>' -/(M.)]. (6-172) 

Then find a \\ between 0 and 1 such that 

SSE(MI + X,,Z)i) < SSE(Mi). (6-173) 

(2) Let m = iix + \\Du and then proceed with the same type of calculation as before, i.e., as in Eq. 6-172, 
except that ^l^ is replaced by M2. This iterative process is repjeated through the number of steps required to 
make the difference between M-at the /th stage and /Lti+i at the (/ -I- l)st stage as small as desired, for example, to 
some number of decimal places, and also to make tl.ie difference between the SS of error at the /th and (/ + l)st 
stages suitably small. Hartley (Ref 26) gives two 'very usefuil methods for choosing the step length X,. 

If the size of the sum of squares of errors is too large, one should consider that the chosen function/is 
perhaps not the best one for this particular proble;m. Hence consideration should be given to another choice. 

*This matrix is a Jacobian of the quantities. 
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As might be expected, the improved choice may depend upon extensive familiarity with the field of 
'^oplication. 

Finally, estimates of the parameters in the vector [/u] converge almost surely to the true unknown vector [n], 
TH thp nnantitv aivpn hv 

application. 
Finally, ei 

and the quantity given by 

\/^{[A]-[M]} (6-174) 

converges in distribution to a />-variate normal type of frequency function with mean [/i] and the variance- 
covariance matrix given by 

a'{(l/«)[/'(M)]V(A)]r'. (6-175) 

Obviously, the fitting of nonlinear least squares to experimental data can become complex indeed, and due 
to the nature of the rather extensive computations, it seems best to program the calculations on appropriate 
electronic computers. 

Again, we remark that proper choice of the best function to fit continues to deserve special attention. 

6-12.3    THE BRITT AND LUECKE ALGORITHM FOR ESTIMATING PARAMETERS IN 
NONLINEAR MODELS WITH ERRORS IN BOTH THE DEPENDENT AND 
INDEPENDENT VARIABLES* 

For the case of fitting a general functional relationship to observed data when both the dependent and 
independent variables are subject to errors and several parameters in the nonlinear function must be estimated, 
the fitting process by least squares becomes very involved. Again, an iterative computational procedure is 
necessary to make the adjustment. Historically, this has been one of the more important topics in the physical 
sciences and mathematical statistics. In 1943 Deming (Ref. 28) published a book titled the Statistical 
Adjustment of Data, which is devoted primarily to this subject. The algorithm developed by Deming (Ref. 28) 
may still be of interest as a useful input to the procedure of Britt and Luecke, which we outline here. 

For the much simpler case of no errors in the independent variables, one must experience the application of 
only a linear form in the parameters to obtain direct solutions to the least squares problem. When the 
functional relationship to be fitted is nonlinear or even for fitting a line with errors in both dependent and 
independent variables, iterative procedures are needed except in the most special cases. Fortunately, Britt and 
Luecke's (Ref. 25) development is general enough to include practically all such problems. Therefore, we will 
outline their procedure since it is perhaps the more useful and important one for most Army applications. 

The algorithm of Britt and Luecke (Ref. 25) covers a much different approach compared to that we have 
discussed so far; it does not split up the dependent and independent variables into separate vectors. Rather, 
they use a vector z, which includes all of the "observables", i.e., including all observations on both the 
dependent and independent variables. (The reader should note here that we simply have used the letter z for a 
vector. The use of brackets for all vectors or matrices in this particular numbered subparagraph would be very 
cumbersome. Hence all letters, Arabic and Greek, and functions alike will denote vectors or matrices in our 
presentation of this numbered subparagraph.) Thus the vector z is a "long" vector and includes all of the 
observed values of both the dependent and independent variables considered in the least squares adjustment 
procedure. It is a matter, therefore, of keeping the components of the vector "straight". The functional form 
fitted, or the vector function designated as/(z,0), should be "well-behaved" in the region of interest. The Britt 
and Luecke algorithm (Ref. 25) develops a technique that gives ML estimates of the unknown parameters for 
the assumption covering normally distributed errors of measurement along with "known" variances and 
covariances for the errors. Most often, the error variance-covariance matrix will not be known, and some 
appropriate estimate of it will have to be assumed. In this case the resulting estimates of the parameters cover 
what is called a "weighted least squares" adjustment. This causes no essential change in the problem. Insofar 

*To avoid unusually cumbersome notation in this paragraph, we have not used brackets for vectors. Arabic and Greek letters, and 
function symbols are to be understood as representing vectors or matrices. 
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as is possible we will use the notation of Britt and Luecke (Ref. 25) although we have already used n for the 
number of observations on the dependent and independent variables. Accordingly, another letter must be 
used in this discussion. Their algorithm considers a p vector (they use "n" instead of "p") of unknown 
parameters 6o to be estimated for the functional relationship; a q vector of all of the dependent and 
independent variable observations, or observables; and a k vector of functional forms/(2,0), which are used 
with the form or property 

/(z,,0o) = O. (6-176) 

The subscript 'V" on z is used to designate the true value of the observables, whereas "0" is used as a subscript 
for the 6 to distinguish it from a step "/" in the iteration, i.e., dt. Thus the measurements of the true z, contain 
random experimental errors; therefore, the measurements are represented as 

zm = zt + e (6-177) 

where Zm is the ^ vector of measurements, and the quantity eis&q vector of the errors of the dependent and all 
independent variables. The reader should note that actually the vector zi is also a vector of unknown true 
values of the dependent and independent variables, which are to be estimated also. Hence during the entire 
iteration process, both the parameters and the true values of the z's will be estimated in the Britt-Luecke 
algorithm. For the iterative process there are a number of conditions that must be satisfied, as pointed out by 
Britt and Luecke (Ref. 25). They are 

1. The function/is continuous. 
2. The partial derivatives of/=/(z,0) with respect to both arguments, z and 6, exist and are continuous. 
3. The second partial derivatives of each component of the vector function / with respect to both 

arguments exist and are bounded. 
4. The kXp Jacobian matrix, call it/g=/g(z,6), of partial derivatives of/with respect to d has rank/). 

The k X q Jacobian matrix, call it/ =/(z,0), of the function/has rank k. 
The vector of errors e for the dependent and independent variables is assumed to follow a multivariate 

normal distribution with mean values equal to zero and to possess a known positive definite variance- 
covariance matrix R, i.e., 

E(e) = 0 (6-178) 
and 

E{ee^) = R. 

The algorithm of Britt and Luecke (Ref. 25) involves, as before, a truncated Taylor series expansion of the 
function/and the use of a k vector of Lagrange multipliers to obtain the minimization required. We will 
summarize the final results for any possible Army applications, and otherwise interested readers may consult 
the Britt-Luecke paper (Ref. 25). 

First, the vector giving the difference between the true parameters and the values at the ith iterative stage is a 
p vector represented by the following for a selected or fitted function/ 

d-e^ = -Ukf^Rfh~VeVfl{f.Rfh~\f{zi,e) +/z(z. - z,)] . (6-179) 

As usual, one starts with the measured values or observables Zm and initial estimates of the parameters for the 
first stage / = 1, with also in this algorithm initial estimates of the true values z, for the first iteration. Both the 
estimates of the parameters and the true z values may be taken from known experience, the physical situation 
(if that knowledge is available), from a prehminary study of the problem, or even perhaps determined from a 
least squares fit of a "linearized" form if one can be obtained. Similar considerations will apply to the 
variance-covariance matrix of errors, or one may use different inputs to judge the sensitivity of the variance- 
covariance matrix to the estimation of parameters. 
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The true values of the dependent and the independent variables are determined from iterations indicated in 
Ref. 25 , .   

z-z, = Zn,-Zi-RfI{f,RfIy\f{z„dd+fe{d-dd+Mzm-zdl (6-180) 

Although the vector of Lagrange multipliers is of no direct interest here, interested readers may calculate 
this vector by an iterative process given in Eq. 24 of the Britt-Luecke paper (Ref. 25). 

As is customary in standard iterative problems of the kind discussed here, one stops at that particular step 
for which his calculated value at the stage differs only by an appropriate smallness criterion with the preceding 
step of iteration. Again, we mention that another reasonable physical model might be used if necessary to 
obtain the best adjustment for prediction purposes. 

The variance-covariance matrix for the estimation errors of the parameters is given by Britt and Luecke in 
Ref. 25 as 

E[id - do) {d - elf] = Ul{f^Rfh''feV ■ (6-181) 

An example of the fitting process is given by Britt and Luecke in Ref. 25, which uses data formerly analyzed 
by Deming (Ref. 28). 

A number of other investigators have developed useful algorithms for the generalized least squares 
procedures with errors in dependent and independent variables—for example, the works of Dolby (Ref. 29), 
Celmins(Ref. 30), and Pope (Ref. 31). Celmins(Ref. 32) comments on the use of nonlinear least squares in the 
field of meteorological data experiments. 

6-13    SUMMARY 

In this chapter, we have covered a fairly wide range of topics in least squares, regression, and curve fitting in 
general. We have developed in detail the proposition that one should seek out not only the fitting of lines and 
polynomials to observational data, but, if at all possible, he should try to adjust physically meaningful models 
to the data at hand. In this way more enduring regression models may be recorded for prediction purposes. 

We have covered both of the important cases in practice in which the independent variables sometimes may 
be free of errors of determination and the case most oftenmelfor which the independent variables are subject 
to error, as the dependent variable always is. Methods for the estimation of parameters for both cases have 
been covered, and several illustrative examples have been presented and discussed fully. 
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APPENDIX 6A 

A LEAST SQUARES APPLICATION TO PRECISION 
AND ACCURACY OF MEASUREMENT 

6A-0    LIST OF SYMBOLS 

A — constant 
A' = constant term = O in Eq. 6A-5 

a = constant 
B, C, D = coefficients of linear, square, and cubic terms, respectively, when the altitudes are 

expressed in terms of orthogonal polynomials for least squares fits 
B', C, D' = coefficients of linear, square, and cubic terms, respectively, of orthogonal polyno- 

mials in f 
b, c, d = coefficients of linear, square, and cubic terms, respectively, of a polynomial 

di = difference of readings at altitude hi 
etj — random error of measurement of instrument / = 1, 2, 3 at altitude hi 
h = average altitude at which ozone measurements were made 
hi = /th altitude, km 

N{0,ae) = denotes that the errors of measurement are normally distributed with zero mean and 
standard deviation Oe, 

n = sample size 
Oij = observed ozone concentration at altitude hi as measured by instrument / 

dOi-j = ^i — PJ = estimate of difference in biases for the /th and /th instruments. The biases 
are considered to vary with altitudes. 

Si = sum of readings at altitude hi 
t = Student's / variate 

Uj = denotes slope of a line if total instrumental bias can be modeled linearly 
fij = constant bias or systematic error of instrument / over the altitudes of interest. In one 

of the models the (8, are assumed to vary with altitude hi. J = 1, 2, 3. 
k = coefficients chosen to give the orthogonal polynomial values f' whole numbers 
ii = /th order or power of the orthogonal polynomial 
f; = k^i = transformed orthogonal polynomial 

Oav = average imprecision of measurement for several similar instruments 
be = refers to a general standard error of measurement 

6e^, acj, Oe^ = estimated standard deviations of errors of measurement for 1st, 2nd, and 3rd 
instruments, respectively 

be.-e- = estimated standard deviation of the difference in random errors of measurement of 
the/th and/th instruments 

ft>, = cu{hi) =f{hi) = true unknown ozone concentration at altitude hi 

6A-1    PRELIMINARY REMARKS 

The use of least squares and regression models will often help us deal with more general models for 
characterizing the imprecision and inaccuracy of measuring instruments, which we discussed in Chapter 2. To 
illustrate, let us return to the basic models as given in Eq. 2-15, in which we accounted for instrumental biases 
and random errors of measurement. In doing so we estimated the imprecision of measurement as the standard 
deviation of the random errors of measurement, and we could also estimate the difference in constant biases as 
indicated, for example, with Eq. 2-19. However, suppose there is some trend in biases or systematic errors of 
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the instruments with the level of the characteristic measured or another parameter. What can be done 
concerning an appropriate analysis for such cases? It is very instructive to illustrate this with an example taken 
from the 1979 International Ozone Rocket Sonde Intercomparison (lORI) study. We acknowledge our 
appreciation to the Federal Aviation Administration (FAA), the National Aeronautics and Space Adminis- 
tration (NASA), and the World Meteorological Organizationfor the use of thedataon ozone measurements 
in the stratosphere with instruments aboard rocket firings. Further studies of these data are underway. 

In this example we will focus on the problem of determining the relative precision and accuracy of 
instruments for determining the ozone concentration in the stratosphere. Originally, it was desired to apply 
the three-instrument case of Chapter 2 by mounting three instruments aboard a rocket to take simultaneous 
measurements of stratospheric ozone concentrations as a function of altitude during flight of the rocket. 
However, this particular part of the overall experiment involves only one instrument on each of three rockets 
that were actually fired about an hour apart. In view of this, the most direct measure of the difference in errors 
of measurement for any two of the instruments for a given level of ozone concentration is not available 
although the principle and importance of using three instruments to study imprecision and inaccuracy of 
measurement may still be illustrated. Furthermore, the results from more extensive analyses could be that no 
significant change in ozone structure occurred during the three rocket flights. It will be seen in this connection 
that the imprecision of measurement varies with the altitude (and hence ozone concentration) and also that 
the differences in biases or systematic errors between pairs of instruments follow a trend with altitude. This 
example is, therefore, a rather general account of the basic principles of Chapter 2 on errors of measurement, 
precision, and accuracy of measurement along with the use of least squares fits of data covered in Chapter 6. 

Although the reader may note some repetition of the basic principles outlined in Chapter 2, we believe, 
nevertheless, that a full account of the three-instrument approach to the analysis of ozone concentrations 
including the models of constant biases and variable biases will make our example more useful to the reader 
who may have very similar applications. 

6A-2    ACCOUNT OF THE INTERNATIONAL OZONE ROCKET SONDE INTER- 
COMPARISON (lORI) STATISTICAL ANALYSIS 

6A-2.1    THE THREE-INSTRUMENT APPROACH (CONSTANT BIASES) 

The primary purpose of the statistical analysis was to determine the precision and accuracy of each 
instrument used in sampling the atmosphere; this would also give a comparison of the capabilities of the 
various types of instruments. First, however, we must define the terms precision and accuracy, which stem 
from errors of measurement introduced in making observations. 

By precision we mean a suitable measurement of the variation in the errors of measurement of an 
instrument over a series of observations that are made with the instrument. Thus if this variation is "small", 
then the instrument is said to be "precise", but the larger the variation is the more imprecise the instrument and 
its measurements. Hence an estimate of the standard deviation of the errors of measurement of the instrument 
could be called the "imprecision" of measurement, and we will therefore estimate the imprecision of 
measurement by using the standard deviation of the errors of measurement to describe it. The estimation of 
the standard error of measurement is not very straightforward, however, because the observation or mea- 
surement taken consists of inseparable components, namely, the true value of the quantity measured, plus the 
bias or systematic error of the instrument used in the measurement process, plus a randomly varying error of 
measurement of the instrument. The problem then is to find a method of determining, i.e., stripping out, the 
standard deviation of the errors of measurement of each instrument by using a components of variance 
analysis. It is easily seen that if two instruments are used to take measurements on the same series of items or 
characteristics, the difference in the readings of the two instruments renders the difference in the random 
errors of measurement of the two instruments plus their difference in biases, or "calibration" values, so to 
speak. The variance of the series of differences will clearly give the sum of variances of the random errors of 
measurement of the two instruments since we might well assume that the biases of the instruments do not vary 
appreciably over a relatively short series of measurements—perhaps! We see, nevertheless, that even for two 
instruments taking the same series of measurements, the result is an estimate of the sum of the variances in the 
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random errors of measurement of the two instruments, and these are not yet separable. Hence we must 
continue in our analysis, especially if the function we are studying, such as ozone concentration versus 
altitude, varies considerably over the range of altitudes of interest. In fact, it becomes important to note that if 
three instruments are used to take the same series of measurements, we have three sets of differences in the 
random errors of measurement of the three instruments and their three differences in biases. However, when 
we find the variances of the three sets of differences in the errors of measurement, the result is simply three 
equations and three unknowns, which can easily be solved for the variances in the errors of measurement for 
each of the three instruments. The square roots of these final numbers give the standard errors of measure- 
ment of the three instruments or the three "imprecisions", except for the varying biases or systematic errors of 
the instruments, which may come into some prominence as indicated in the sequel. Varying biases may well 
exhibit a trend. 

Clearly, the standard errors of measurement for each instrument, or the "imprecisions", are required to 
determine whether the mean biases are significant and hence can be estimated in size. Note in this connection 
that the average difference in the readings of any two instruments making the same measurements—when 
multiplied by the square root of the number of differences and then divided by the estimate of standard 
deviation of the differences based on (n — 1) degrees of freedom—can be used as an ordinary Student's /test to 
determine whether the two instrumental biases are significantly different in size. If no significance appears, 
one may conclude that the two instruments have equal biases (or read the same) although both may be 
nonzero. 

Summarizing at this point, we see that the use of three instruments to take the same series of measurements 
will lead to a very desirable state of affairs, namely, a complete separation of the errors of measurement from 
the true values of the quantities we are attempting to measure, and this condition leads to a simple means of 
estimating the imprecisions or components of variance. If the analysis is straightforward, one may expect to 
determine estimates of the imprecisions of measurement of the individual instruments. There could be some 
complications, however. Those investigators who have worked with component of variance analyses know 
that often they encounter negative estimates of variance—which is disturbing, to say the least! These negative 
estimates of variance may be due to sampling, i.e., the vagaries of small sample size, or they may bedue to the 
existence of "outliers" that have crept into the data and do not really represent the true characteristics of the 
instrumentation. The investigator may sometimes be able to decide to "throw out" anomalous values based on 
sound physical reasoning. However, most often he will not be able to make any such judgment, and some kind 
of statistical procedure for screening the data becomes quite necessary. There is a large body of statistical 
literature on the subject of detecting outlying observations in samples, such as Chapter 3, which may be 
resorted to as necessary. Alternatively, it is sometimes informative and satisfactory to ignore outliers and 
otherwise penalize precision of measurement by leaving them in the data. Once the "true" outliers have been 
screened, one may proceed to use the technique referenced in Chapter 3. For the vagaries due to sample size, 
usually it will be necessary to continue accumulating data until more stable estimates are available. Finally, we 
must remark that the model may not be sufficiently accurate to fit the data. These are, unfortunately, some of 
the pitfalls that may often enter the analysis. A rather full treatment of these topics along with optimum 
statistical techniques for estimating imprecision of measurement when two or more instruments are used is 
given in detail in Chapters 2 and 6 and Refs. 1 and 2. 

As an allied check on the previously described procedure, and especially in view of the negative estimates of 
variance, one might well consider the approach that follows. Suppose a given measuring instrument or 
technique is used to determine the ozone concentration in the upper atmosphere. If the instrumental 
measurements show small scatter about some fitted curve, they may be said to be precise. Nevertheless, the 
instruments could have a constant or variable bias. In any event, the scatter about the curve, or the "residual 
variance", which is a measure of instrument imprecision, may be determined—even though the exact shape or 
form of the curve is unknown—by the methods of Ref. 3. The residual dispersion, so estimated for each 
instrument, also may be used as an estimate of imprecision although it may often include a bit more than the 
variance (or standard deviation) of just the errors of measurement. Nevertheless, for the case of the three 
instruments previously described, the estimate of the total variance in errors of measurement (ae, + al^ + ol^) 
(which is positive) can be scaled proportionately according to the size of the three residual variances, 
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hopefully, to give reasonably practical estimates of imprecision. Another way to estimate the residual 
dispersion about a curve for each measuring instrument would be to use least squares (orthogonal polynomials 
since the data are taken at equally spaced heights) and determine the residual variance. See, for example, any 
standard statistical textbook or Chapter 6. The residual variance for each instrument so determined is always 
positive and also measures imprecision. 

The analysis outlined here determines the average imprecision of measurement of each instrument, which is 
that value "near the middle" of the data or measurements. However, since there are three instrument readings 
of ozone for each altitude, one may fit a least squares line or curve through the residual variances or standard 
deviations of the three instrumental measurements for each and all the altitudes to observe just how the 
standard error of measurement scales with height. For example, the standard deviations at various altitudes 
may increase or decrease with altitude and, hence, are so emphasized here for further reference. 

As previously stated, the average difference in readings of any two instruments gives an estimate of the 
difference in (constant) biases. (A changing bias is treated in par. 6A-2.2.) Bias and imprecision together 
determine total inaccuracy. 

The statistical model to which we have referred so far is of the general form: 

Oij = (Di^ fii + eij,       /= 1,2, ...,«;   7=1,2,3 (6A-1) 

where 
0,j = observed ozone concentration at altitude hi for instrument / 
a>i = u){hi) =f{hi) true but unknown ozone concentration at ht, which varies with altitude as indicated 
Pj — constant bias or systematic error of instrument / over the altitudes hi of interest (Trends are also 

considered—see par. 6A-2.2.)* 
eij = random error of measurement of instrument (/ = 1,2,3) at height hi, and eij = N{0,ae^, i.e., Cij is 

normally distributed with zero mean and imprecision of measurement Oej for instrument /'. 

■ . "    ■ ?;■■> ■■   " 

(Note: Compare Eq. 6A-1 with Eq. 2-15.) 
By these definitions of terms, we see that the instrument with the smallest Oe, or standard error of 

measurement, is the more precise one, and fi determines the size of its bias or systematic error if it is 
significantly different from zero. If an instrument possesses good precision of measurement, i.e., Oe is small, its 
bias relative to a standard or reference instrument may be detected and the instrument "recalibrated" to 
improve accuracy. (It may be difficult to reduce Oe and thereby make the instrument more precise!) In any 
event, and with this description, one should begin to understand the meanings of "precision" and "accuracy" 
as apphed here. Note that we have preferred to keep the imprecision Oe and the bias /8 separate; for with the 
estimate of bias )§ and imprecision Oe tagged onto each instrument, we know the capabilities of that measuring 
device. Oe refers to the standard error of measurement of a single observation made and, hence, not an average 
value. 

As a preliminary mode of orientation and an example of the three-instrument, constant bias assumption 
case, consider an analysis based on the mixing ratio** on the parts per million (ppm) scale. Suppose for 
example, that we obtained the following estimates of imprecisions and differences in biases obtained over 27 
altitudes: 

a.i = 0.30, aej = 0.30, and ae3 = 0.10 

^1 - ^2 = 0.01, j8i - )83 = 0.20, and /32 - ySa = 0.19 with n = 27 altitudes. 

These estimates are easily found from Chapter 2. Here, we have taken instrument 1 as a "reference" 
instrument. 

*We have noted that even the ft vary with ahitude. 
**The term "mixing ratio" means the number of molecules of ozone per cubic centimeter of the sample divided by the number of 

molecules of air in that same volume, expressed in ppm. 
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We note that instruments 1 and 2 are equally precise, with equal imprecisions Oe^ — a^j = 0.30, but that 
instrument 3 is perhaps much more precise than 1 or 2. Whether the last statement is true may be determined 
from a significance test as in Eq. 2-78. 

Since the biases of instruments 1 and 2 are also very nearly equal, it can be said that these two instruments 
are both equally precise and equally accurate. 

Now consider instrument 3, which presumably is more precise than instruments 1 and 2, but reads 0.2 below 
instruments 1 and 2—due to calibration, perhaps. We may first determine whether the difference in biases of 
instruments 1 and 3 is significantly different from zero. This is easily accomplished with a Mype test similar to 
Eq. 2-63, i.e., 

2il/2 _ / = (0.20 - 0) V27/[(0.30)' + (0.10)']"' = 3.3 . 

Thus the difference in biases is real for 26 df. 
Even though instrument 3 is more precise than either instrument 1 or 2, it may not be more accurate; this 

depends on how many observations may be made with instrument 1 or 2 (as compared with instrument 3) and 
"averaged", for example. However, if instrument 3 is recalibrated to eUminate the bias of 0.20, instrument 3 
becomes more precise and more accurate than instrument 1 or 2—assuming the reference instrument was 
properly cahbrated. 

Finally, if the three instruments were of the same design and similarly produced, with about equal precision, 
the average imprecision of measurement for such an instrument may be estimated from 

Oav = [ol^ +al2 +ol^)l3y^^ (6A-2) 

and this is also the square root of one-sixth of the sum of the three variances of the differences in errors of 
measurement of the three instruments taken two at a time. For the same type of instrument, it would seem that 
this quantity could be taken as the average imprecision of measurement. For the given data one would find that 
the average standard error of measurement for an instrument of this type would be about 

ae = 0.25 

although if Oe^ is significantly lower than the estimated standard errors of measurement of instruments 1 and 2, 
no such averaging should be encouraged. 

Recall that the imprecisions Oe may need to be scaled with altitude or with the amount (level) of ozone in the 
atmosphere and that this could be investigated separately from this particular analysis. Such scaling of the a^'s 
may be done with a least squares fit on the estimated standard deviations at each or several of the altitudes, for 
example. However, if the instrumental biases vary with altitude, as we discuss in the sequel, some care has to be 
exercised to assure that one is working with residual deviations of a random, nonsystematic character. 

Finally, since we have detected a significant average bias for instrument 3, steps should be taken to make 
appropriate adjustment or to recalibrate the instrument. In fact, recalibration of the instrument might involve 
a bias correction that varies with altitude as a "trend", if such is the case. 

Although some of the lORI data may appear to be well represented by the simple model just discussed, 
involving a fairly constant bias along perhaps with some scaling of Oe, there also appears to be significant 
drifting of measurements between instrumental reading pairs. Therefore, we will consider this type of problem 
next, especially for biases changing with altitude or level of ozone because these will also have an impact on the 
residual dispersion. There seems to be little point, however, in adopting a complex model for analytical 
purposes when a simpler one will suffice. On the other hand, we should be on the lookout for either a changing 
Oe or for any drifts in evident instrumental biases as a function of either altitude or level of ozone measured. 
Any such changes often are found by simply plotting the Oe and the ()3, — Pj) (determined by differences 
between pairs of instrument readings) versus altitude. 
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6A-2.2    ESTIMATION WHEN INSTRUMENTAL BIASES CHANGE WITH ALTITUDE OR OZONE 
LEVEL 

Although the simple model of Eq. 6A-1 is based on the assumption of a constant bias or systematic error for 
the instruments, it could be extended to a more complex one, or "generalized". However, it is to be expected 
that the analysis would become more complex and perhaps cost more by employing additional instruments. 
Nevertheless, we have made some preliminary plots and find that the difference in instrument readings shows a 
relation with either the altitude or the level of ozone measured. 

In the original 1948 study by Grubbs (Ref. 1), the tu, represented a random variable, i.e., the running times of 
fuzes, and the biases were evidently small. If there existed a linear relation between the systematic error of 
measurement or bias and the level of ozone, then the model of Jaech (Refs. 4 and 5) developed in 1964 might 
well apply. Jaech's model is expressed as 

Oij=aj(Oi + Pj + etj (6A-3) 

where now the /th instrument scales the true ozone level w, with a slope a; (somewhat near unity). Note that 
when aj= 1, the model of Eq. 6A-3 is exactly the same as that of Eq. 6A-1. The systematic error, now 
consisting of the first two terms of Eq. 6A-3, also becomes much more involved due to the varying 
instrumental biases. For example and in view of Eq. 6A-3, the difference in biases for instruments 1 and 2 now 
becomes 

{am + fix) - {aioii + ySa) = p\- P2 + (ai - 0:2)^, (6A-4) 

which is linear in the amount of ozone present. Jaech's analysis evolved in connection with a study of reactor 
fuel element quality (Refs. 4 and 5), for which the assumption of Eq. 6A-3 appeared reasonable. Moreover, 
there is little difficulty in estimating the imprecisions a,^, the difference in the fij, or the difference in the 
additional coefficients a,. The reader may study Refs. 4 and 5 for details. 

In a very similar way, a linear systematic error model may be set up and used by substituting a function of 
the altitude hi in place of the ozone concentration cu in Eq. 6A-3. However, neither of these two Hnear models is 
ample to satisfy the requirements arising here. One should appreciate this position by referring to the data of 
Table 6A-1, which we will use to conduct a typical analysis. The data represent measurements of ozone from 
the three Kreuger instruments (UV absorption) to determine ozone amounts on Super Loci Rocket Flights 
249, 250, and 251, which were fired about 45 min before noon, at noon, and about 45 min after noon, 
respectively. Thus neither of the three instruments is on the same vechicle, nor do the instruments determine 
ozone amounts simultaneously. Thus one might suspect differences between instrument readings due to a 
variety of causes. One of the very striking occurrences is that between 25 and 50 km the concentration of ozone 
varies about one hundred to one insome systematic way, and it is far from linear! Recall from Eq. 6A-1 or Eq. 
6A-3, that we need an estimate of the (random) residual dispersion to determine the imprecision. The last three 
columns (Table 6A-1) of differences between readings of pairs of instruments show rather severe trends or 
raggedness, very much nonlinear. Thus, we have had to decide against the use of models, such as Eqs. 6A-1 
and 6A-3, but in favor of a very significant extension of them. We again start in a similar manner with the 
variances of the differences, or really sums of squares (SS), and delete components that arise as a result of the 
trends in biases with altitude. 

Before proceeding with the suggested analysis, a remark or two concerning transformations of the original 
data is in order. Some other scales of analysis have been suggested, and consideration has been given to them. 
They include the mixing ratio (or number of ozone molecules divided by the number of air molecules in a cubic 
centimeter), the normalized number density (or observed ozone density divided by the Kreuger-Minzer (Ref. 
6) standard values at each altitude), and an analysis based on logarithms of the original ozone measurements. 
The mixing ratio and the normalized number density both involve scaling numbers that are different at each 
altitude and, hence, are nonuniform transformations. Thus conversion from the scale of analysis back to the 
original ozone data becomes very difficult. The use of the logarithmic transformation seems to work quite well 
and even reduces or smooths out the effect of some outlying values when transformed back to the original 
data. However, an analysis on the logarithmic scale does not appear to reduce the need for higher order fits on 
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TABLE 6A-1* 

ORIGINALLY MEASURED CONCENTRATIONS OF OZONE IN NUMBER OF 
MOLECULES PER CUBIC CENTIMETER AND INSTRUMENT DIFFERENCES FOR THE 
THREE KREUGER INSTRUMENTS (UV ABSORPTION) ON FLIGHTS 249, 250, AND 251 

Altitude, Inst 1 Inst 2 Inst 3 11-12 12-13 13-11 
km (Original ozone concentrations divided by 10") 

25 45.6 39.9 40.8 5.70 -0.90 -4.80 
26 42.8 38.4 41.9 4.40 -3.50 -0.90 
27 39.7 35.9 40.1 3.80 -4.20 0.40 
28 36.8 36.1 36.9 0.70 -0.80 0.10 
29 35.3 ■     32.7 34.5 2.60 -1.80 -0.80  ^ 
30 33.1 30.9 32.9 2.20 -2.00 -0.20 

31 31.2 30.9 30.9 0.30 0.00 -0.30 
32 27.9 25.9 26.5   . 2.00 -0.60 -1.40 
33 23.5 21.8 22.3 1.70 -0.50 -1.20 
34 20.8 19.8 20.0 1.00 -0.20 -0.80 
35 18.0 16.2 16.8 1.80 -0.60 -1.20 

36 14.4 13.4 14.4 1.00 -1.00 0.00 
37 11.9 11.8 12.2 0.10 -0.40 0.30 
38 10.1 9.96 10.0 0.14 -0.04 -0.10 
39 8.14 8.26 8.12 -0.12 0.14 -0.02 
40 6.50 6.37 6.71 0.13 -0.34 0.21 

41 5.45 5.31 5.53 0.14 -0.22 0.08 
42 4.62 4.50 4.48 0.12 0.02 -0.14 
43 3.56 3.39 3.46 0.17 -0.07 -0.10 
44 2.82 2.57 2.60 0.25 -0.03 -0.22 
45 2.01 2.08 1.99 -0.07 0.09 -0.02 

46 1.55 1.59 1.65 -0.04 -0.06 0.10 
47 1.31 1.19 1.26 0.12 -0.07 -0.05 
48 0.877 0.930 0.956 -0.053 -0.026 0.079 
49 0.550 0.707 0.740 -0.157 -0.033 0.190 
50 0.480 0.525 0.605 -0.045 -0.080 0.125 

the transformed scale; thus one may as well deal with the original ozone measurements. It is for these reasons 
that our analysis is directly on the original measurements in order to isolate random errors and systematic bias 
trends. 

Since we are expressing the imprecision of measurement as the standard deviation of the errors of 
measurement—this should be about equivalent to the residual dispersion remaining after meaningful trends 
have been eliminated—two preliminary procedures suggest themselves. First, we may apply the technique of 
Morse and Grubbs (Ref. 3) to obtain a stable estimate of residual dispersion by working with higher order 
differences for the readings of an instrument with increasing altitude. A positive estimate of the residual 
standard deviation always results from such analysis. Secondly, since the ozone concentrations are listed for 
equally spaced altitudes, we may use orthogonal polynomials to fit either a line, a parabola, a cubic, etc., and 
terminate at an insignificant fit. The residual dispersion remaining about the fitted curve then could be taken 

*Some further refinements in data reduction have altered these data somewhat, but the illustrative value remains. 
These preliminary instrument readings were obtained with permission from Dr. Arlin Kreuger of NASA, Greenbelt, MD. 
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as an initial estimate of the imprecision for that instrument. Of course, we would work finally with the 
differences in measurements of two instruments at a time to estimate the standard errors of measurement for 
each instrument. 

Referring now to the second column of Table 6A-1 and the measurements of Kreuger instrument 1 on 
Flight 249, we found using orthogonal polynomials that linear, quadratic, cubic, and quartic regressions are 
all highly significant with a residual variance of about 0.54 X 10^' from the quartic fit and about 0.49 X 10^^ 
from the insignificant quintic fit. Thus it is seen that the standard deviation expressing imprecision should be 
about 0.7 X lO" mol/cm\ We have used instrument 1 only as an illustration although it would be highly 
desirable to know the "best" (more precise and accurate) instrument and to use it as a reference or "standard". 

Having arrived at an indication of the approximate imprecision of measurement, we now turn to an analysis 
of the difference in readings of two instruments since that difference should reflect only the difference in errors 
of measurement of the two instruments and also show trends in systematic errors as a function of altitude. In 
order to examine this, we will analyze the difference in ozone determinations of instrument 1 and instrument 
2, i.e., the fifth column of Table 6A-1, which indicates a rather severe trend for instrumental bias differences 
ranging from large positive differences at 25 km to small negative differences at 50 km. Therefore, at the lower 
altitudes instrument 1 gives readings much higher than instrument 2. Some of this difference could perhaps be 
due to a change in ozone levels within the 45-min lapse time although it could well be instrumental differences 
arising from calibration problems el al. By taking the SS of the figures (differences listed) in column 5, Table 
6A-1, about their mean, the result is 60.93 X 10'^ which, when divided by 25 df, estimates a variance of 2.437 X 
10^^ or standard deviation of 1.56 X lO". Such values are noticeably larger than perhaps expected as a 
measure of the dispersion of differences in errors of measurement. Consequently, we should look for a trend in 
the instrumental bias differences of instrument 1 and instrument 2. Perhaps we could fit a line or higher degree 
curve to these instrumental bias differences as a function of the altitude h. Such an analysis has been carried 
out and is indicated on Table 6A-2, where we have used orthogonal polynomials in the process of fitting a line, 
a parabola, or a cubic equation. Note that data for the n = 26 altitudes have been reduced to 13 pairs in the 
form of sums s, or differences di since only half of the orthogonal polynomial values are listed for n greater 
than about 8. (See the last three columns at the top of Table 6A-2. *) The sums st for each pair of altitudes are to 
be multiplied by the ^'s with even subscripts (powers), and the differences dt are to be multiplied by the ^'s with 
odd orthogonal polynomial powers as in Table 6-6. 

The fitted equation is of the form (for O = ozone): 

= A + B^, + C^2 + Z)6 (6A-5) 

where 

y4 = 0= 1.0725 = constant term 

6 = 1 

^ = hi-h, = hi-37.5 

fr., = ^.f. - r\n' - r')^,-,/[4(4r' - 1)] 

(6A-6) 

(6A-7) 

(6A-8) 

(6A-9) 

♦Reread also the paragraph just above Eq, 6-132 in Chapter 6. 
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where 
h, = /th altitude 
h = average altitude 37.5. 

TABLE 6A-2 

ANALYSIS OF DIFFERENCE IN BIASES BETWEEN 
INSTRUMENTS 1 AND 2 VERSUS ALTITUDE 

Paired Sum for Difference for (From Table 6-6 for n = 26) 
Altitudes Altitudes Altitudes 

hi, km Si di f! ^2 f5 
37,38 0.24 0.04 1 -28 -84 
36,39 0.88 -1.12 3 -27 -247 
35,40 1.93 -1.67 5 -25 -395 
34,41 1.14 -0.86 7 -22 -518 
33,42 1.82 -1.58 9 -18 -606 
32,43 2.17 -1.83 11 -13 -649 
31,44 0.55 -0.05 13 -7 -637 
30,45 2.13 -2.27 15 0 -560 
29,46 2.56 -2.64 17 8 -408 
28,47 0.82 -0.58 19 17 -171 
27,48 3.75 -3.85 21 27 161 
26,49 4.24 -4.56 23 38 598 
25,50 5.65 -5.75 25 50 1150 

From Table 6A-1: 0= 1.0725 Divisors: 5850 16,380 7,803,900 
Coefs: X = 2 1/2 5/3 

Divisors are the sums of squares, S(f') 
Constant term = O = 1.0725 
Coefficient of linear term = %di^[l'L{^{f 
Sum of squares for linear regression = (Sc/,fi') /S(fi') , etc. 

Part of Table 6A-2 is taken from Table XXIII of Fisher &Yates: Statistical Tables for Biological, Agricultural, and Medical Research, 
published by Longman Group Ltd., London (1974) 6th edition (previously published by Oliver & Boyd Ltd., Edinburgh) and by 
permission of the authors and publishers. 

TABLE 6A-3 

ANOVA OF TRENDS IN DIFFERENCES (COLUMN 5, TABLE 6A-1) 
OF BIASES, INSTRUMENT 1 MINUS INSTRUMENT 2 

Source of Residual Residual 
Variation SS df SS df Variance F Ratio 

Total 60.93 25 
Linear 
Regression 38.10 1 22.83 24 0.951 Highly Sig. 

Quadratic 
Regression 10.30 1 12.53 23 0.545 Highly Sig. 

Cubic 
Regression 2.01 1 10.52 22 0.478 Not Sig. 
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The f are always in integral values; they are made so by the proper choice of the X's listed on Table 6A-2. 
The coefficients B', C, and D' are determined from 

5'= S^iU72(6')' =-0.0807 (6A-10) 

' C' = S^W2(^2)' =+0.0251 (6A-11) 

Z)'= S6U7S(6')'=-0.000507, etc. (6A-12) 

Finally, the SS for linear regression, quadratic regression, cubic regression, etc., are found simply by 
multiplying the appropriate estimated coefficients—B\ C, D', etc.—again* by the numerators of Eqs. 6A-10, 
-11, and -12. The SS values are brought together in our ANOVA Table 6A-3 of bias difference trends. By 
inspection of this part of the table, one notes that the fit of the cubic regression is not significant statistically; 
thus we would terminate at a fit of the quadratic equation or parabola. This would mean that the final fit to the 
differences in biases or systematic errors of instrument 1 and instrument 2 would be—by Eqs. 6A-6 through 
6A-9—with n = 26 

56)i-2 = /§, - /82 = 1.0725 - 0.0807^,' + 0.0251f^ (6A-13) 

where 
fi' = 2(/j,-37.5) (6A-14) 

^2 = [(/2,-37.5)'-56.25]/2. (6A-I5) 

Eqs. 6A-14 and 6A-15 may be substituted as desired into Eq. 6A-13 to obtain the direct relation between the 
trend of the difference in systematic errors of instrument 1 and instrument 2 as a function of the altitude h. 
This result expresses the difference in calibrations or biases of instruments 1 and 2 over the range of altitudes, 
25 km to 50 km, and clearly represents a very significant trend. Further calibration of instruments 1 and 2 may 
be obtained by reference to an appropriate standard. In summary, we say that the bias errors are not constant 
and thus introduce a significant problem indeed. Also of importance to us is the estimate of imprecision, 
which may be determined by using the residual variance resulting from the quadratic fit. Thus it is seen from 
the next to bottom line of Table 6A-3 that the residual variance about the quadratic fit is 0.545, which is a 
measure of the variance of the difference in unaccounted-for errors of measurement between instruments 1 
and 2 or, that is, the sum of variance in errors of instrument 1 and the variance in errors of instrument 2. The 
value 0.545, therefore, is a more appropriate value to use in the method of Grubbs (Refs. 1 and 2) for 
estimating the imprecisions of measurement. This residual variance of 0.545 will be used after we have made 
similar determinations for instruments 2 and 3 and instruments 3 and 1 in order to model the three-instrument 
case. 

Return to Table 6A-1 and the sixth column of differences for the determination of ozone by instruments 2 
and 3. An analysis similar to that carried out for the differences of instruments 1 and 2 leads to the quadratic fit 

602-3 = )82-i83 =-0.6623+ 0.04746'-0.0147^^ (6A-16) 

with ^i' and 6' the same as in Eqs. 6A-14 and 6A-15 and a residual variance based on 23 df of 0.5575. 
An analysis of the differences between the ozone determinations of instruments 3 and 1 leads to a significant 

linear fit only, which is ' : • 

6O3-1 = &-i3i = -0.4102 +0.0328^[ , (6A-17) 

*That is, SS for linear regression is 

SS = B{1( di) = ; 
K&d.r 
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with a residual variance now based on 24 df equal to 0.823. 
With reference to the systematic trends of differences in biases between instruments, the larger slope of the 

quadratic terms is the coefficient of 0.025 lin Eq. 6A-13 involving the first instrument although there appear to 
be some calibration problems for all three of the instruments unless it is known which, if any, is correct! 

For estimates of the imprecisions of measurements for the three instruments near the middle of the range, or 
central altitudes, the three residual variances about the statistically significant fits may now be used in Grubbs' 
methodology (Refs. 1 and 2). In fact, immediately after eliminating significant trends, we have three equations 
and three unknowns, i.e., 

al, + dl^ = 0.545 

a«2 + ^^3 ~ 0.558 

CTej + Oei — 0.823 

or, solving for the three unknowns, 

ol, = 0.405, be, = 0.636 X lO" mol/cm' 

a'2 = 0.140, a.2 = 0.374 X 10" mol/cm^ 

ol, = 0.418,    a.3 = 0.647 X lO" mol/cml 

We note first that the estimate a^i of 0.64 is a bit smaller than the value 0.70 left as a residual sigma had we fit 
a quintic to the data or readings of the first instrument. This provides somewhat of a check. 

Of course, it may be that the Oej actually increase in value toward the lower altitudes and are smaller for the 
higher altitudes. Such scaling might be estimated by using the standard deviations of a number of residuals at 
each end of the fitted curves. * However, what seems to be of much concern are the trends in the differences in 
bias or systematic errors between pairs of instruments. For example, for instruments 1 and 2 the estimated 
difference in biases at /i = 25 km is from Eqs. 6A-13 through 6A-15 

60,-2 = 1.0725 - 0.0807(-25) + 0.0251(50) =/8i - )82 = 4.35 

with a residual of 

5.7 - 4.35 = 1.35 (still unaccounted for) 

versus a a^pej of about (0.545)'^^ = 0.74 (average, unexplained). 
The same type of analysis outUned here may also be used for the other instruments involved in the 

intercomparison study. 
There certainly needs to be a tie-in between the difference in calibration curves (bias trends) of the three 

Kreuger instruments analyzed here and all of the various types of instruments from other countries (Australia, 
Canada, India, Japan, and U.S.). Some standard may be needed here. For the Nike Orion triad flights, some 
very valuable comparisons may be made since the Australian, Canadian, Indian, and Japanese instruments 
were aboard the same rocket flights. 

It is clear that with a good reference profile the bias trends of the instruments could be removed completely! 
In summary, one observes from Eqs. 6A-1, 6A-3, and models—such as Eqs. 6A-13, -16, and -17 for 

systematic error differences or instrument calibration problems—that the true ozone concentration a> varies 

*There is some evidence from residuals that the a^ near 25 km may be several times that at 50 km—the data are rough and limited. The 
average a, for the three instruments at 25, 37, and 50 km are estimated to be about I.I, 0.61, and 0.14 X lO" mol; cm', respectively. 
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perhaps in a complex manner with altitude. To study the precision and accuracy of measurement however we 
must work with differences in the readings of the instruments taken two at a time to eliminate the amount of 
ozone present so that random errors of measurement or imprecision on one hand and the differences in 
instrumental biases on the other may be modeled and estimated. In fact, the systematic errors Pj vary with 
altitude either in a significant quadratic or linear manner, giving rise to statistically described bias trends 
expressed as systematic error differences of the instruments. Once the significant bias trends are determined 
the residual scatter may be used to estimate the average imprecision of measurement a., of the instruments' 

For the overall accuracy problem, it can be said that one first experiences a variable bias in the instrumental 
readings as expressed in Eqs. 6A-13, 6A-16, or 6A-17. Depending on which particular instrumem if any is 
actually correct, one is unsure just what the true calibration curve of each instrument is or should be Once such 
systematic errors are incurred, one should expect that the random errors of measuremem of the instruments 
may vary with altitude and be described by a standard error of perhaps about 1.1 X 10 " mol / cm^ at 25 km to 
about 0.14 X 10" mol/cm' at 50 km. With such a varying imprecision of measurement depending on the 
altitude. It becomes clear that once the trends of the differences in biases between instruments have been 
eliminated from the original differences, then for each altitude one can determine the three residual differences 
and the average of these three differences for each altitude. This average difference at each altitude could then 
be divided by 2 X 0.5642 = 1.1284 to give an estimate of the imprecision sigma at that altitude. Finally a least 
squares fit on these estimates with altitude will give the estimated imprecision of measurement curve'for the 
three instruments of the same type represented. 

In summary then, there is an instrumental bias difference curve between instruments of a type for each 
instrument apparently has its own bias trend, and for the standard deviation of the imprecision of'measure- 
mem, there is also a fitted least squares curve or trend representing the average value of the three instruments 
of a particular type. 

6A-3    GENERAL COMMENT ON LINEAR REGRESSION WITH ERRORS IN BOTH 
VARIABLES 

In the example of this appendix, we saw that even though the differences in biases may follow a trend and 
the imprecision of measurement may vary with the level of the quantity of interest, one could, with the use of 
three instruments, model the situation with rather good accuracy. Because of such attainment, one is led to a 
reconsideration of the linear regression problem. Of wide interest is the case in which the true part of the 
dependent variable is a linear function of the true part of the independent variable and in which there are 
errors (of measurement) in both variables. It is well-known for this case that there are five basic parameters to 
be determined-i.e., the true slope, intercept, variance of the quantity of interest, and the variances of the 
errors in both the independent and dependent variables. However, these five parameters cannot be estimated 
satisfactorily without supportive ancillary information. Nevertheless, if it were possible for the linear 
regression problem to be treated as a three- or more instrument case with redundant measurements on either 
the dependent or the independent variable, sufficient overdetermination would be achieved so that the major 
parameters of interest could be estimated. One might well note again in this connection Eqs. 6-49 through 6-56 
although we cannot go extensively into this area of statistical investigation here. 
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CHAPTER 7 

ORDER STATISTICS AND APPLICATIONS 

The use of sample order statistics by the Army analyst represents a very important and wide field of 
application that will continue to have prime demand. Indeed, the theory of sample order statistics is 
indispensable since many Army problems invariably resuh in truncated or censored samples for the observa- 
tions taken. Order statistic theory is very useful in the following areas: 

1. Studies of the maximum dispersion or sample range 
2. Mean values of order statistics as they relate to population parameters 
3. Detection of outlying observations 
4. Use of quasi-ranges when the sample extremes are suspect 
5. Estimation of population parameters from truncated or censored samples 
6. Use of simple, efficient linear estimators of the population mean and standard deviation 
7. Statistics of extreme occurrences 
8. Relationships to reliability and life testing problems 
9. Analyses of the delivery accuracy of weapons including either rectangular coordinates or radial order 

statistics 
10. Placing of confidence bounds on the proportion of the sampled population between limits 
11. Determination of population characteristics from truncated target firings of weapons 
12. Estimation of discrete population parameters, such as for the Poisson distribution. 

These topics are all discussed and presented in useful detail for the Army statistician or analyst, and several 
examples illustrating truncated sample theory are given. 

7-0    LIST OF SYMBOLS 

ar = constant or coefficient related to rth sample order statistic, used especially in estimation of 
the mean from a linear form 

b = 1//3 = reciprocal of shape parameter used in Eq. 7-27 

br = constant or coefficient related to rth sample order statistic, used for estimation of the popu- 
lation sigma from a linear form 

E{    ) = used to denote expected or mean value of quantity in parentheses 
E{xr) = kth moment about origin of rth order sample statistic 

est = denotes estimate of parameter 

F(x) = cumulative probability distribution of random variable x 

/"(w, v) = Snedecor-Fisher F statistic with « and V degrees of freedom (df) 
Fn{x) = Pr{xn < x) = cumulative distribution of largest sample value Xn 
F\{x) = cumulative distribution of smallest sample value x\ 

Fi~a (w, v) = (1 — a) probability level of F, i.e., upper a probability level 
F~\    ) = inverse of function F 

F' = ratio of two sample ranges 

/= sum of frequencies for at least one hit 
fix) = probability density function (pdf) of random variable x 

fx = observed number or frequency for x hits 
/o = frequency for zero number of hits class 

G{    ) = cumulative distribution function of quantity in parentheses 
g = number of rounds passing below a rectangular target 
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g, h = certain sums of the «/, in Eqs. 7-61 and 7-62 

h = number of rounds passing above a rectangular target 
Ix{u,v) = incomplete beta function ratio 

Iy{u,v) = Karl Pearson's incomplete beta function (see Eq. 7-7 or Ref. 7) 
k = factor associated with tolerance limits 

w = number of target misses 

m = r + s = total number of "blocks" or sample spaces below rth smallest sample order statistic 
and above the 5th largest order statistic (see par. 7-7.5) 

mi and m'i = Visnaw's notation for «y sums in Eqs. 7-59 through 7-62 

m" = number of rounds which cannot be determined as being left of, above, to the right of, or 
below the target 

A'^ =/o+/= total frequency including zero class frequency 
n = sample size 

riij = number of target misses in the /, /th "quadrant" (see Eqs. 7-59 through 7-62) 
(") = combination of n things taken r at a time 

P(c,n,p) = chance of occurrence of c or more successes in n trials when chance of occurrence in a sin- 
gle trial is p, i.e., the binomial sum 

P(h) = probability of h or more hits 

/l(x) = failure-time distribution for z'th component of a system 
P/'[v] = probability of event happening in V trials 

p = number of dimensions—p = 2 for bivariate case 
fix) = probability of exactly x hits 

q = numerical quantity 

R{x) = 1 — F{x) = upper tail of distribution of x beyond the value x, and often referred to as the 
"reliability" 

r = number of rounds passing to left of a rectangular target * ' 

n = (x? + >'/)''^ ='th radial order statistic about origin or center of impact 
ro = cutoff radius for truncation of radial sample values 

ri = number of smallest ordered sample observations censored in sample of n 
ri = number of rounds missing target on left (Example 7-4) 

r2 = number of rounds missing target on right (Example 7-4) 

r2 = number of the largest ordered sample observations censored in sample of n 
s = number of rounds passing to right of target 

5 = sample standard deviation, based on (n — 1) degrees of freedom (df) .        ■ 
T = mean number of trials to an "occurrence", or between occurrences 
t = w/s = Studentized sample range 
/, = /'th ordered time observation 
tr = time to rth failure 
to = specified truncation time 
u = \nd = logarithmic transformation 

Var(    ) = denotes variance of quantity in parentheses ■ ,     ;   ; 
Pf = central area of a distribution between xi and x„ (see Eq. 7-34) 
w = x„ — Xi = sample range = wo also 

Wr = x„-r — Xr+i = rth quasi-range of sample 
x{a) = value of variable x directly related to the upper a probability level 
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x,y = rectangular coordinates of a point 
X = sample mean 
Xi = /th sample order statistic 
Xi = /th ordered sample observation or value; we have that xi < X2 < X3 < ' ' ' < x, < ' ' ' < x„ 
xj = /th sample observation in the order observations were taken 
Xn = largest observation in sample 
Xi = smallest observation in sample 
y,,! = bivariate "concomitant" of /th sample order statistic Xi 

P = confidence level 
P = population parameter 
/? = shape parameter of a distribution 

r(    ) = complete gamma function of quantity in parentheses 
7 = given fraction of the population 
6 — mean value parameter for exponential distribution 
d = characteristic life, or a scale parameter 
k = parameter of a distribution = 1/0 for exponential distribution and is the expected number 

of occurrences for the Poisson distribution in Eq. 7-63 
jj. = population mean 
jl = estimate of the parameter or mean value n 

H* = "optimal" estimate of /x, i.e., for example, a minimum variance estimate 
o{    ) = standard deviation of the quantity in parentheses 

o = estimate of the population standard deviation or sigma 
X^i    ) = random variable chi-square for number of degrees of freedom (df) given in parentheses 

= denotes estimate of the quantity under it 

7-1    INTRODUCTION 

The last thirty years or so have witnessed an enormous growth in the applications of sample order statistics. 
This, no doubt, is due largely to the ever-increasing importance of life testing, reliability, availability, and 
maintainability of systems of all kinds, especially insofar as many Army applications are concerned. In 
addition, there are many practical applications for which the data naturally arise in order of magnitude, such 
as the life span in minutes, hours, days, and months of items or systems placed in service. Moreover, 
sometimes sample data are either truncated or censored, so that often one does not have available the smallest 
few or the largest few sample observations to analyze. Then again, it is also often true that the few largest 
and/or few smallest observations may not represent true sample values because they may be prone to shifts in 
level or other abnormal conditions. As a further example, one might consider a combat "experiment" for 
which he counts among the tanks knocked out exactly the number of hits scored by projectiles or antitank 
weapons from the other side. Note in this case that one can observe directly the number of tanks for which 
there is exactly one hit, the number of disabled tanks having two hits, etc., but he cannot take any direct 
observations on the number of times each of the other tanks in the battle was shot at, but not hit, so that 
truncation or censoring for this type of combat data occurs. The initial, total number of rounds fired in 
combat may, nevertheless, be of much importance either for a complete analysis or for logistical planning 
purposes. Thus we see some of the possible order statistic-type problems with which the analyst might be faced 
in some Army applications, including data censoring or truncation of some types. 

First, we must define "order statistics" properly. We all are accustomed in sampling experiments to take or 
to have at hand some n observations, which ordinarily are listed in the order in which they were observed; 
namely, we have a "random sample of «". In the case of order statistics, however, the sample observations may 
even be observed in ascending order, such as for the lifetimes of items on test, or the sample values may be 
arranged in increasing order of magnitude of the measurements. To enforce some brevity of notation 
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throughout this chapter, we are specifying that the observations in the order in which they were originally 
observed are 

X\, X2, X^, .  .  ., Xj, .  .  ., Xn 

where we have used primes for the occurrence order. When the n sample values are placed in ascending order 
of magnitude, they become 

Xl < X2 < X3 < ■ • ■ < X, < • • • <x„ 

where the quantity x,is known as the /th order (sample) statistic. Generally, we will use the random variable x 
to describe the characteristic under study; however, it should be noted that often the physical characteristic of 
time is of much importance. For example, data on Hfetimes or the failure times for an item or piece of 
equipment is the key variable studied. Hence we might well use the ith ordered time, or ?,, in place of x,as an 
observation. 

Very often we will find that the longer times-to-fail are not taken due to costly experimentation, for 
example, or it may be thought that only some r oi n possible observations will be sufficient for the analysis 
purposes at hand. In such cases it is seen that only the first r <n order sample statistics are available for 
analysis since the last or (n — r) largest sample observations have been censored or truncated from the test or 
experiment. Sometimes the sample may be truncated or censored on the left side instead of on the right side. 

For the entire sample of ordered observations, the highest observation x„ and/or the lowest observation x i 
may be of particular interest since they may be tested statistically by the method given in Chapter 3 to 
determine whether they are "outliers". Also it is well-known that the difference between the largest and the 
smallest sample values is the sample range (Chapter 3). Thus the sample range w is defined algebraically as 

W=Xn—Xi. (7-1) 

We will discuss briefly the probability distributions of the smallest sample value, the largest sample observa- 
tion, and the range in par. 7-2 because they are of use in many practical applications. 

We proceed to present and discuss some of the many uses of order statistics and their important properties 
in connection with timely and unique analyses of experimental data. The Army applications of statistical 
methods involve many instances for which the analysis of ordered sample values is called for or even 
mandatory. Indeed, to cite another example, the weapon developer may have a new projectile under 
development, and he desires to estimate the round-to-round population standard deviation of the item. When 
test firings at a vertical target are carried out, however, some of the experimental projectiles may miss the 
target, so that the sample of rounds may be truncated above, below, to the left, and/or to the right of the target 
and only the coordinates of the impacting rounds are measurable. One immediately sees—as it actually turns 
out—that if the population mean and standard deviation can be estimated in an unbiased manner, the use of 
order statistic theory will be entirely justified. It is just such occurrences that often call for order statistic 
analyses—adding indispensable tools to the statistical inventory. 

Refs. 1 through 5 give a rather sound base on which to expand available knowledge concerning order 
statistics. Harter (Refs. 1, 2, and 3) apparently had planned a series of volumes on the general applicability of 
sample order statistics to various Department of Defense (DOD) problems, but with the appearance of 
Harter's Ref. 3, it becomes clear that some adjustments and changes were necessary in view of the passage of 
time and the very wide scope of research into order statistic theory by many different investigators. One of the 
motivating forces behind the publication of Ref. 1 was the need to bring together and summarize much useful 
information on multiple comparison tests, for example, to establish superiority of one treatment over another 
in the analysis of variance (ANOVA). Hence Ref. 1, which was aimed at treating order statistics and their use 
in testing and estimation, discusses and gives rather complete tables of the range and "Studentized" range in 
random samples from a normal population. The Studentized range is defined as the quantity used for outlier 
tests in Chapter 3 
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t^wjs (7-2) 

where 
w = sample range as in Eq. 7-1 
5   = standard deviation of the sample, usually based on (« — 1) degrees of freedom (df). 

Harter's Ref. 2 carries on with his original plans and discusses estimates of population parameters based on 
order statistics from various types of populations, including the normal, exponential, Weibull, gamma, and 
extreme value distributions. A very useful introduction with many important references is included in Ref. 2. 

With the publication of Harter's Ref. 3 in 1977, it became entirely obvious that the field of order statistics 
had grown so extensively and rapidly that Harter's original plan to cover the many important and useful 
topics on order statistics had to be abandoned in favor of a chronological and annotated bibhography. Vol. 1 
(Ref. 3) of the new series covers topics of interest by various authors for the the pre-1950 time period. 
Presumably, this type of chronological and annotated bibliography will continue at least into the immediate 
future. 

Sarhan and Greenberg's Contributions to Order Statistics (Ref. 4), which was first pubhshed in 1962, served 
more or less as the accepted standard on state of the art coverage of order statistics for many years, and along 
with David's book (Ref. 5) any serious reader has available in these two volumes much of the theory and many 
of the topics he will have occasion to use. As David (Ref. 5) points out in the Preface, his book is not intended 
to replace the Sarhan-Greenberg book (Ref. 4) because the tables of the latter book, and indeed much of the 
theory, will continue to remain very useful for many years to come. In fact, Ref. 4 is often used as a valuable 
handbook for reference purposes, and many of the tables from a large number of sources are sufficiently 
complete. David's book should be considered as an update of theoretical contributions to order statistics and 
also perhaps as a useful textbook that cites many, many references on order statistic topics up through about 
1969. 

For this handbook we consider our goal to be that of highlighting some of the material available in Refs. 1-5 
and, more importantly, to supplement it—especially to record certain topics in order statistic theory that may 
often be of value in Army applications. To this end, we will give a brief account of some of the key 
distributions, the estimation of parameters from truncated or censored samples, some appropriate apphca- 
tions on confidence bounds, and the relation of order statistic theory to general statistical theory. 

7-2    THE DISTRIBUTION OF THE LARGEST AND SMALLEST SAMPLE VALUES, 
THE DISTRIBUTION OF THE RANGE, AND THE rth ORDER STATISTIC 

The probability distributions of the largest observation and the smallest observation in samples of size n 
from any general statistical population with probability density function (pdf) of/(x) and cumulative 
distribution function (cdf) of F{x) are easily obtained. In fact, for the largest sample value we merely are 
determining the chance that all the sample observations do not exceed the largest sample value x„, which is 
clearly given by the expression 

Pr[x„ <x'\= F„{x) = Pr[a\\ x, <x] = [F(x)T. (7-3) 

In a very like manner, the cdf of the smallest value xi is simply 

Fi(jc) = 1 - Pr[all X, > x] = 1 - [1 - F(x)]". (7-4) 

Differentiation of Eqs. 7-3 and 7-4 gives the appropriate pdf's if desired. Also it is readily seen that, given any 
value of X, the cumulative probability of either extreme sample value can be obtained for a specified Fix) and 
that the inverse problem to find x for a given level of probability can be easily calculated. In Ref. 6 Tippett first 
gave distributional properties of the extreme individuals in samples of « from a normal population, and he 
also tabulated moment properties and the probability distribution of the range w=x„ — xi, which we derive 
next. 
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For the distribution of the sample range w, one may see that no matter what the value of a random variable 
X, the chance that just one of the x, falls into the interval (x, x + dx) and all of the remaining (« - 1) sample 
values Xi fall into the interval {x, x + w) is the quantity given by the expression 

nf{x)dx[F{x + w) - F{x)f'\ (7-5) 

To-find the cumulative probability distribution of the sample range w, one integrates x over its range of values. 
Thus the cdf F{w) of the sample range w is 

F(yv) = n/_°l/(^) {F{x + w) - F{x)T'dx. (7-6) 

Moment constants of the range and the probability integral of the range are given in Refs. 1, 6, and 7 as are 
tables of percentage points. 

How to obtain the probability distributions of the least sample value, the greatest sample observation, and 
the range for any general population with cdf of F{x) having been indicated, it is also a straightforward matter 
to derive the cdf of the rth sample order statistic. Thus if we set / = r to designate the rth ordered sample value, 
the distribution of Xr may be obtained by finding the chance that at least r of the observed x,'s are less than or 
equal to a value x, and this is 

F.(x)= 2 ('?)[F(x)r[i-F(x)r' 
i-r 

' --lFMir,n-.r+\) (7-7) 

= Pr{Fi2n-2r + 2,2r)>r[l-F{x)]l[in-r+\)F{x)]}* 

where Iy{u,v) is Karl Pearson's incomplete beta function (Ref. 7), and the quantity F(u,v) is the Fisher- 
Snedecor F statistic with u and v df, respectively. Therefore, one easily recognizes the cdf of the rth sample 
order statistic as a sum of binomial terms, i.e., the upper (n - r) or last terms. 

In summary, therefore, we find that fairly elementary probability distributions will characterize the chance 
distributions of either the least observation, the greatest one, the sample range, or the rth sample order statistic 
for any general population F{x). Of course, in particular applications one would select for F{x) the normal 
distribution, the exponential distribution, the gamma distribution, or the Weibull distribution, etc., depend- 
ing on which law best fits the data at hand. In reliability and life testing, for example, the exponential or 
Weibull models most likely would be the proper ones to apply. 

For many distributions it becomes a rather easy matter to find the value of x in Eq. 7-7 that will determine 
any percentage point or quantile of the distribution of the rth order statistic in a sample of size n. For example, 
if we let x{a) be the value of x that corresponds with the a probability level of the distribution of the rth order 
statistic, we will illustrate by Example 7-1 just how any quantile of the exponential distribution with mean 
failure time of 6 may be found. 

Example 7-1: 
Given that Fix) = 1 - exp(-x/ d) or that Fix) is the cumulative exponential distribution, as m problems for 

life testing or reliability, find the 90% probability level for Xr, the rth order statistic in a sample of size n. 
For any general cdf Guenther (Ref. 8) has suggested a rather simple procedure for determining the quantity 

x(a) desired. First, it is noted that the quantity within braces on the right-hand side (RHS) of the last line of 
Eq. 7-7 means that for equality 

r 
-    - Fr[xia)] =  ^    ,  , ^ , = ^ (7-8) 

r + in-r+ l)FM^n-2r + 2,2r) 

A   iO 

*The reader should note in Eq. 7-7 that F{x) is a cdf, whereas f{u,v) is the "f" statistic. 
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from which—for any given sample size n and r—we can for any stated probability level a substitute the value 
of "F" for (2« - 2r + 2) and 2r df and then can determine the numerical value of the quantity q. With the value 
of q so determined, it is a straightforward matter to find the percentage point xia) for the exponential 
distribution for we have 

1 - exp(-x/ d)=q (7.9) 

so that solving for x we have 

X = x{a) = -01n(l - g). (7-10) 

To complete the solution, we have a = 0.90, and for any rth order statistic in a sample of size n, one uses r, n, 
and the value of Fo.io(2« - 2r + 2,2r) in Eq. 7-8 to find q. Finally, the value of x(0.90) is the negative of the 
mean life 0 multiplied by the natural logarithm of (1 - 9) as in Eq. 7-10. For other distributions, such as the 
normal distribution, for example, interpolation or cut-and-try methods may be used as necessary. 

For interested readers Guenther (Ref. 8) gives general solutions in terms of the quantity q for the standard 
logistic distribution, the lognormal distribution, the double exponential distribution, the Pareto distribution, 
and the "standard" (one-parameter) Weibull model. He also indicates solutions by trial for the normal, the 
lognormal, the gamma, and the Cauchy distributions. For discrete distributions Guenther (Ref. 8) discusses 
the binomial and the Poisson distributions. 

In addition to the distributional properties of order statistics for any general model or cdf, the moment 
properties of order statistics are also of considerable interest in applications. Thus the mean, the variance or 
standard deviation, and often the skewness coefficient and the kurtosis coefficient represent parameters of 
importance. These moment properties of the order statistics depend numerically on the particular population 
sampled so that the construction of tables of such values is necessary except in the simplest analytical cases. In 
fact, this is primarily the reason for the publication of many of the extensive tables in Refs. 1 and 2 of Harter 
and also for many of the tabulations given in Sarhan and Greenberg (Ref. 4). 

In addition to the lower moment properties of the sample order statistics, we should also mention the 
so-called "quasi-ranges", which involve the inner ordered observations of the sample and hence should not be 
sensitive to outhers. Therefore, we will discuss the quasi-ranges very briefly and then proceed to some Umited 
account of moments of order statistics. 

7-3    THE QUASI-RANGES 

Often it could be very desirable to avoid using the extreme values in samples for estimation purposes since 
the sample range, for example, includes both the largest and the smallest sample values and could be sensitive 
to the existence of outliers. It is for this and other reasons that some investigators have investigated the 
properties of quasi-ranges. The rth quasi-range is defined as the quantity 

Wr=' Xn-r~ Xr+X (7-11) 

or, that is, the (n - r)th order statistic minus the {r + l)st sample order statistic. If r is set equal to zero, then wo 
of Eq. 7-11 becomes the ordinary sample range defined in Eq. 7-1. As is the case for the range of the complete 
sample, the rth quasi-range may be used with proper divisor or multiplication factor to give a quick estimate of 
the population sigma or standard deviation. There is the quesfion of just which quasi-range—i.e., r = 0, 1, 
2, . . ., etc.—should be used for estimation purposes. This particular problem has been studied by Cadwell 
(Ref. 9), who discovered that for samples of size up through « = 17, H-O = x„ - jc, should be used, beyond which 
sample size w, becomes optimum through a sample size of « = 31, where wz becomes better, etc.; these resuhs 
are for normal populations. Table A5 of Harter (Ref. 2) gives the most efficient point estimators of the normal 
population sigma or standard deviation for samples of size n = 2(1)100. 

Harter's Table A1 of Ref. 2 gives the means or expected values of quasi-ranges numerically for sample sizes 
of « = 2(1)100 and values of r less than or equal to the sample size n. Table A2 gives the variances of the 
quasi-ranges for the same conditions on the sample size n and order r. 
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The cumulative probability integral of the rth quasi-range for selected sample sizes up through « = 100, and 
the percentage points of these quasi-ranges, for normal samples are given in Harter's Tables A6 and A7, 
respectively, of Ref. 2. Also his introductory discussions give necessary details concerning the tables and 
methods of computation. 

We refer to Harter's tables primarily here for they are the most extensive and most readily available from 
the Government Printing Office (GPO). 

The discussion here of the use of quasi-ranges in samples brings forth the idea that there may be other 
methods of treating sample observations to obtain efficient estimates of the population standard deviation for 
normal samples. In fact, instead of dealing with quasi-ranges of the large samples, one might consider dividing 
the entire sample into a number of subgroups and then using the average range of the subgroups to obtain a 
more precise or efficient estimate of the normal population standard deviation. The size of the subgroups 
becomes of importance in the division of large samples for such purposes, and the problem has been studied by 
Grubbs and Weaver (Ref. 10). They found that subgroups of size about eight were the most efficient ones to 
use, so large samples are divided accordingly with an occasional size of seven or nine permitted. As an 
example, Ref. 10 discusses the estimation of a normal population sigma for a sample of size 30. In this case, 
one uses two subgroups of size seven and two of size eight. See Ref. 10 for further details.* 

A very important point we should bring out in connection with the use of order statistics is that the range, 
the average range, the individual order statistic, and the quasi-ranges all have to be muUiplied by appropriate 
numerical factors to make them unbiased estimates of the mean, standard deviation, and other parameters of 
populations. Moreover, therefore, it is seen that it becomes very natural to use linear functions of the order 
statistics to estimate any parameter of the population sampled. Thus it should be expected that linear 
estimation principles tie in directly with the use of sample order statistics. In addition, it is observed also that 
once a weighted linear function of the sample order statistics is used, the matter of finding its variance becomes 
rather straightforward since such variances will depend on the coefficients or weighting factors, the variances 
of the order statistics, and the covariances of the ordered sample values. Hence we see the importance of linear 
estimation principles. Since the expected or mean values and the higher moments of the sample order statistics 
are needed in connection with hnear estimation methods, and indeed are easily found, we will discuss this 
topic next. 

7-4    EXPECTED VALUES AND MOMENTS OF SAMPLE ORDER STATISTICS 

The means or expected values and all of the moments of the order statistics are rather easily found since the 
pdf of the rth order statistic may be determined from the RHS of the first line of Eq. 7-7 by differentiation. 
Thus we see that 

frix) = nC--\)[F{x)r\\-F{x)r'dF{x)ldx. (7-12) 

Furthermore, the A:th moment about the origin is found from the expression 

E{x'r)=j_lx'Mx)dx (7-13) 

where we have used Eq. 7-12. Therefore, with a given sample size n, the order r of the sample statistic desired, 
and the functional form Fix) of the distribution of interest, the moments about the origin of the rth order 
statistic may be calculated from Eq. 7-13, especially with the aid of a computer. The central moments then may 
be calculated with the usual conversion equations given in standard statistical textbooks. For example, for k 
= 1 in Eq. 7-13, one determines the population mean or the expected value of the rth order statistic. For k = 2 
the second moment about the origin is determined, and if the square of the mean or expected value is 
subtracted from this second moment about the origin, the resuh gives the variance of the rth order statistic. 
The third and fourth central moments are used to find the skewness and kurtosis, respectively. 

*Quasi-ranges are often more efficient than the mean or average range—see Harter (Ref. 2). '   " 1 
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7-5    LINEAR ESTIMATION OF POPULATION PARAMETERS OR MOMENTS 

As we have indicated in par. 7-3, it becomes highly desirable to use weighted linear functions of the sample 
order statistics to estimate the population mean, variance, or standard deviation, etc., or higher moments. The 
use of Hnear functions to estimate parameters avoids complications of other types of estimation techniques, 
such as maximum likelihood (ML) estimation, for example. Thus tables of coefficients by which to multiply 
each of the order statistics, or some of them, and to sum the results would lead to very acceptable estimators of 
parameters provided they are efficient enough. As it turns out, linear estimation in connection with order 
statistics leads to very efficient estimators for many important populations of interest in practice—such as the 
normal population, the lognormal population, the exponential population, the gamma population, and the 
Weibull type of model. The linear estimators are very efficient provided the distribution function has a form 
such that it may be expressed in terms of a linear function of the population mean and standard deviation. 

A number of authors have studied Hnear estimation using the sample order statistics, including especially E. 
H. Lloyd (Ref. 11) whose generalized least squares theorem is also given in Chapter 3 of Sarhan and 
Greenberg's book (Ref. 4). Primary emphasis is on the estimation of the population mean and the standard 
deviation or variance. Also the coefficients are usually determined so that the linear estimators are unbiased 
and have minimum variance, or they could be determined so that the minimum mean square error (MSE) is 
guaranteed, etc. Efficient estimators are often referred to as "BLUE" or "best Hnear unbiased estimators", and 
these are the primary ones that have been determined and tabulated for various populations of practical 
importance. 

It is not within the scope of this handbook to give a very extensive account of the theory or other details of 
the best linear estimation techniques; interested readers may consuh Sarhan and Greenberg's book (Ref. 4), 
David's book (Ref. 5), the various references of this chapter, and David's very extensive coverage of references 
on order statistics on pp. 235-66 of Ref. 5. Here we will indicate the general nature of the equations for the 
mean and standard deviation and wiH follow this with a discussion of the necessary tables and some examples. 

The population mean M is estimated by a Hnear form of the type 

est/u = XarXr (7-14) 

where 
Ur = constant or coefficient related to rth sample order statistic 

and where the sum may be taken over the whole sample r = 1, 2, ...,«, or only over (the inner) part of the 
sample order statistics. In a like manner, the estimator of the population sigma is found by using a similar sum 
involving different coefficients or 

esta = XhrXr (7-15) 

where : , 
br = constant or coefficient related to rth sample order statistic 

for which some of the end points may be truncated or censored. Our primary interest wiH be in the BLUE 
estimators. 

7-6    DISCUSSION OF TABLES AND SOME EXAMPLES 

To use sample order statistics, it is absolutely necessary to have tables of the coefficients available. For all of 
the applications analysts are likely to face in practice, the tables of coefficients amount to literally hundreds of 
pages. Therefore, it cannot be expected that any extensive coverage of the tables can be displayed in this 
chapter. Nevertheless, we can give an example and make references to and discuss some of the types of tables 
that are available. 

As mentioned before, Harter's Ref. 1 gives a very extensive set of tables for the sample range and its 
properties. Ref. 1 covers the probability integral of the range, the percentage points of the range, and the 
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moments of the range and includes the percentage points^of the ratio of two ranges and related tables. The 
ratio of two ranges may, of course, be used just like the Fisher-Snedecor Fratio to judge whether the variances 
of two normal populations are equal. 

For the Studentized range, Ref. 1 gives both the probability integral and the percentage points as well as 
critical values of Duncan's (Ref. 12) multiple range tests for judging contrasts in an ANOVA. Moreover, 
instructions and examples are given in Barter's introductory sections of Ref. 1. On p. 30 of the "Introduction" 
to Chapter 2 of Ref. 1, the determination of sample sizes for the multiple range tests is discussed. This brief 
discussion may give the reader some idea of the value of Harter's Ref. 1. 

Example 7-2: 
A velocity dispersion test was conducted to determine whether a new technique to apply rotating bands to 

artillery projectiles was superior to the standard method. Fifteen projectiles, with rotating bands applied with 
the new technique, were fired along with 15 reference projectiles, and the velocities were measured. The new 
technique gave a range in velocity dispersion of 9 ft/s, and the standard projectiles had a range in velocity 
dispersion of 15 ft/s. Does the new technique give a smaller standard deviation in velocity? Assume normal 
populations. 

The ratio of the two ranges in velocity dispersion, which we will call F', is given by 

F= 15/9 = 1.667. 

Referring to Harter's Table A4 of Ref. 1 for the percentage points of the ratio of two ranges with sample sizes 
„i =„2 = 15, one finds on p. 227 of Ref. 1 that the 95% level of F'is 1.673. Hence the result is beginning to 
appear significant. It might be advisable, however, if a costly decision is being made, to fire a larger number of 
rounds for final judgment. 

Example 7-3: 
Use the observed data of Example 7-2 to estimate population sigmas, assuming normal parents. 
From Harter's Table A8 of Ref. 1, p. 376, one finds that the expected value E{w) of a range for a sample of 

size 15 is 

£(w) = 3.4718268899a. 

Hence the estimated standard deviations of the populations for both projectiles are 9/3.472 = 2.6 and 
15/3.472 = 4.3 ft/s, respectively. 

Harter's Volume 2 on order statistics and their use in testing and estimation (Ref. 2) contains many useful 
tables for applications to a variety of Army statistical problems. Both point and interval estimation of the 
normal population standard deviation using the quasi-ranges are covered, along with the probability integral 
of quasi-ranges, percentage points, and efficiencies of the best choices of quasi-ranges. The range of samples 
chosen at random from a rectangular population is covered, including both point and interval estimation. 
Also the percentage points of the range for a rectangular parent are given in Harter's Table B3, p. 415 , of 
Ref. 2. These percentage points are for sample sizes 1 (1 )20(2)40( 10) 100. Coefficients of the range for the same 
sample sizes for exact lower confidence bounds on the rectangular population standard deviation also are 
presented in Table B4 of Harter's P.ef. 2. 

Expected values of the order statistics for samples of size n drawn from a normal population, an 
exponential population, a Weibull parent, and a gamma universe are given in Appendix C of Ref. 2. It is 
beheved that such tables will be very useful. Moments of the sample order statistics are tabulated for the 
exponential, Weibull, and gamma populations in Table C5 of Harter's Ref. 2 for certain values of the shape 
parameter for the cases of Weibull or gamma populations. Since this is only a one-page table, we are including 
these moment constants here as Table 7-1 because such properties will have interest on occasion. In contrast 
with the standard normal population, we recall for this case that the mean is zero, the variance is one, the 
skewness is zero, and the kurtosis is three. Hence we note that the exponential, Weibull, and gamma 
populations can be decidedly skewed and peaked. 
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TABLE 7-1 

MOMENTS OF EXPONENTIAL, WEIBULL, AND GAMMA POPULATIONS 

Population Shape Parameter Mean Variance Skewness Kurtosis 

Exponential 1.00000000 1.00000000 2.00000000 9.00000000 

Weibull 0.5 2.00000000 20.00000000 6.61876121 87.72000000 
Weibull 1.0 1.00000000 1.00000000 2.00000000 9.00000000 
Weibull 1.5 0.90274529 0.37569028 1.07198657 4.39040356 
Weibull 2.0 0.88622693 0.21460184 0.63111066 3.24508930 

Weibull 2.5 0.88726382 0.14414669 0.35863184 2.85678309 
Weibull 3.0 0.89297951 0.10533288 0.16810284 2.72946363 
Weibull 3.5 0:89974718 0.08107275 0.02510816 2.71273189 
Weibull 4.0 0.90640248 0.06466148 -0.08723697 2.74782953 

Weibull 5.0 0.91816874 0.04422998 -0.25410959 2.88029006 
Weibull 6.0 0.92771933 0.03231635 -0.37326156 3.03545528 
Weibull 7.0 0.93543756 0.02470374 -0.46318962 3.18718296 
Weibull 8.0 0.94174270 0.01952316 -0.53372638 3.32767551 

Gamma 0.5 0.50000000 0.50000000 2.82842712 15.00000000 
Gamma 1.0 1.00000000 1.00000000 2.00000000 9.00000000 
Gamma 1.5 1.50000000 1.50000000 1.63299316 7.00000000 
Gamma 2.0 2.00000000 2.00000000 1.41421356 6.00000000 

Gamma 2.5 2.50000000 2.50000000 1.26491106 5.40000000 
Gamma 3.0 3.00000000 3.00000000 1.15470054 5.00000000 
Gamma 3.5 3.50000000 3.50000000 1.06904497 4.71428571 
Gamma 4.0 4.00000000 4.00000000 1.00000000 4.50000000 

For this table the location parameters are taken as zero. Also as is applicable, the scale and/or shape 
parameters are taken to be unity. Thus the cdf s of the exponential, Weibull, and gamma models are 

Exponential: F(x) = 1 - Qxp{-x/d), d=l 
Weibull: F{x) = I ~ exp[-(x/0)^], 6 = 1, yS varies 
Gamma: ^W =/;x^exp(-x/0) ^x/(^!0^"'), 0 = 1, ^8 varies. 

Due to the large number of pages involved, we cannot list the expected values of the sample order statistics 
for all populations or sample sizes of practical interest. Nevertheless, in Table 7-2 we give the expected values 
of the sample order statistics for samples of size 2( 1 )20 for the standardized normal parent. The tabular values 
are taken from Teichroew's paper (Ref. 13). The reader should note in particular that only the lower expected 
values of the order statistics are listed; accordingly, all table entries should be preceded by a negative sign. The 
values of/ for order statistics above the median would have positive signs, as seen by the example given at the 
bottom of Table 7-2. The entries in Table 7-2 are for a normal population with zero mean and standard 
deviation of unity. Therefore, if one is sampling a normal population with mean /x and standard deviation a 
the values in Table 7-2 must be multiplied by o, or an estimate of o, when making inferences about the sampled 
population. 

Barter's Table Cl, p. 425, Ref. 2, of the expected values of normal order statistics is very extensive- it 
extends through a sample of size 400 (with some missing intermediate values). The tabular entries of Table C1, 
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TABLE 7-2 

EXPECTED VALUES OF ORDER STATISTICS FROM A^(0,1) (Ref. 13) 

n r £(;«:„«) n r E(xr,n) n r E(,Xr,n) 

2 1 0.56418 95835 12 5 0.31224 88787 17 5 0.61945 76511 

^ 1 0.84628 43753 12 6 0.10258 96798 17 6 0.45133 34467 

4 1 1.02937 53730 13 1 1.66799 01770 17 7 0.29518 64872 

4 2 0.29701 13823 13 2 1.16407 71937 17 8 0.14598 74231 

5 1 1.16296 44736 13 3 0.84983 46324 18 1 1.82003 18790 

5 2 0.49501 89705 13 4 0.60285 00882 18 2 1.35041 37134 

6 1 1.26720 63606 13 5 0.38832 71210 18 3 1.06572 81829 

6 2 0.64175 50388 13 6 0.19052 36911 18 4 0.84812 50190 

6 3 0.20154 68338 14 1 1.70338 15541 18 5 0.66479 46127 

7 1 1.35217 83756 14 2 1.20790 22754 18 6 0.50158 15510 

7 2 0.75737 42706 14 3 0.90112 67039 18 7 0.35083 72382 

7 3 0.35270 69592 14 4 0.66176 37035 18 8 0.20773 53071 

8 1 1.42360 03060 14 5 0.45556 60500 18 9 0.06880 25682 

8 2 0.85222 48625 14 6 0.26729 70489 19 1 1.84448 15116 

8 3 0.47282 24949 14 7 0.08815 92141 19 2 1.37993 84915 

8 4 0.15251 43995 15 1 1.73591 34449 19 3 1.09945 30994 

9 1 1.48501 31622 15 2 1.24793 50823 19 4 0.88586 19615 

9 2 0.93229 74567 15 3 0.94768 90303 19 5 0.70661 14847 

9 3 0.57197 07829 1-5 4 0.71487 73983 19 6 0.54770 73710 

9 4 0.27452 59191 15 5 0.51570 10430 19 7 0.40164 22742 

10 1 1.53875 27308 15 6 0.33529 60639 19 8 0.26374 28909 

10 2 1.00135 70446 15 7 0.16529 85263 19 9 0.13072 48795 

10 3 0.65605 91057 16 1 1.76599 13931 20 1 1.86747 50598 

10 4 0.37576 46970 16 2 1.28474 42232 20 2 1.40760 40959 

10 5 0.12266 77523 16 3 0.99027 10960 20 3 1.13094 80522 

11 1 1.58643 63519 16 4 0.76316 67458 20 4 0.92098 17004 

11 2 1.06191 65201 16 5 0.57000 93557 20 5 0.74538 30058 

11 3 0.72883 94047 16 6 0.39622 27551 20 6 0.59029 69215 

11 4 0.46197 83072 16 7 0.23375 15785 20 7 0.44833 17532 

11 5 0.22489 08792 16 8 0.07728 74593 20 8 0.31493 32416 

12 1 1.62922 76399 17 1 1.79394 19809 20 9 0.18695 73647 

12 2 1.11573 21843 17 2 1.31878 19878 20 10 0.06199 62865 

12 3 0.79283 81991 17 3 1.02946 09889 

12 4 0.53684 30214 17 4 0.80738 49287 

(The i in Teichroew's table has been replaced by r.) 

For the values of r in the table, all entries should be preceded by a negative sign since the r's are for sample order statistics 
below the sample median. 

Example: 
E(Xi,\0) = -0.65606 

but 

£(X8,10) =+0.65606. 

Reprinted with permission. Copyright© by Institute of Mathematical Statistics. 

Ref. 2, are given to five decimal places and hence should cover nractically all needs. These are based on Eq. 

7-13 with i = r,k= I, and F{x) =/lexp(-xV2) dxlsjl^. 
Blom (Ref. 14) points out that a rather good approximation to the expected value of the rth normal sample 

order statistic may be determined from the relation 

7-12 
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£(x.) = F-'[(r-3/8)/(«+ 1/4)] (7-16) 
■ i 

where 
F{x) =/_>xp(-xV2)Jx/V2^. 

Expected values of the sample order statistics for the exponential, the Weibull, and the gamma distributions 
are tabulated by Harter in his Tables C2, C3, and C4, respectively, Ref. 2. The sample sizes covered for the 
exponential population are up through n = 120; for the Weibull and gamma parents the sample sizes are 
through n = 40. 

Appendix D of Harter's Volume 2 is devoted to tables for one- and two-order statistic estimators for 
exponential populations and include: 

1. Table Dl. Most Efficient Unbiased Point Estimators for o, Based on One- and Two-Order Statistics 
of a Sample from a One-Parameter Exponential Population 

2. Table D2. Unbiased Point Estimators for CT, Based on One-Order Statistic of a Censored Sample from 
a One-Parameter Population 

3. Table D3. Most Efficient Unbiased Point Estimators for Two Parameters, Based on Two-Order 
Statistics of a Two-Parameter Exponential Population 

4. Table D4. Most Effective (Efficient) Interval Estimators for a. Based on One-Order Statistic of a 
Sample from a One-Parameter Exponential Population. 

Appendix E of Ref. 2 gives tables of conditional ML estimators from singly censored samples. The coverage 
in particular includes: 

1. Table El. Weibull Population—Unbiasing Factors and Variances of Unbiased Estimators 
2. Table E2. Type I Extreme-Value Population*—Biases and Variances of Unbiased Estimators 
3. Table E3. Type II Extreme-Value Population—Unbiasing Factor, Variance, and Efficiency. 

Finally, Appendix F of Harter (Ref. 2) gives tables related to the asymptotic variances and covariances of 
M L estimators from doubly censored samples, and Appendix G covers some tables of results of Monte Carlo 
studies of ML estimators from doubly censored samples. 

Clearly, and in summary, the Army analyst should find Refs. 1 and 2 by Harter to be necessary aids in the 
analysis of sample order statistics and in related applications. 

Harter's tables in Refs. 1 and 2, although very extensive in nature, do not encompass all such requirements. 
Rather, there are many tables in Sarhan and Greenberg's book (Ref. 4) and elsewhere that will be required, 
depending on the particular appHcation. For example, suppose that one acquires singly or doubly truncated 
samples from a normal, exponential, Weibull, or gamma population and desires to estimate the mean and 
standard deviation using the BLUE. He will need the coefficients for the BLUE for the particular population 
he is sampling, as discussed initially in par. 7-5. With regard to this general type of problem, we give in Table 
7-3 the coefficients for the BLUE for a normal population, which often may be used in applications. These 
coefficients are given for sample sizes up through n = 10 and for singly and doubly truncated samples. The 
coefficients in Table 7-3—which are used with observed sample order statistics to give the minimum variance, 
unbiased linear estimators of the the normal population mean and sigma—are taken from Table II of Sarhan 
and Greenberg's paper (Ref. 15). For values of the sample size n through 20, see Table lOC.l of Sarhan and 
Greenberg's book (Ref. 4). In Table 7-3 ri is the number of smallest ordered sample values censored, and ri'is 
the number of largest sample observations censored, in the total sample size n. (In Table 7-3, there are 10 
columns for the x,.) The upper values listed in Table 7-3 are for estimation of the normal population mean; the 
lower entries are for coefficients to estimate the normal population sigma. Example 7-4 follows. 

Example 7-4: 
Ten experimental projectiles were fired at a 6-ft by 6-ft vertical target, and the impact points, or holes, as 

measured from the left-hand edge were at 11,26,41, 56, and 70 in. The gunner noted that one projectile missed 
the target on the left, and four rounds hit the ground on the right side of the target. Nevertheless, determine 
estimates of the mean horizontal point of impact, or center of impact (C of I), and the round-to-round 
standard deviation by assuming a normal distribution of impacts. 

*For the extreme-value model, fl[jc) = 1 — exp[—exp(—x//3)]. 7  11 
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Since five rounds missed the target, one on the left and four on the right, we have 

n = 10, ri = 1, and ri = 4. 

Referring to Table 7-3 for these conditions, we note the coefficients for the BLUE of the mean and standard 
deviation, so one may calculate immediately 

A = -0.0043(11) + 0.0665(26) + 0.0938(41) + 0.1179(56) + 0.7261(70) = 62.96 in. 

a = -0.7359(11) - 0.1719(26) - 0.0797(41) + 0.0031(56) + 0.9844(70) = 53.25 in. 

Note that for estimating the population mean, the largest distance to the right-hand shot on the target carries 
73% of the weight; consequently, the mean is estimated to be somewhat near the RHS of the target. For 
estimation of the normal population sigma, the second sample order statistic uses a relative weight of 0.74 
versus the sixth order statistic, which has a relative weight of 0.98; the ratio is 0.98/0.74 = 1.32. (The sum of the 
weights for sigma add to unity.) In any event we see that the normal population sigma is estimated to be quite 
large, or about 53/ (6 x 12) = 74% of the target width because so many rounds missed the target. The advantage 
of the order statistics is, of course, that the population parameters can still be estimated in an unbiased manner 
even though half the data are missing! 

As pointed out by Sarhan and Greenberg in Ref. 15, coefficients may be determined for values of ri and r2 
not given in their tables: 

"If the coefficients of an estimate are sought for a value of ri not given in the table, these can be obtained by 
interchanging the values of r i and ri and rearranging the observations in descending order. In such an event, 
the coefficients for the best linear systematic statistic of the mean will be identical with those given in the table, 
whereas those for the standard deviation will be numerically the same but with opposite sign.". 

With reference to coefficients of the BLUE for the exponential, Weibull, and other populations, the reader 
should consult Refs. 4 and 5. 

7-7    SOME RELATIONS AND USES OF ORDER STATISTICS WITH RESPECT TO 
ALLIED STATISTICAL PROBLEMS 

7-7.1     SOME PARTICULAR USES OF ORDER STATISTICS 

David (Ref. 16) discusses some particular uses of the sample order statistics in connection with system 
rehability, the problem of "data compression", some selection procedures, and double sampling. We will 
indicate some of these applications. 

Suppose we have a parallel system ofn components, which are alike and for which each component follows 
the same time-to-fail law with any general cumulative distribution function F(x). Thus if X(,) represents the 
time-to-fail of the /th component of the parallel system, the largest observation, or failure time, x„ also 
represents the failure time of the entire parallel system. Thus the cdf of the system will be given by Eq. 7-3 or 
[F(x)]", or the distribution of the largest component lifetime.* 

In a hke manner, the least sample value may be used to describe the lifetime of a series system of similar 
components for here the chance that all component lifetimes exceed any given failure time x is [1 — F{x)y as 
contrasted to Eq. 7-4**. Thus we are able to deduce the probability distributions of series and parallel system 
lifetimes. 

Furthermore, as pointed out by David in Ref. 16—even though the components may have different 
failure-time distributions, which we will represent here as P,(x) for the /th component—the lifetime probabil- 
ity distribution of the parallel system will be given by 

Pr[xn<x]= nPi{x)l (7-17) 
/ = 1 

*The "reliability" R{x) of the parallel system is R{x) = I — [F[x)]". 
**The quantity (Eq. 7-4) is the reliability of the series system. 

7-14 
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The reliability of the system is always one minus the cdf of failure times, i.e., one minus the quantity resulting 
from Eq. 7-17. 

Correspondingly, for the series system and different failure distributions for the n components, the overall 
system reliability still depends on the minimum failure time, or x\. Therefore, the series system rehability is 
given by the quantity 

Pr[xi > x] = 1 - n [1 - Pi{x)]. (7-18) 
i =1 

In recent years there has been considerable interest and much research on "robust" estimation techniques, 
and as David (Ref. 16) points out, the order statistics play a very prominent role here because the central 
observations in an ordered sample are much less liable to be affected by both any spurious observations and 
the assumptions than are the extreme sample values. As an example, for robust estimation of the population 
mean, the median and the midmean, or inner 50% sample values, are more robust than the sample average. 
The sample median is also an example of extreme "trimming" since it involves only the single middle sample 
value or the average of the two central values. 

We have already indicated the idea of "data compression" in effect by the analysis of data as in Example 7-4. 
In fact, there are many occasions for which one actually will have to deal with large samples, and yet he will not 
always want to carry out extensive computations with a large mass of data nor will he want to obtain quick 
estimates. Hence the analyst may desire to "compress" the data or use only a few of the inner ordered sample 
values. As David (Ref. 16) says, if only two sample order statistics are used to estimate the normal population 
mean, then from large sample theory such an estimate would be based on the 27th and 73rd percentiles. In 
other words, the optimal estimate of the normal population mean n* for large samples would be 

M* = [x(0.2708) + x(0.7292)]/2, (7-19) 

or, in other words, for a sample ofn = 100, one would take as the optimal estimate of the population mean the 
quantity 

M* ={X2& + X73)/2. 

David also discusses selection procedures in Ref. 15, in which one is interested in selecting the top k scorers 
in a certain test taken by n (greater than k) individuals or students, and he gives an example. Another selection 
procedure might involve just how well individuals selected because of their scores on a test .^ may be expected 
to perform on a test Y, say. Like the X scores, Yis also a random variable that presumably may be related to X 
in a Unear fashion. Thus in using the order statistics X f or the ^test scores, there is associated a 7value for the 
same individual, which we designate by Y\i]. This latter sample value for such a bivariate arrangement is known 
as a "concomitant" of the ith order statistic Xi, so branded by David. 

The double sampling scheme discussed by David (Ref. 16) also usually involves a concomitant variable, 
which is sampled to save time or because tests are expensive or destructive in nature, along with the primary 
variable of interest. The concomitant variables may also be related to the primary ^'s through a regression 
relation. 

7-7.2    STATISTICS OF EXTREMES 

For many years the primary development of statistical methods lay in the assumption of a normal 
population or universe, and investigators of the applicable theory directed their attention almost totally 
toward the axiom of the Gaussian curve. No doubt, much of this may be attributed to the fact that so many 
problems, for example, in agriculture, demanded immediate solutions, and the analysis of data, perhaps to 
obtain the best interpretations, had to move forward. However, many investigators, who acquired extensive 
knowledge with so-called "real world"data, began to note very clearly that often the normal assumption was 
not too trustworthy, and some even exclaimed that "normality was a myth". In perhaps a large number of 
applications, it was not easy to disprove normaUty. For some of the critical, nonnormal problems demanding 
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extensive analyses, it could be said that national interest had been aroused. One of these critical statistical 
problems had to do with the problem of floods. Floods, of course, represent extremal values or conditions and 
occur with very low frequency on a relative basis. One of our former presidents' water commission pointed out 
that, "However big floods get, there will always be a bigger one coming; so says one theory of extremes, and 
experience suggests it is true.". Thus for planning flood control projects there is a great deal of interest in the 
probability distribution of largest values or largest extremes, the distribution of the number of "exceedances" 
(occurrences equal to or larger than a certain large value), and the expected time interval between floods. 
Studies of the statistics of extremes were undertaken in a very thorough manner by Gumbel, who published a 
most comprehensive book on the general subject in 1958 (Ref. 17). Gumbel pointed out (Ref. 17, pp. 21-3) that 
for the distribution of repeated occurrences and the number of exceedances, one is interested in the 
probability that the exceedance happens for the first time at a number of trials equal to v, say. Thus the 
random variable v is an integer, unhmited to the right, and for the event to have happened for the first time at 
trial V, it must have failed for all of the preceding (v — 1) trials. Hence the probability of this is 

Pr[y]=[Fix)rXl-Fix)] (7-20) 

where F{x) is the chance of a value less than a particular (large) observation x. 
The mean number of trials to an occurrence or between occurrences, i.e., the "return period" T= E(v), is 

clearly given by 

Eiv) = T=l/[l-Fix)] (7-21) 

a rather self-evident result. The approximate standard deviation of the number of trials v is (Ref. 17) 

a(v)=(r'-7)'^'-r-l/2 (7-22) 

so that if [1 — F(x)] is small, indicating a large value of the occurrence x and hence a small upper tail area of the 
distribution, the return period is very large and the spread of the distribution becomes huge also. 

As pointed out by Gumbel (Ref. 17), the cumulative probability that the event happens before or at the vth 
trial is 

G(v) = l-[F(x)r«l-exp(-v/7) (7-23) 

if the return period Tis large. (A Tgreater than, say, 10 or 15 will even give a satisfactory approximation for 
practical purposes.) 

The cumulative probability G(T) for the exceedance to happen at or before the return period Tis 

(j(7) = l-(1-1/7)^«1-l/e= 0.63212. (7-24) 

Example 7-5: 
Given any general, but unknown, distribution of occurrences and some interest in records above the 99% 

point, or upper 1% tail area chance. Find the expected number of trials to a record or between records, the 
standard deviation of such a distribution, and the chance that at least 200 trials or observations will be 
required to reach another exceedance. 

In answer to the first question, the return period r is simply 

£(v) = r= 1/0.01 = 100. 

Moreover, the standard deviation is, for all intents and purposes, equal to the expected value, or that is, from 
Eq. 7-22, 100 - 0.5 = 99.5 for sigma. 

The chance that at least 200 trials will be experienced before a record or exceedance is approximately 

exp (-200/100) =0.14. 
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Gumbel's book contains a wealth of information on that phase of order statistics relating to extreme values, 
including statistical characteristics of extremes for an exponential distribution, the normal distribution, the 
lognormal distribution, the Cauchy-type distributions, and the Pareto distribution. Asymptotic or large 
sample characteristics of extreme values are most thoroughly covered. For large samples the largest observa- 
tion and the smallest observation,or even theith largest and the with smallest observation, are asymptotically 
distributed independently (Gumbel, Ref. 17, p. 110). Gumbel also covers the distributional properties of the 
range of samples and the relation of the range to the problem of tolerance limits of distributions that we 
discuss briefly in par. 7-7.5. In summary, Gumbel's Ref. 17 represents a book that may be highly useful for 
many Army applications of the theory of order statistics and extreme values. 

7-7.3    GUMBEL'S EXTREME VALUE DISTRIBUTION 
A very important and now widely used probability distribution is that of Gumbel (Ref. 17, p. 159); he has 

characterized it as the Type I asymptotic distribution for the smallest extreme value. Here we will have to limit 
our discussion for the sake of brevity to taking a rather general form of a "robust" distribution, or model of 
many different shapes, the well-known and widely used Weibull distribution, and transform it to the Gumbel 
extreme-value distribution. Let us consider for the moment the two-parameter Weibull time-to-fail probabil- 
ity distribution, for which the chance of observing a failure time Tless than t for an item on test is given by 

Pr[T<t] = Fit)=l-exp[-itldf],t>0 (7-25) 

where 
6 — characteristic life or scale parameter, 0 > 0 
P = shape parameter, ^8 > 0. 

Now, we transform the time-to-fail variable t and the shape parameter /3 as follows: 

X=lnT, (7-26) 

b = l/p. (7-27) 

These two transformations, when substituted in Eq. 7-25, yield the new cumulative probability distribution 

Prix <x] = G{x) = 1 - exp[-exp{(x - u)lb}] (7-28) 

where 
M = ln0. 

The distribution function (Eq. 7-28) is widely known as Gumbel's extreme-value distribution, and it is seen 
that if one studies the properties of the extreme-value distribution, he can also make inferences about the 
original two-parameter Weibull distribution. In fact, this is precisely what has been done by many investiga- 
tors delving into the theory of reliability and life testing. In this connection and as a source of some examples, 
we suggest that the reader might consult Mann, Schafer, and Singpurwalla's book on methods for the 
statistical analysis of reliability and life data (Ref. 18). Many uses are given there, as are also indicated by 
Gumbel (Ref. 17). 

Incidentally, the reader will note that for the original Weibull law of Eq. 7-25, the scale parameter is 
transformed to a "location" parameter in Eq. 7-28, and the shape parameter becomes a "scale" parameter. 

As the sample size n increases, the least and greatest sample values, or the "extremes", and even the lib 
largest and mth smallest values will approach limiting distributions. Thus when the extremes are transformed 
or otherwise standardized, they will approach a limiting distribution, which for a wide class of distributions 
converge to only about three types, including the Gumbel least extreme and greatest extreme value distribu- 
tions. In effect, therefore, we have an important class of parent populations, includingthe normal distribution 
(we illustrated only the Weibull), for which the limiting distribution is the doubly exponential extreme-value 
distributions. See Refs. 4, 5, 17, and 18 for details. _   . 
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7-7.4    ORDER STATISTICS AND OUTLYING OBSERVATIONS 

By referring to Chapter 3 of this handbook, it is seen that tests for outliers or discrepant values in a sample 
almost invariably turn out to be significance tests for certain of the sample order statistics, especially the 
largest an(l/or smallest few observations. Indeed, consider the largest, extreme residual Studentized ratio 
given by Eq. 3-32 or the Studentized deviation from the sample mean of the smallest observation in Eq. 3-34. 
These Studentized ratios involve the first and nth order statistics of the sample. 

The Studentized range of Eq. 3-37 or Eq. 7-2 is based on the least and greatest sample values, or the first and 
«th order statistics, and in a significance test they would be used to judge whether the sample extremes are too 
far apart, i.e., whether xi and x„are simultaneously outliers, perhaps. As was seen in Chapter 3, however, this 
may not be a completely satisfactory test, for either or both of the sample extremes could be outliers. On the 
other hand, if faced with such a situation, we could ignore the least and greatest sample values of the sample 
and use the remaining order statistics to estimate, for example, the population mean and standard deviation 
with quite acceptable efficiency. That is to say, we could censor xi and x„ from consideration and use the order 
statistic approach instead. See Example 7-6. 

The Studentized extreme deviate tests, the Studentized range, the Dixon sample criteria of par. 3-5.2, the 
Tietjen-Moore tests of par. 3-5.5.2, the Rosner and Hawkins multiple outlier detection procedures of par. 
3-5.5.3, and other outlier screening procedures of Chapter 3 all depend in some way on the use of specific order 
statistics or significance tests. In fact, the outlier detection techniques should be quite sensitive to shifts in level 
or scale for many of the sample observations, so that aberrant values will be branded. However, it is usually 
such shifts in level or scale that lead to nonhomogeneous or nonrepresentative samples drawn from some 
population(s) of which we are trying to learn the properties. Thus the aberrant sample values or outliers will 
place our estimate of the population mean in the wrong position, or they will inflate the estimate of the 
population standard deviation, etc., thereby leading to nonrobust or poor estimators fraught with biases. In 
fact, it is interesting to consider again the data of Example 3-5 for the 15 vertical semidiameter measurements 
of the planet Venus. 

Example 7-6: 
Return to the data of Example 3-5 and reconsider the decision to reject the least sample value of —1.40 and 

the largest value of 1.01 especially since the Tietjen-Moore tests rejected both values, the Rosner test did not, 
and the Hawkins test found the two values to be significant. Since we now may use an order statistic analysis to 
estimate the normal population mean and sigma, we can compare estimators for the original sample, the 
remaining sample after rejection of the values -1.40 and l.OI, and the estimates of the universe mean and 
sigma based on the use of sample order statistics X2 through x„-i. 

For the original sample of 15 observations, the mean x and standard deviation s are 

x = 0.018 and ^=0.551 

so that perhaps we could be disturbed by the size ofs. Hence if we were to reject the "outUers"—1.40 and 1.01 
and then determine a new mean and sigma from the remaining 13 observations of the sample, we would get 

3c = 0.051 and 5 =0.322 

which gives an increase of 183% in mean value and a decrease of 42% in the standard deviation! Finally, if we 
were to estimate the normal population mean and sigma by using the sample order statistics Xi through xu, 
and thus censor the —1.40 and 1.01 from any consideration, our estimated mean and standard deviation 
become 

3c = 0.056 and 5 = 0.427.* 

*For the sample of size n = 15 and xi and xis censored, the coefficients to calculate the mean and sigma were taken from Table IOC. 1, 
p. 232, of Sarhan and Greenberg's book (Ref. 4). 
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We note in this connection that the trimmed and censored samples give equal estimates of the population 
mean but that the trimmed sample gives a smaller sigma (0.322) than does the censored sample (0.427). 
Obviously, it cannot be said that the trimmed sample would give an unbiased estimate of the scale parameter 
although it might be expected to give an unbiased mean. On the other hand, the censored sample does indeed 
give unbiased, minimum variance estimates of both the population mean and sigma even though the least and 
greatest sample values were not included. Therefore, just in case something may have happened to the sample 
values, one would tend to place more confidence in the censored sample theory and to take 0.056 as the mean 
and 0.427 as the proper sigma. 

7-7.5    UNIVARIATE TOLERANCE INTERVALS 

Whereas many applications of statistical methods call for the estimation of population parameters and the 
determination of confidence bounds on the true unknown parameters, such as the mean and standard 
deviation, another very useful, and often more important, problem is that of estimating with high confidence 
the fraction or percentage of a population (distribution) within two Umits or bounds. For the ordered sample 
statistics, for example, it seems natural to estimate the fraction of the population sampled between the highest 
and lowest values of the sample, i.e., the use of the range as a "tolerance limit". In this connection, we have that 
the cumulative probability up to the least sample value xi is F(xi), and the cumulative population probability 
up through the largest sample value Xn is F(x„). Hence the difference [F(x„) - F(x,)] is actually the fraction of 
the sampled population bounded by the sample range. Therefore, we might consider two functions of the 
sample values—such as the end points of the range x i and x„ or the two sample order statistics Xr and Xs with 
1 < r < 5 < «—and try to discover just what probability statements can be made about the fraction of the 
sampled population between such limits. This type of statistical problem was studied initially by Wilks (Ref. 
19) who showed that, for any fraction y of the population between the range limits and confidence p, the 
following probability statement holds 

13 = Pr{[F(xn) - F{xi)] > 7} = 1 - /^ (" - K2)*    [or p = h-y (2,« - 1)] 
(7-29) 

= 2 ('?)7'(l-7)""'* 

where we see that the chance of including various fractions of the sampled population between range limits 
can be expressed in terms of the incomplete beta function ratio or a binomial sum. In fact, Wilks (Ref. 19) also 
showed that for Xr and Xs, we have 

13 = Pr{[F{xs) - F(x.)] > y} = I - I^is - r,n - s + r + I) , r<s 
(7-30) 

= T CdyV-y)""- 
1=0 

Wilks' results (Ref. 19) amount to a very fine accomplishment or "breakthrough" indeed because they 
establish that no matter what the distributional form of the continuous population sampled, one can 
nevertheless make a probability or confidence statement about the fraction of the population that is included 
between either the range limits of the sample or between any two sample order statistics! Alternatively, one 
may determine in advance the sample size required to guarantee that at least a certain fraction of the 
population will be included between the sample range limits with a given degree of assurance . Thus it is for 
such reasons that Wilks' resuhs (Ref. 19) are referred to as "distribution-free tolerance limits". In fact, before 
this result was obtained, one usually had to be content with just placing confidence bounds on each parameter 
of some assumed distribution. Finally, the population tolerance interval statements covered by Eqs. 7-29 and 
7-30 turn out to be very simple mathematically. 

♦Forany continuous general distribution, the central area W = F[x„) - F{x]) h&s a pdi g(W) - n(n - l)W"~\\ - W). 
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For the tolerance interval covered by the sample range limits ixi,x„), it is easily seen that the last RHS of 
Eq. 7-29 reduces to a very simple relation between the confidence level or probability (3, the fraction of the 
population covered by the range limits or y, and the sample size n. This simple relation for any continuous 
distribution is 

P=\~ny"-'+in-l)y\ (7-31) 

Thus if we know any two of the parameters, the other or unknown value may be found with the sample size n 
by cut-and-try or iteration, or building a table. 

Eqs. 7-29 and 7-30 may be evaluated by using AMCP 706-109, Tables of the Cumulative Binomial 
Probabilities (Ref. 20), i.e., by the relations 

P = P{2, n,l~y)     for Eq. 7-29 (7-32) 

and 

l3 = Pin-s + r + l,n,l -y)     for Eq. 7-30. (7-33) 

In fact, it is very easy to use the tables of Ref. 20 for numerous such calculations if desired. 
In the statistical literature there are some graphs and tables the analyst may use to advantage concerning the 

applied problems of "distribution-free" or "nonparametric" tolerance hmits. Gumbel (Ref. 17) on his Graph 
3.2.4 gives the relation among the sample size, the confidence level, and the fraction of the population outside 
the sample range limits. Gumbel uses a logarithmic scale for the sample size and the fraction outside range 
limits so that the confidence or probability curves are straight hnes. 

Murphy (Ref. 21) gives three useful graphs—one for each of the confidence levels of 90%, 95%, and 
99%—and the corresponding relations between the amounts of population "coverage", the sample size, and 
the number AM of intervals or "blocks", which are excluded from tolerance region runs. The term coverage is 
used to define the amount or fraction of the population sampled between any two order statistics. For 
example, for the sample range the fraction of population coverage would be [F{x„) - Fixi)], etc. With regard 
to the definition of the term "block", we first think of the n sample order statistics as being plotted along the 
X-axis so that the sample space is then divided into (n + 1) intervals or blocks. Therefore, it can be said that the 
term block has been used to extend or generalize this concept to two or more dimensions (Murphy, Ref. 21). 
Now, if we think of r as referring to the rth smallest sample order statistic x, and 5 as referring to the 5th largest 
order statistic Xs, the pdf for the central area of the distribution fF given by 

W=F(Xn-sn)- F{Xr) (7-34) 

is 
T{n + 1) 

^^^ ^ vt 4.urt   .^"""^^ ~ ^ (^-35) r(n — m + I) r(m) 

where 

r() — complete gamma function of quantity in parentheses (7-36) 
m = r + s. 

Thus we see that m is the total number of blocks below the rth smallest and above the sth largest observations 
that are excluded. For the sample range, therefore, w = 2, and if we deal with the next to the largest and next to 
the smallest values, we would have m=4, etc. Murphy (Ref. 21) gives some graphs of the coverage (Eq. 7-34) 
on his Figs. 1,2, and 3, which we reproduce as Figs. 7-1, 7-2, and 7-3. Note that the sample sizes run from n = 1 
to 500; there are three confidence, probability, or "tolerance"levels of fi, i.e., p = 0.90,0.95, and 0.99; and the 
ordinate of each figure is the fraction of population coverage y. The number m of excluded intervals or blocks 
runs from the curve w = 1 for the sample range end points to m = 100—a very wide coverage indeed! 
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In addition to the curves of Murphy (Ref. 21) for the tolerance limits problem, Somerville (Ref. 22) later 
published two very useful tables that are quite compact and hence are included here as Tables 7-4 and 7-5. 
Table 7-4 is for fractional population coverages, which are fixed at 0.50, 0.75, 0.90, 0.95, and 0.99, for 
confidence levels P equal to precisely the same values as for y, for sample sizes n = 50(5)100(10)150(20) 
170(30)2p0( 100) 1000 and v/ith m = r + s given by the values listed in the body of Table 7-4. In using the sample 
range limits, for example, one would select only those particular values of m within the table that are Hsted as 
m - 2. 

Within the body of the table. Table 7-5 gives the values of the confidence or probabihty ;8 that will guarantee 
at least the amount of population coverage y = 0.50, 0.75, 0.90, 0.95, or 0.99 and for sample sizes n = 
3(1)15(2)17(1)20(5)30(10)100. Example 7-7 illustrates the use of the referenced figures and tables. 

Example 7-7: 

Given a sample of size 25, which has been selected at random from a population believed to be a gamma 
distribution with perhaps a rather long tail to the right. Without estimating any parameters of the population, 
it is very important to know just how much of the sampled universe could be included within sample range 
limits with 90% assurance. How large a sample would be necessary to state with 90% assurance that at least 
95% of the sampled population would be included within range limits? 

Of course, tolerance limits may be determined no matter what type of population is sampled, provided it is 
continuous—a reasonable assumption in this case. For the answer to the first question, it is easily seen by 
examining Fig. 7-1 that for « = 25 and the m.= 2 curve, one can state with 90% assurance that at least about 
85% of the population would fall within range limits. 

To answer the second question, one may examine Fig. 7-1 for 90% assurance and note that the curve for 
m =2 intersects the 95% coverage line of a distribution at about n = 77. Moreover, a look at Table 7-5 for y = 
95% will show that a sample size of « = 80 will provide 91 % assurance that the sample range limits will cover at 
least 95%, of the sampled population. Hence just a trifle under « = 80 is needed, so that about n = 78 would be 
sufficient. (If desired, one could nearly infer this result from Table 7-4.) 

It is perhaps of some further interest to this example that we add the additional knowledge which states that 
if one desires to cover 99% of the population with the observed sample range end points and also with 90% 
confidence, a sample of size n = 400 would be required (Table 7-4), indicating the "cost" in terms of sample 
size. 

With regard to the use of Wilks' tolerance limits for general populations, a very natural and important 
question to ask would be, "What amount of information is lost or what 'inflated'sample size is suffered, due to 
the 'robust' assumption of sampling any 'continuous distribution'?". Thus if one knows quite well the type of 
population he is samphng, cannot a j ustifiable gain in information or decrease in sample size be attained? The 
answer to such a question is very decidedly "yes"—quite an increase in information or a decrease in sample size 
can be achieved. In fact, there can also be quite a gain in flexibility because for the normal distribution, for 
example, for just about any sample size one can provide confidence limits based on the sample mean and 
standard deviation, or the sample range, which will include at least some fraction of the normal population for 
future samples and also for any given level of confidence. This particular problem for sampling a normal 
universe has been studied by, for example, Bowker (Refs. 23 and 24), who used the sample standard deviation, 
and by Mitra (Ref. 25), who used the sample range instead of the sample sigma. In view of the simphcity of the 
sample range and the fact that we have used it previously in connection with Wilks' tolerance limits for general 
distributions, we will limit our discussion to that sample statistic, i.e., its end points. Table 7-6 is taken from 
the paper of Mhra (Ref. 25) and gives, in the body of the table, values of A: for which tolerance limits based on 
(x - kw) and (x + kw) for the sampled normal population will include at least y = 0.75,0.90,0.95, or 0.99 of 
the normal universe with confidence levels of ^ = 0.75,0.90,0.95, or 0.99. Note in particular and especially for 
small sample sizes that the distance between tolerance limits in Table 7-6 can be very wide indeed, whereas in 
our account of Wilks' general distribution tolerance Hmits, the bounds are the sample range. Thus for 
comparative purposes one would have to attain a value of k that equals one-half in order to have the same 
width limits. Nevertheless, we recall from Example 7-7 that a sample size of « = 77 would be required to give 
sample range end points that would cover 95% of the general population with 90% assurance. 
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TABLE 7-5 

CONFIDENCE p WITH WHICH WE MAY ASSERT THAT 100 7 PERCENT OF THE 
POPULATION LIES BETWEEN THE 5th LARGEST AND rth SMALLEST OF A 

RANDOM SAMPLE OF n FROM THAT POPULATION 
(CONTINUOUS DISTRIBUTION ASSUMED) (Ref. 22) 

n 7=0.50 7=0.75 7=0.90 7=0.95 7=0.99 n 7=0.75 7=0.90 7=0.95 7=0.99 

3 0.50 0.16 0.03 0.01 0.00 17 0.95 0.52 0.21 0.01 
4 0.69 0.26 0.05 0.01 0.00 18 0.96 0.55 0.22 0.01 
5 0.81 0.37 0.08 0.02 0.00 19 0.97 0.58 0.25 0.02 
6 0.89 0.47 0.11 0.03 0.00 20 0.98 0.61 0.26 0.02 
7 0.94 0.56 0.15 0.04 0.00 25 0.99 0.73 0.36 0.03 
8 0.96 0.63 0.19 0.06 0.00 30 1.00 0.82 0.45 0.04 
9 0.98 0.70 0.23 0.07 0.00 40 0.92 0.60 0.06 
10 0.99 0.76 0.26 0.09 0.00 50 0.97 0.72 0.09 
11 0.99 0.80 0.30 0.10 0.01 60 0.99 0.81 0.12 
12 1.00- 0.84 0.34 0.12 0.01 70 0.99 0.87 0.16 
13 0.87 0.38 0.14 0.01 80 1.00- 0.91 0.19 
14 0.90 0.42 0.15 0.01 90 0.94 0.23 
15 0.92 

0.94 
0.45 
0.49 

0.17 
0.19 

0.01 
0.01 

100 0.96 0.26 

X, — rth smallest sample observation 
Xs = sth largest sample observation 

Reprinted with permission. Copyright © by Institute of Mathematical Statistics. 

Clearly, the value of the sample size sought is well beyond the highest one, n = 20, given in Table 7-6 for the 
middle column of the section for /3 = 0.95. However, one can, by cut-and-try methods, use jointly Eqs. 2.1 and 
2.2 of Mitra's paper (Ref. 25) along with Harter's tables of the percentage points of the range (Ref. 1, p. 374) to 
see that a sample size of no more than about « = 50 is required when it is known that the population sampled is 
indeed a normal universe. Thus it can be said that exact knowledge of the particular form of the population 
does save very significantly insofar as the sample size "cost"is concerned. Similar computations would further 
clarify the general subject and no doubt would have practical value. 

Although in our account of tolerance intervals for the normal population, we have used only the sample 
range by way of illustration, we should point out that Bowker (Ref. 23, pp. 102-7, Table 2.1) gives very 
extensive coverage for the use of the sample standard deviation. In fact, his sample sizes go up through the 
value n — 1000, and a reference Une for « = oo also is included at the bottom of the table. Therefore, we 
recommend use of Bowker's Table 2.1 as practical applications demand. 

We have covered only the use of univariate tolerance intervals although for some applications the analyst 
might have the need to apply multivariate tolerance intervals. For such applications see Sarhan and 
Greenberg (Ref. 4, p. 141) or Murphy (Ref. 21). 

Finally, another important use of tolerance intervals relates to the determination of confidence intervals for 
the various percentage points of distributions—see, for example, Sarhan and Greenberg (Ref. 4, p. 137). For 
such applications confidence intervals for the lower percentage points are based on the least sample value and 
some rth smallest observation, and confidence intervals for the upper percentage points use the largest sample 
observation and the .sth largest one (see Ref. 4). As is well-known, the percentage points of distributions are 
often referred to as "quantiles". 
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TABLE 7-6 

TOLERANCE FACTORS FOR NORMAL DISTRIBUTIONS (Ref. 25) 

Factors k such that'the probability is /? that at lease a proportion y of the distribution will be 
included between x ± kw where x is the mean and w is the range in a sample of size n. 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

/3 = 0.75 

0.75 0.90 0.95 0.99 0.999 

3.181 
1.312 
0.916 
0.744 
0.647 
0.584 
0.540 
0.507 
0.481 
0.460 
0.442 
0.428 
0.415 
0.405 
0.395 
0.386 
0.379 
0.372 
0.366 

4.456 
1.857 
1.301 
1.060 
0.923 
0.834 
0.771 
0.723 
0.687 
0.657 
0.632 
0.611 
0.594 
0.578 
0.565 
0.553 
0.542 
0.532 
0.523 

5.243 
2.197 
1.544 
1.259 
1.097 
0.992 
0.917 
0.861 
0.817 
0.782 
0.753 
0.728 
0.707 
0.689 
0.673 
0.658 
0.645 
0.634 
0.623 

6.740 
2.850 
2.012 
1.644 
1.435 
1.299 
1.202 
1.129 
1.072 
1.026 
0.988 
0.956 
0.928 
0.904 
0.883 
0.864 
0.848 
0.833 
0.819 

8.429 
3.591 
2.546 
2.086 
1.824 
1.652 
1.530 
1.438 
1.366 
1.308 
1.260 
1.219 
1.184 
1.154 
1.127 
1.103 
1.082 
1.063 
1.045 

P = 0.90 

0.75 0.90 0.95 0.99 0.999 

8.065 
2.169 
1.321 
1.003 
0.837 
0.735 
0.666 
0.615 
0.577 
0.546 
0.521 
0.501 
0.483 
0.408 
0.455 
0.443 
0.433 
0.424 
0.415 

11.298 
3.069 
1.877 
1.428 
1.194 
1.050 
0.951 
0.879 
0.824 
0.780 
0.745 
0.715 
0.690 
0.669 
0.650 
0.633 
0.619 
0.605 
0.594 

13.294 
3.631 
2.227 
1.697 
1.420 
1.248 
1.131 
1.046 
0.981 
0.929 
0.887 
0.852 
0.822 
0.797 
0.774 
0.755 
0.737 
0.721 
0.707 

17.090 
4.711 
2.902 
2.216 
1.857 
1.635 
1.483 
1.372 
1.286 
1.219 
1.164 
1.118 
1.079 
1.046 
1.016 
0.991 
0.968 
0.947 
0.929 

21.374 
5.936 
3.672 
2.812 
2.360 
2.080 
1.888 
1.747 
1.639 
1.554 
1.484 
1.426 
1.377 
1.334 
1.297 
1.265 
1.235 
1.209 
1.186 

V 
P = 0.95 13 = 0.99 

"\ 0.75 0.90 0.95 0.99 0.999 0.75 0.90 0.95 0.99 0.999 

2 16.158 22.635 26.634 34.238 42.821 80.972 113.429 133.469 171.576 214.588 
3 3.109 4.399 5.206 6.752 8.509 7.034 9.951 11.776 15.275 19.249 
4 1.704 2.422 2.873 3.744 4.737 2.978 4.233 5.021 6.543 8.279 
5 1.228 1.749 2.078 2.715 3.444 1.903 2.709 3.219 4.205 5.335 
6 0.995 1.418 1.686 2.206 2.803 1.433 2.042 2.429 3.178 4.038 
7 0.856 1.222 1.453 1.903 2.420 1.176 1.678 1.996 2.615 3.325 
8 0.764 1.090 1.297 1.700 2.165 1.015 1.449 1.724 2.261 2.878 
9 0.698 0.997 1.187 1.556 1.981 0.903 1.290 1.536 2.014 2.565 

10 0.648 0.926 1.103 1.446 1.843 0.823 1.176 1.400 1.836 2.340 
11 0.610 0.871 1.037 1.361 1.735 0.762 1.088 1.296 1.701 2.168 
12 0.578 0.827 0.985 1.292 1.648 0.714 1.020 1.215 1.594 2.033 
13 0.553 0.790 0.940 1.235 1.575 0.675 0.964 1.148 1.507 1.922 
14 0.531 0.759 0.904 1.187 1.514 0.642 0.917 1.093 1.435 1.830 
15 0.513 0.733 0.873 1.146 1.462 0.614 0.878 1.046 1.373 1.753 
16 0.497 0.710 0.845 1.110 1.417 0.591 0.845 1.007 1.322 1.687 
17 0.482 0.690 0.822 1.109 1.377 0.571 0.816 0.972 1.277 1.630 
18 0.470 0.672 0.801 1.051 1.342 0.553 0.790 0.941 1.236 1.578 
19 0.459 0.656 0.782 1.027 1.311 0.538 0.768 0.916 1.203 1.535 
20 0.449 0.642 0.765 1.005 1.282 0.524 0.743 0.892 1.171 1.495 

Reprinted with permission. Copyright ©by the American Statistical Association. 
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7-8    ORDER STATISTICS AND THE RELATED FIELDS OF RELIABILITY AND LIFE 
TESTING 

Perhaps it could be said that one of the most important uses of sample order statistics is their unique 
application to the fields of reliability and life testing. We have mentioned that the extensive applications of 
order statistics to the Army's problems in system reliability and the life testing of items represent very major 
activities, and we cannot delve into them profoundly in this particular chapter. Nevertheless, we do point out 
that for the practicing Army analyst, a rather large number of important topics on the use of order statistics in 
connection with reliability of systems and confidence intervals on system reliability, life testing of items, 
reliability growth concepts, the availability of military systems to start a mission, and the maintainabiUty of 
systems are covered in Chapter 21 of Ref. 26. 

The two primary probability distributions employed in Chapter 21 of Ref. 26 are the exponential and the 
Weibull distributions, and sample order statistics are used extensively with both assumptions. For the 
purposes of this chapter and handbook, there are one or two particular concepts we will review and highlight. 
These relate to the exponential distribution for time-to-fail type data. We start with the definition of the 
exponential time-to-fail pdf, which is 

fit) = \exp(-kt) = {\/e)exp(-t/e) (7-37) 

where 
X = 1 / 0 = failure rate 
6 = mean time to fail for the items. 

The cdf for Eq. 7-37 is 

F{t) = l-exp{-t/e). (7-38) 

The exponential distribution (Eq. 7-37 or Eq. 7-38) has a mean value = ljk = d,a variance = 1/ k^ = d^, with a 
skewness coefficient of 2 and a kurtosis parameter of 9. 

The times to fail of « items, components, systems, etc., placed on test or put into service may be Usted as 

/i < /2 < /3 < • • •   < ?r < • • •   < /« 

where, as indicated, the testing of items may be truncated at the rth failure; otherwise the test could be 
truncated at a preset or required time. 

For the test that is truncated at the rth failure time tr (or even continued to r = n), the ML, minimum 
variance, unbiased estimator 6 of the mean time to fail 6 is 

■*■"  d = [iu + {n-r)tr\lr. (7-39) 

One notes that when r = n in Eq. 7-39, the estimate of the mean time to fail becomes the "usual" one, or 

d= i ti/n. (7-40) 

If both sides of Eq. 7-39 are multipUed by r, the result rd is known as the "total time on test" and is a key 
concept or characteristic in life testing. 

The quantity 

2rdie = x\2r) (7-41) 

i.e., the quantity follows the chi-square distribution with 2r df so that confidence bounds are easily placed on 
the unknown mean time-to-fail parameter 6 or on the reHability for some mission time. 
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Adjacent time differences are independent, and each quantity 

2in-r + 1) (tr - tr-x)/ e = x\2),   r = 2,..., n (7-42) 

follows the chi-square distribution with 2 df, i.e., all have an exponential distribution. 
The rth ordered random time /, is the waiting time to obtain the rth failure, and its mean and variance are, 

respectively, 

E{tr) = di^{\l{n-i+\)\ (7-43) 

and 

Var(^) = 0'.2[l/(n-/+!)]' (7-44) 

so that the approximate chi-square distribution of par. 4-4.5 may be fitted, or better still, the exact distribution 
given by Epstein and Sobel (Ref. 27). 

Other details of interest may be found in Chapter 21 of Ref. 26, for example, or in Mann, Schafer, and 
Singpurwalla (Ref. 18). A very complete account of the Weibull distribution may be found in Ref. 18. 

For time truncation instead of truncation at a preset number of failures r, one can consider that in effect r 
failures have taken place at the truncation time /oand hence that the ML estimate of the mean time to fail is 
simply 6 = nto/r. (See, for example, Ref. 18.) 

A number of examples using these principles can be found in Chapter 21 of Ref. 26. In particular, we 
recommend that interested readers review Examples 21 -8 and 21 -9 of Chapter 21, Ref. 26, and Example 21-10, 
which applies to the two-parameter negative exponential distribution. 

This gives sufficient background for us to turn to the idea of using order statistics in connection with target 
firings and analyses as they are of much value for such problems. 

7-9   THE RADIAL ORDER STATISTICS AND THEIR APPLICATIONS TO TARGET 
ANALYSES 

The analyses of target firings represent some of the prime Army uses of statistics, especially the need for 
sample order statistics. In such fields of application of statistical methods, we are either dealing with the fall of 
shot or impacts on the ground; otherwise often we have the problem of analyzing the two-way distribution of 
impact points or holes from a test involving firings at a vertical target. Moreover, it invariably happens that 
some of the shots will miss the target; therefore, this problem complicates the statistical analyses of estimation 
of the parameters of the overall two-dimensional distribution. We usually assume the bivariate normal 
distribution for impacts. Moreover, in the sequel we will assume that the pattern of shots is "circular", i.e., the 
standard deviations in the x-and j'-directions are equal since this assumption applies to a very large number of 
target firings—e.g., rifles, many rockets, and other weapons—but not artillery for which the pattern elongates 
in the range direction. Hence the bivariate normal distribution describing the impact points will have the 
density 

fix,y) = \_l/i27ra')]exp[-ix'+y')/i2o')]- (7-45) 

where x and y are the horizontal and vertical directions, or range and deflection directions, respectively, and 
each ranges over infinite limits. 

If we take the radial distance to any general impact assuming the center of impact is at the origin, we are 
dealing with the (radial) error r or 

r = VF+y (7-46) 
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for which the radial distance r ranges over the limits of zero to infinity, i.e., only positive values. Hence if one 
applies the usual polar transformation to Eq. 7-45 and integrates out the angular variable, it is well-known 
that the result is the radial density given by 

/(r)=(r/a^)exp[-rV(2a')]. (7-47) 

The density represented by Eq. 7-47 often is referred to as the Rayleigh pdf although it is clearly the chi-square 
density function with 2 df. We also know that if one sets 

r^l2 = t (7-48) 

then Eq. 7-47 becomes the well-known exponential density function 

/(0 = (l/a')exp(-f/a').* (7-49) 

One sees, therefore, that if the C of I of the rounds coincide with the origin, one-half the squares of the radial 
distances or "errors" to the impact points of the bivariate circular normal distribution are distributed in an 
exponential fashion, and they can be ordered in magnitude if desired for analytical studies. In fact, if some of 
the rounds miss a circular target, they may be censored and the parameter of the exponential, and hence the 
circular normal distribution may be estimated by the use of Eq. 7-39. Moreover, if large errors of measure- 
ment are associated with the larger miss distances, as is often the case, or if the miss distances themselves 
perhaps follow a bimodal type of distribution due to the mixture of two different populations, the shots with 
the largest radial errors may be censored or truncated, and sample order statistic theory may be applied for 
estimation of the parameter. In fact, as we will see, the parameter a^ may be estimated from only one of the 
radial errors or some number of the inner ones without biasing results. 

Coon (Ref. 28) has shown that for the ordered radial errors represented as 

n < /-a < • • • , r, < • • • < r„ (7-50) 

then the mean Eiri) and the second moment E{r]) about the origin of the /th order radial error are as follows: 

k 

E{r^ = J^a'iU-U)CT)- ^~^]  ,    ^„, (7-51) 

and 

{n-i + k+ \y 

^    Eir'd = 2o''i ( .^,   ,   ,) = 2a^ S ( ^|. (7-52) 
k=o\n — I + k + II k=\\n — I + kl 

The variance of the /th order radial distance therefore is given by 

o\r,) = Vavir.) = Eirj) - [E{r,)f (7-53) 

and the standard deviation of r, is the square root of Eq. 7-53. 
One would expect that the ordered radial deviations would be correlated so that a computation of the 

covariances in addition to the variances also would be of interest. In this connection Coon (Ref. 28) also has 
calculated the covariances, and we refer interested readers to her manuscript because such equations are 
rather complex. 

For possible applications, we give in Table 7-7 the means and standard deviations of the radial order 
statistics from Coon's manuscript (Ref. 28) for samples of size through n = 20. We also reproduce her Table II 
as Table 7-8, which gives the variances and covariances of the ordered radii through the sample of size n = \0. 

*Note that a^ = 6 and is to be estimated. Moreover, t is exponential, but r is not. 
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TABLE 7-7 

MEANS AND STANDARD DEVIATIONS OF THE ORDERED RADII IN A SAMPLE OF n FROM 
A CIRCULAR NORMAL DISTRIBUTION (Ref. 28) 

(ALL ENTRIES ARE IN UNITS OF a) 
n       ' i Mean Std. Dev. n i Mean Std. Dev. 

1 0.88623 0.46325 
2 1.62040 0.61180 

1 0.72360 0.37824 
2 L21148 0.44608 
3 L82486 0.58012 

1 0.62666 0.32757 
2 L01443 0.37093 
3 L40852 0.42747 
4 L96364 0.55747 

1 0.56050 0.29299 
2 0.89129 0.32497 
3 L19915 0.35B75 
4 L54810 0.41236 
5 2.06753 0.54037 

1 0.51166 0.26746 
2 0.80468 0.29296 
3 1.06451 0.31647 
4 1.33379 0.34785 
5 1.65526 0.40014 
6 2.14998 0.52686 

1 0.47371 0.24762 
2 0.73939 0.26897 
3 0.96789 0.28678 
4 1.19334 0.30819 
5 1.43913 0.33856 
6 1.74171 0.39007 
7 2.21803 0.51582 

1 0.44311 0.23163 
2 0.68787 0.25009 
3 0.89396 0.26435 
4 , 1.09110 0.28028 
5 1.29559 0.30084 
6 1.52525 0.33062 
7 1.81386 0.38159 
8 ■    2.27576 0.50657 

10 

11 

12 

1 0.41777 0.21838 
2 0.64585 0.23473 
3 0.83495 0.24658 
4 1.01199 0.25911 
5 1.18997 0.27428 
6 1.38008 0.29437 
7 1.59784 0.32378 
8 1.87558 0.37433 
9 2.32579 0.49865 

1 0.39633 0.20817 
2 0.61072 0.22191 
3 0.78637 0.23203 
4 0.94828 0.24228 
5 1.10756 0.25412 
6 1.27239 0.26889 
7 1.45187 0.28868 
8 1.66040 0.31780 
9 1.92938 0.36801 
10 2.36983 0.49177 

1 0.37789 0.19753 
2 ■ 0.58078 0.21099 
3 0.74546 0.21982 
4 0.89546 0.22844 
5 1.04071 0.23805 
6 1.18778 0.24954 
7 1.34289 0.26406 
8 1.51415 0.28363 
9 1.71525 0.31253 
10 1.97696 0.36245 
11 2.40912 0.48570 

1 0.36180 0.18912 
2 0.55485 0.20155 
3 0.71038 0.20938 
4 0.85071 0.21679 
5 0.98497 0.22482 
6 1.11876 0.23410 
7 1.25680 0.24537 
8 1.40439 0.25972 
9 1.56903 0.27912 
10 1.76399 0.30783 
11 2.01956 0.35750 
12 2.44453 0.48029 

(cont'd on next page) 
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n         I Mean Ma. uev. 

13   1 0.34761 0.18170 
2 0.53213 0.19327 
3 0.67986 0.20031 
4 0.81214 0.20679 
5 0.93750 0.21365 
6 1.06092 0.22137 

.  7 1.18624 0.23046 
8 1.31728 0.24158 
9 1.45882 0.25579 
10 1.61800 0.27507 
11 1.80779 0.30361 
12 2.05806 0.35305 
13 2.47674 0.47543 

14   1 0.33496 0.17509 
2 0.51199 0.18594 
3 0.65297 0.19234 
4 0.77843 0.19809 
5 0.89641 0.20404 
6 1.01146 0.21061 
7 1.12686 0.21816 
8 1.24561 0.22712 
9 1.37104 0.23813 
10 1.50759 0.25223 

•  11  1.66217 0.27138 
12 1.84750 0.29979 
13 2.09316 0.34903 
14 2.50624 0.47102 

15   1 0.32360 0.16916 
2 0.49397 0.17939 
3 0.62096 0.18526 
4 0.74863 0.19041 
5 0.86037 0.19566 
6 0.96849 0.20134 
7 1.07591 0.20775 
8 1.18509 0.21518 
9 1.29856 0.22404 
10 1.41936 0.23497 
11 1.55171 0.24898 
12 1.70234 0.26803 
13 1.88379 0.29631 
14 2.12537 0.34536 
15 2.53345 0.46700 

TABLE 7-7 (cont'd) 
n 

16 

17 

18 

/ Mean Std. Dev. 

1 0.31333 0.16378 
2 0.47774 0.17348 
3 0.60760 0.17891 
4 0.72204 0.18358 

5 0.82841 0.18825 
6 0.93069 0.19325 
7 1.03151 0.19878 

8 1.13300 0.20508 
9 1.23718 0.21242 
10 1.34630 0.22119 

11 1.46320 0.23206 
12 1.59194 0.24600 
13 1.73914 0.26495 
14 1.91717 0.29311 
15 2.15511 0.34199 
16 2.55867 0.46330 

1 0.30397 0.15889 
2 0.46301 0.16813 

3 0.58821 0.17317 
4 0.69811 0.17744 

5 0.79980 0.18165 

6 0.89706 0.18608 
7 0.99233 0.19093 
8 1.08748 0.19637 

9 1.18421 0.20258 

10 1.28427 0.20986 

11 1.38974 0.21849 

12 1.50328 0.22932 

13 1.62889 0.24319 

14 1.77305 0.26215 

IS 1.94805 0.29015 
16 2.18272 0.33889 

17 2.58217 0.45989 

1 0.29541 0.15442 
2 0.44957 0.16324 

3 0.57057 0.16796 

4 0.67642 0.17188 
5 0.77400 0.17570 
6 0.86690 0.17968 
7 0.95740 0.18397 

8 1.04722 0.18873 

9 1.13781 0.19410 
10 1.23062 0.20019 

11 1.32719 0.20753 
12 1.42952 0.21610 

13 1.54011 0.22724 
14 1.66303 0.24054 

15 1.80449 0.25953 
16 1.97677 0.28739 

17 2.20846 0.33603 

18 2.60415 0.45673 
(cont'd on next page) 
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n          I 

19    1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Mean 

0.28753 0.15030 
0.43723 0.15876 
0.55443 0.16319 
0.65665 0.16682 
0.75056 0.17032 
0.83962 0.17391 
0.92599 0.17777 
1.01125 0.18194 
1.09667 0.18672 
1.18352 0.19187 
1.27302 0.19799 
1.36658 0.20541 
1.46615 . 0.21415 
1.57437 0.22402 
1.69462 0.23884 
1.83377 0.25705 
2.00358 0.28482 
2.23255 , 0.33344 
2.62480 0.45379 

TABLE 7-7 (cont'd) 

Std. Dev. n 

20 

I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Mean Std. Dev. 

0.28025 0.14649 
0.42586 0.15462 
0.53959 0.15881 
0.63853 0.16219 
0.72915 0.16540 
0.81480 0.16868 
0.89754 0.17215 
0.97883 0.17594 
1.05986 0.18006 
1.14156 0.18544 
1.22544 0.18922 
1.31205 0.19577 
1.40280 0.20479 
1.49991 0.21375 
1.60620 0.22110 
1.72423 0.23626 
1.86122 0.25436 
2.02872 0.28245 
2.25521 0.33089 
2.64425 0.45104 

TABLE 7-8 

VARIANCES AND COVARIANCES OF THE ORDERED RADII IN A SAMPLE OF n FROM 
A CIRCULAR NORMAL DISTRIBUTION (Ref. 28) 

(ALL ENTRIES ARE IN UNITS OF a) 

"        i\i       123456789 10 

1      0.2146 
2 

0.1348 
0.3743 

1     0.1431 
2 
3 

0.0957     0.0671 
0.1990     0.1417 

0.3365 

1 
2 
3 
4 

0.1073 0.0735 
0.1376 

0.0551 
0.1041 
0.1827 

0.0409 
0.0777 
0.1379 
0.3108 

1  0.0858 
2 
3 

1 
2 
3 
4 
5 
6 

0.0715 

0.0596 
0.1056 

0.0500 
0.0858 

0.0459 
0.0819 
0.1287 

0.0391 
0.0674 
0.1002 

0.0363 
0.0651 
0.1030 
0.1700 

0.0318 
0.0550 
0.0820 
0.1210 

0.0279 
0.0501 
0.0796 
0.1327 
0.2920 

0.0260 
0.0450 
0.0674 
0.0999 
0.1601 

0.0204 
0.0354 
0.0532 
0.0791 
0.1277 
0.2776 (cont'd on next page) 
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TABLE 7-8 (cont'd) 

AJ       123456789 10 

7 1 0.0613 0.0431 0.0340 0.0280 0.0235 0.0197 0.0157 
2 0.0723 0.0573 0.0473 0.0398 0.0333 0.0266 
3 0.0822 0.0682 0.0575 0.0482 0.0385 
4 0.0950 0.0803 0.0674 0.0541 
5 0.1146 0.0967 0.0778 
6 0.1522 0.1234 
7 0.2661 

8 1 0.0537 0.0379 0.0300 0.0250 0.0213 0.0182 0.0155 0.0125 
2 0.0625 0.0498 0.0415 0.0354 0.0304 0.0258 0.0209 
3 0.0699 0.0584 0.0499 0.0428 0.0364 0.0295 
4 0.0786 0.0672 0.0578 0.0492 0.0399 
5 0.0905 0.0780 0.0666 0.0541 
6 0.1093 0.0936 0.0763 
7 0.1456 0.1195 
8 0.2566 

9 1 0.0477 0.0338 0.0269 0.0225 0.0194 0.0168 0.0146 0.0126 0.0103 
2 0.0551 0.0440 0.0370 0.0318 0.0276 0.0240 0.0206 0.0169 
3 0.0608 0.0511 0.0440 0.0383 0.0334 0.0287 0.0235 
4 0.0671 0.0579 0.0505 0.0440 0.0378 0.0310 
5 0.0752 0.0657 0.0573 0.0494 0.0405 
6 0.0867 0.0758 0.0654 0.0537 

. \f .. 7.. 

8 
9 

0.1048 0.0907 
0.1401 

0.0748 
0.1161 
0.2487 

10 1 0.0429 0.0305 0.0243 0.0205 0.0177 0.0155 0.0137 0.0120 0.0104 0.0086 
2 0.0492 0.0395 0.0333 0.0288 0.0252 0.0223 0.0196 0.0170 0.0140 
3 0.0538 0.0455 0.0394 0.0346 0.0305 0.0268 0.0233 0.0192 
4 0.0587 0.0509 0.0447 0.0395 0.0348 0.0302 0.0249 
5 0.0646 0.0568 0.0502 0.0443 0.0385 0.0318 
6 0.0723 0.0640 0.0565 0.0491 0.0406 
7 0.0833 0.0737 0.0642 0.0532 
8 0.1010 0.0882 0.0733 
9 0.1354 0.1131 
10 0.2418 

The covariance between n and r, is 

Cov(r,7}) = Eir,rj) ~ E{r,)E{rj). 

In 1952 Daniels (Ref. 29) published a paper on the probability distribution of the "covering circle" of a 
bivariate sample from a circular normal distribution. The covering circle is defined as the smallest circle in the 
xy plane that contains on it or inside it each and every sample point. In his paper Daniel (Ref. 29) points out 
the rather remarkable fact that the covering circle radius for a sample of « (rounds) from a circular normal 
distribution with mean (0,0) follows exactly the same distribution as the (n — l)st ordered radial error in a 
sample of « from the same circular normal distribution. Thus this provides a checkpoint with the work of 
Coon (Ref. 28) especially insofar as estimating the underlying sigma. We give an example concerning this 
point in the sequel. 
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For the circular normal distribution we see that the radial deviations or "errors" are of much importance in 
analyses of the precision and accuracy of firing weapons and, moreover, the circular error probable (CEP) is 
based on the equal sigma case for the mutually perpendicular directions. (CEP is defined as the radius of the 
circle about the shots, which includes half of the rounds.) On the other hand, for the unequal sigma case the 
analysis of radial errors and the CEP become much more difficult. Ref. 30 gives a thorough treatment of the 
various one- and two-dimensional measures of precision and accuracy of firing weapons, including standard 
errors in the two directions, the extreme horizontal and vertical dispersions (i.e., the univariate range), the 
mean horizontal and vertical dispersions, the radial standard deviafion, the CEP, the mean radius, the 
extreme spread or bivariate range, the radius of the covering circle of Daniels (Ref. 29), and the "diagona'l"of 
the shots. The unequal-sigma cases are discussed as is the relative efficiency of the various measures of 
precision. 

Perhaps the reader will now understand the importance of the sample order statistics—whether univariate, 
radial, etc.—to the general military requirement of analyzing the accuracy of fire of weapons of all types. 
Indeed, it is really the fact that one can truncate or censor some of the shots or radial deviations or can have 
them truncated for him by target misses(!) that becomes of much convenience and utility in the required 
statistical analyses. In fact, either all or some of the ordered radial errors can be used. In accordance with Eq. 
7-50 and Table 7-7, only a single order statistic is really needed to estimate the sigma of the shots, or 
alternatively, some or all of the fixed, low number of the smaller radii can be used in accordance with Eq. 7-39. 
Of course, the precision or effidency of estimation of sigma improves with and, in fact, depends on the number 
of sample order statistics actually usedin the calculation. To illustrate this statement and as a case in point, 
refer to Table 7-7 for 10 rounds and only the smallest radial deviation. Thus for n = 10 and j = 1, we see that the 
mean of ri is about 0.396a and the standard deviation is about 0.208a. Hence by knowing n, the normal 
population sigma or amay be estimated from ri/0.396 = 2.53r i, and the relative precision of this estimator is 
0.208/ 0.396 = 0.53. Had we used only the fourth smallest radius, the estimator of sigma would be r4/ 0.948 = 
1.05r4, and the relative precision for the fourth smallest radial error improves to 0.242/0.948 = 0.26, or 1/2 
that of ri. If the largest radial error rio is used to estimate sigma and it can be depended upon—i.e., is not a 
"wild" observation—then the precision of this esfimator would be 0.492/ 2.370 = 0.21, so that the gain is not so 
great at all now, and thus we see that some wild shots may be censored. Finally, had we used all 10 radial 
impacts and the estimator from Eq. 7-39, which becomes 

'-I 

then the relative precision of this estimator would be about 0.16. 
We will further illustrate the use of the radial order statistics with Examples 7-8 and 7-9. 

Example 7-8: 
Given that the bullet impacts on a vertical target at 75 m follow a circular normal distribufion and that all of 

the holes in the target from 10 shots can be inclosed in a circle of radius 6 in. Esfimate the circular normal 
standard deviation of the population. 

We will assume that the C of I of the rounds is centered on the origin point of the target. By using the result 
of Daniels (Ref. 29) that the covering circle radius for n shots follows the same probabiHty distribution as the 
next to the largest radial error of the n impacts, we see from Table 7-7 for « = 10 and i = 9 that the mean value 
of the 9th ordered radial error is about 1.929a. Therefore, our estimate of the population sigma is 

a = 6/1.93=3.1in. 

This result may be checked by noting in Daniels' paper (Ref. 29) or Table 7, p. 17, of Ref. 30 that the mean 
value of the radius of the covering circle for 10 shots ii.also given as 1.929a 

Example 7-9: 

Find the chance that the largest radial deviation in a sample of eight shots on a target will exceed 3a. 
This is a somewh?* more difficult problem because clearly the probabiHty that the largest radius will exceed 
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3 sigmas is greater than the chance that any radial error at random will exceed this same Umit. However, we 
note that Eq. 7-7 gives the chance that any number r of the ordered sample statistics will not exceed any stated 
value X. Therefore, we may take the cumulative probabiHty of the distribution of interest up to 3 sigmas and 
then use Eq. 7-7 to obtain the desired chance. For the bivariate circular normal distribution, the cumulative 
probabiHty to the 3a point is 

F{x) = F^o) = 1 - exp[-;cV(2a')] = 1 - exp(-9/2) = 0.98889. 

Substituting this in Eq. 7-7 for r = 8 and « = 8, we obtain 

/0.98889(8,1)= 0.915 

so that the correct probability that the largest of eight radial errors will exceed 3 sigmas is 1 — 0.915 = 0.085. 
Finally, for the treatment of radial errors, we should summarize the results for firing at vertical targets. In 

fact, there may seem to be some confusion because in the preceding account we have made use of both the 
radial errors (to the first power) and the squares of the radial errors. In practice, of course, it is generally easier 
to deal with the radial errors directly, i.e., their first powers, in making measurements on a target. We keep in 
mind, nevertheless, that our prime interest is in estimating the underlying, unknown sigma given in Eq. 7-45, 
but it is the square of sigma that relates directly to the chi-square distribution. In spite of this, we see that the 
underlying population sigma may be estimated from either the radial errors by using Coon's Table 7-7, or we 
can estimate the square of sigma by using the squares of the radial errors first and then by taking the square 
root. Moreover, the theory generalizes to any number of dimensions, say,p. Thus iip = 2, we are dealing with 
deviations from a C of I on a bivariate or plane target, whereas \ip = 3, we analyze radial deviations from a C 
of I in three-space. Statistically, we consider that the radial deviation or "error" xnp dimensions is represented 
by the quantity 

r = {r\ + rl + - ■ ■ + rl)"^ (7-54) 

SO that 

r'la'^x'iP) (7-55) 

has the chi-square distribution withp df. Hence this means that the density function/p(r^/ a^) ioxp dimensions 
is 

F{r'la') = {l/[r(p/2)2^/']} (rVay'-'exp[-rV(2a')]. (7-56) 

Now let us consider only the two-dimensional case, orp =2, for target firings and a circular "target" of 
radius n. Here we may consider dealing with an actual circular target with C of I of rounds located at the target 
center, or we may want to analyze impacts on a target of any shape for which we arbitrarily truncate the use of 
impacts that are at a radial distance of more than ro units from the C of I of the rounds. The latter situation 
may be arrived at by simply finding a circle of radius ro about the impacts that includes as many of the impacts 
as possible, hoping, of course, that such a circle is "centered" for the impacts. In either case, it is seen that if all 
rounds are included in the equation to estimate the population variance (and hence none miss the "circular" 
target or are censored), the estimate of sigma for the complete sample of n rounds will be given by 

d = [ir]l{2n)f'' (7-57) 

On the other hand, if m of the rounds miss the circular target in « rounds fired or if we were to truncate m of the 
n rounds at a distance of ro units of the radial direction from the C of I, then sigma is estimated from the 
number (« — m) of hits on the target, or 

n-m 

b = {[X rH{n- m)rl] / [2(^7 - m)]} '^' (7-58) 
i = \ 

;  i 

where only (n — m) sample impacts are used in the calculation. 
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As a final point, it should be easily seen that the square of the quantity (Eq. 7-57) follows the chi-square 
distribution with 2n df, whereas the square of Eq. 7-58 is distributed as chi-square with 2{n - m) df. 
Accordingly, confidence bounds on either the unknown sigma squared or on sigma may therefore be 
determined. 

In Ref. 31 Cohen gives some further treatment of the general problem in this area of radial impacts since he 
also treats the case in which the number of ehminated observations may be unknown. Here iteration 
techniques must be used to obtain the estimates of the unknown population sigma. Interested readers should 
consult Cohen's paper (Ref. 31). White (Ref. 32) also discusses radial errors. 

As overall insight and some reflection, many readers will note that there clearly remains some needed 
research to be performed on the problem of analysis of radial errors. For example, it becomes very difficult to 
center the rounds on a desired target point or to guarantee that the C of I of the rounds is always at the 
particular aim point of interest. Moreover, the usual case is that the mean point of impact (C of I) has to be 
estimated from the observed sample values for the occasion. Thus we would certainly invite others to 
investigate such general problems much more deeply for the purpose of arriving at appropriate solutions. As a 
suggestion and in the present absence of an exact solution, perhaps an approximate chi-square technique (par. 
4-4.5) might well be satisfactory on practical grounds. In this connection, an investigator might possibly 
consider also the Appendix, par. E, p. 25 of Ref. 30, for some ideas. Hopefully, our discussion on sample 
radial errors will stimulate others interested in the theory to attain results needed in applications. 

7-10    PARAMETER ESTIMATION FROM TRUNCATED FIRINGS AT RECTANGULAR 
TARGETS 

Although we have already said much about the estimation of the true unknown population mean and sigma 
for the important practical case in which samples are often truncated or censored for one reason or the other, 
there is considerably more to be said or discussed. We will therefore close out this particular subject with some 
further points of interest. In fact, we have really discussed only that part of the general problem that relates to 
the circular normal distribution and the use of radial distances. Fortunately, as we have already indicated, if 
we know there is truly a circular normal distribution, the radial errors may be used because even though the 
target may not be circular in shape, we may still truncate the sample firings at some given or fixed radial 
distance roand estimate sigma according to Eq. 7-58. On the other hand, for the case of unequal, or suspected 
unequal, standard deviations in the x- and >'-directions and also for the most usual case for which the targets 
are square or rectangular, some different methods of estimation have to be used. 

Perhaps through a study or reading of this chapter so far, many readers will already have in mind some ideas 
concerning the estimation problem, previously discussed, for rectangular targets. For example, insofar as 
estimation of the normal population sigma is concerned, if it happens from target firings that the same number 
of rounds r miss the rectangular target on the left as on the right, or r miss below and r above, then simply the 
quasi-range of par. 7-3 could be used, especially to obtain a quick estimate of a. However, one would not often 
be so fortunate as to have the same number missing on each side of the target, so that the 5th largest and the nh 
smallest sample order statistics would be used, for example. Then again and better, for efficient estimation of 
the population mean and sigma, one would certainly consider the linear estimation techniques of pars. 7-5 and 
7-6 and especially the type of problem illustrated in Example 7-4. Indeed, for independent or uncorrelated x- 
andj^-directions separately, a rectangular target and the assumption of unequal sigmas in the two directions, 
one may obviously apply the estimation techniques of Example 7-4 in each direction alone and hence get good 
estimates of the mean x, the meanj, and the two sigmas in the x- and >'-directions. Moreover, this may be done 
for quite unequal numbers of missing rounds above, below, to the left, and to the right of the target. We 
caution, of course, that these numbers should be known exactly; otherwise, some additional biases would be 
introduced. 

Over the years of statistical investigations into the analyses of target firings, a number of techniques have 
been developed to handle this type of involved problem, which clearly requires and should be adapted to 
computer calculations. Cohen (Ref. 33) discusses the problem of restriction and selection in bivariate normal 
distributions and also the task of estimation in truncated bivariate normal distributions in another paper 
(Cohen, Ref. 34). Ref. 34 even considers the general bivariate normal case for which there exists a nonzero 
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population correlation coefficient. Hence these references of Cohen should provide some very worthwhile 
background material for the reader. 

Our coverage of the problem of estimation for truncated bivariate normal samples against rectangular 
targets in this chapter is limited to a computer program (FORTRAN), which has been developed by Visnaw 
(Ref. 35) and used very satisfactorily as evidenced in a number of successful calculations for even a relatively 
large number of missing rounds. Visnaw's computer program is for the uncorrelated bivariate normal 
distribution, i.e., the case of independence of the x- and j-directions and for the estimation of the population 
means and the population variances of x and y. The details are covered in Visnaw's report (Ref. 35). He 
considers firings against a vertical target of width, say, 2A, and height 2B, on which is imposed a rectangular 
coordinate system with origin at the center of the rectangle. The horizontal distance x is then positive to the 
right of the origin, and the vertical direction y is taken as being positive in the upward direction. In an 
"accuracy" firing of rounds a total of N rounds are fired at the target with the result of possible impacts and 
misses as indicated on Fig. 7-4. Note that as a result of firing there are mi rounds that actually impact the 
target and for which one might calculate biased ("deflated") values of the means in the two directions and the 
variances or standard deviations. Nevertheless, it is quite evident that due to missing rounds and the number 
of them, one would bias standard deviations toward the low side—and perhaps drastically—while the 
estimates of the true means of x and y would be shifted to the left, right, upward, or downward. Note also from 
Fig. 7-4 that nine rectangular regions or areas are considered with the numbers ntj of rounds in each of the 
indicated areas f or j, 7 = 1, 2, 3, and «11 is on the lower left part of the figure. In accordance with the notation 
of this chapter, we might say that for the x-direction there are r rounds missing on the left of the rectangular 
target, and the 5 largest values of x are truncated to the right of the target. In a like manner, we could say that 
there are g rounds missing below the target and h rounds above, so that 

r = «ii+«i2 + «i3 = Visnaw's mi (7-59) 
5 = «3i + «32 + «33 = Visnaw's W3 (7-60) 

-                       . .        ^ — «ii + n2i + «23 = Visnaw's wi' ^ (7-61) 
/i = n 13 + ^23 + "33 = Visnaw's W3. (7-62) 

In addition, Visnaw (Ref. 35) considers the number m" of rounds, if needed, that indicates the number of 
rounds for which one is not able to sense a direction. In any event, there are a total of A^ rounds fired at the 
vertical target, which consists of the number mi on the target and the stated categories in Eqs. 7-59 through 
7-62 plus m" if required. 

If we refer to the impact coordinates of the actual hits on the target as {xi,y!), then for the totality of firings 
we are interested in estimating the population means /Xx and Hy and the population standard deviations Ox and 
Oy. The details of the estimation procedures and the accompanying theory are covered by Visnaw in Ref. 35. 
His computer program in FORTRAN is listed here in Table 7-9. The statistical analysis of Visnaw (Ref. 35) 
involves ML estimation of the parameters, and he gives a numerical analysis in the form of an illustration, 
which we will reframe as our Example 7-10. 

Example 7-10: (Based on numerical data of Visnaw in Ref. 35) 
An accuracy test was conducted for a new recoilless rifle that consisted of firing 22 rounds at a vertical target 

5 ft by 5 ft. Unfortunately, the target was placed too close to the gun so that there were only 14 impacts on the 
square target and the other eight rounds missed. Of the eight missing rounds, six missed to the left and are 
accounted for by 

nil =3,     ^12 = 1,     and     ni3 = 2 

but it was not possible to observe just where the remaining two rounds missed or passed the target. Irrespective 
of the eight missing rounds in 22 fired, it is required to obtain ML estimates of the true means and standard 
deviations of the overall population, assuming it is a bivariate normal distribution with possibly different 
sigmas in the two directions. The coordinates of the 14 impacts on the target surface are 
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Figure 7-4.    Schematic Diagram of Target and Areas of Missing Rounds 

17.10 3.80 
23.70 28.60 
12.80 -8.00 
29.50 18.80 
11.20 15.60 
-4.90 15.60 
9.90 17.60 

12.50 -6.10 
6.50 2.70 

-1.60 15.00 
4.20 18.10 
1.90 10.00 
3.60 27.30 

12.00 5.70 

If one were to use only the given 14 impact points to calculate the means and standard deviations in the 
jc- and j-directions, the results would be: 

Mean: 9.886 11.764 
Standard deviation: 9.050 10.636. 

We would expect that the true mean point of impact would be to the left and below that for the estimate 
based on target hits since eight rounds missed in such a direction, more or less, and that the true standard 
deviations would be much underestimated. In fact, the calculations on a computer using the program of Table 
7-9 gave the following estimates: 

X y 

Mean: -7.610 6.977 
Standard deviation: 29.035 25.954. 

Thus there indeed is a shift in the direction suspected because of the probable location of missing rounds, and 
the standard deviations are underestimated by a factor of about 2.5 to 3. (Ref. 35 is available for interested 
users from the Analytical Branch, Materiel Test Directorate, US Army Test and Evaluation Command, 
Aberdeen Proving Ground, MD 21005.) 
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TABLE 7-9 

COMPUTER PROGRAM FOR TRUNCATED BIVARIATE NORMAL TARGET FIRINGS (Ref. 35) 

FCRTRAN   IV   G   LEVtL      ?1 H&IN OATE 79099 19/59/11 

C 
C 
C 

CCOl 
CC02 
CC03 
CC04 ICOO 
CC05 1C05 
C006 ICiO 
CC07 1C15 
CC08 1C20 
C009 IC25 
CCIO 1C30 
coil ICiO 
C012 1C50 

C013 1060 
CCH IC70 
CC19 1C80 

CC16 1C90 
C017 2C00 

C018 

00Z2 

C023 
CC2<4 
C025 
CC?6 
CC27 
CC28 
CC29 
C030 
C031 
C032 
C033 
C03<i 
CC35 
C035 
C037 
mn 

CO<iO 
CCl 
r:c«2 
CC<t3 

tnt,3 
CC'V6 
CC'.7 
C0«B 
CC'k9 
C050 
CC51 
C052 
C053 
€051 
CC55 
C056 

2C10 

C019 2C20 
CC20 2030 
C021 2C'iO 

2C50 

ICO 

110 

120 

125 

ESTIMMICN OF VERTICAL TARGET PARAMETERS 
AGNrS M KOnAT 
AUGIST 71 
IMPLICIT RCAL♦0IA-M,O-^^ 
niMEMSIClM XIIOO) ,YU00l 
DIMEMSICN CA(16).0AK» 
FnRf'ATt2F6.0l 
FORf'ATUZ) 
FORMAT (I'll 
FORKATtF'i.OI 
FOR^'ATIIAI 
FORfATI-iFB.O} 
FORf^«T(2FB.OI 
FORfATCiFlO.O) 
FORf'ATI •['///TIO.'ESTIMATION OF VERTICAL TARGET 

IMOENERAL   CASE)'//! 
FORfATdlO,'TARGET   WI PTH= • ,F6, 2/T 10 ,'TARGET   MEI 
FORNATITIO.'HO,   OF   IMPACTS   OH   TARGET=•,lA/I 
FOtlMAt IT31,'BASEO ON I MPAC TS '/T2'f i • IIURI ZONT AL't 

1 T 10, ' HE AN •,2F20.«t/T6,'VARIANCE' ,2F20,'./T6,'STD. 
rORfATITlO,'NO.   OF   SHOTS   FIRFD=',K/> 
FORf'ATITIl , 'ESTIMATED PARAMETERS'/T2't,'HORI ZOMT 

1T10.'MEAN',2F2 0,'V/T6, 'VARIANCE' .2F20.'i/T6 , ' STO. 
FORMAT! 'I'//12 0,'IMPACT COORniNATES•//TIT,'X11 I 

1I2F20.2)( 
FORK4TI/////T20.'lT   DID   HOT   CONVERGE'//! 
F0H^'AT(//T5, 'TARGET   NO.    =»,F'..0) 
F0RMAT(///T17,'NO. OF ROUNDS MISSED THE TARGET' 

1T19,'N13=',I«,T29,'N2 3 = ',K,T39,'N33=',I-t/Z/TZq 
2'XXXXX)(XX'/T10,'M1 = «,I«,T19,'N12=',K,T29,'XXXX 
3,T'.g,'M3=',I',/TZ9,'XXXXXXXX'/T29,'XXXXXXXX'///T 
'i'N21='f I'i,T39, 'N31 = ',I'V///T29,'MP1=' ,U///T29,« 

FORMAT!/////TlOr'STARTING VALUES'/T2<f,'HORIZONT 
IT 1 C.'ME AN •,2F2C.'^/T6,'VARIANCE' ,2F20, 4/T6 ,' STO. 
REftD<5,lC0O)A,H 
A=a/2.DC 
R = t1/2.0C 
RE&n(5,10lO)N 
IFIN-0';q8)llO,250,250 
READI5,1C201N11,N12,N13,N21,N23,N31,N32,N33,M1, 
REA0I5,lC05)ICOOE 
REAOI5,1C30MXIH iY«n,l = l,N» 
JM = 1 
AN=N 
LN=N»NlltN12tN13tN2l+N23+N31+N32+N33*Ml*M34MPl* 

BN=LN-MOP 
AW'2.D0*A 
BH=2,00*B 
SUMX^O.DO 
SiiMYTn,nc 

XSO'G.PC 
YSO^OoPC 
DO   120   1=1,N 
SUMX=SUMXtX(I» 
SUMY^SUMY + YU I 
XSO^XSQ+XIIl**2 
Y50=YS0»Y(I)**2 
CONTINUE 
XM=SUMX/AN 
YM=SUMY/AN 
XVAR=IXS0-AN*XM**2I /AN 
YVAR=(YS0-AN*YM*»2I/AN 
XSD=DSQRTIXVAR) 
YSD^DSORTIYVAR) 
00 TO (125,126»,ICn0E 
XX=SUMX+&*IN31«N32+N33*M3-N11-N12-N13-M1I 
XXS = XS(}+(N3l»N32*N33tM3*Nll + Nl2 + N13*Ml)*A**2 
YY=SUNY»0*INl3tN23»N33*MP3-Nll-N2l-N31-HPH 

PARAMETERS'/T22t 

GHT«',F6,2///) 

T'i6, 'VERTICAL'/ 
0EV.',2F20.<»/////> 

AL',T'.6, 'VERTICAL'/ 
OEV.' ,2F20.'«//I 
',T37,'YII)'// 

///T29,'MP3=', !'«/// 
,'XXXXXXXX'/T29, 
XXXX' ,T39,'N32=',I'V 
19,'N11 = «,I'V,T29, 
H" = 'I K///I 
AL'.T^b,'VERTICAL'/ 
DfV,',2F20.'f////l 

M3,HP1,HP3,HDP 

HP3+M0P 

(cont'd on next page) 
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C057 
CC?8 
C059 
CC60 
COM 
CC62 
C063 

CC65 
CCfjb 
CC^7 
CC68 

CC70 
CC71 
CO?? 
CC73 
C07'» 
CCf5 
C076 
C077 
CC78 
C079 
ccno 
ccei 
CC82 
CC8J 
C08« 
CC? 
CCM6 
CC87 
CCOB 
ccn9 
cc^o 
ccn 
CC92 
CC'73 
CO'i 
C0<?5 
CC96 
0097 
CC98 
CC99 
ClOO 
ClOl 
0102 
0103 
ClO-i 
0105 
0105 
0107 
C108 
0109 
Clio 
0111 
0112 
C113 
OIU 
0115 
0116 
C117 
C1I8 
0119 
0120 
0121 
0122 
0123 
012^ 
0125 
C126 
0127 

TABLE 7-9 (cont'd) 

YYS'=YSO*(Nl3*N23 + N33*HP3»Nll*N2l + N3l + HPn*B**2 

YHM=YY/BN 
XVV=(XXS-nN*XHH**2»/BN 
YVV=(YYS-BN*YMM**21/5N 
CO 10 128 

126   REAC(5fl025IXHH,YHH,XVV,YVV 
128   SDX-OSORTIXVVI 

S0Y=0SORT«YVVI 
XHU'XMM 
YHU'Y^'H 
XSIG'SDX 
YSIG=SOY 

130   SX=C,00 
SY=C.D0 
SXX=O.DC 
SYY'O.OC 
00 I'tO 1=1,N 
SX = SXHX( n-XHU»/XSlG 
SY = SY»(Ym-YHU)/YSlG 
sxx=.sxx»nxm-xHui/xsiGi**2 
SYY = SYY+nYin-YMUI/YSIGI**2 

MO        CONTINUE 
vx=xsir,**2 
VY:=YS1G**2 
UL=(-A-XMU)/XSIG 
CALL PRNORMJUL.ZULiAll 
VL=1-B-YHU)/YS1G 
CALL PRK'0KM(VL,7VL,B1) 
i)u = (A-,''>riii/xsir, 
CALL PRN0RM(UU,ZUU,AA1 
A3=1.D0-AA 
A2=^l,nO-Al-A3 
vu-(n-Y(^ui/YSir, 
CALL PRNORMtVU.ZVU.DB) 
03'l.nC-HD 
B2=1.00-Bl-B3 
BN=Nll<N12fN13+HI 
CN=N11*N21*N31+MP1 
DN-N31+N32+N33»H3 
EN=N13+N23+N33tMP3 
AB=1.00-A2*B2 
FN^N21tN2 3-MOP*A2*B2/AB 
QN = M2»N32-MDP*A2*B2/AB 
FA=ZUL/Al 
FB=(ZUL-?UU»/A2 
FC = ZUt)/A3 
F=(-BM*FA»FN*FBfDN*FC+SX)/XSlG 
OA=ZVL/Bl 
GB»JZVL-ZVU)/B2 
0C=ZVU/B3 
G=l-CN*r,A»^0N*GB«EN*GC4SY)/YSlG 
MA=IL*ZLL/A1 
HB=(UL*ZtL-UU*ZUUI/A2 
HC=LU*ZIJU/A3 

M=(-BN*MA»FN*H04 0N*HC»SXX-AN1/XS1G 
EA=VL*ZVL/5l 
FB=(VL*ZVL-VU*ZVU»/B2 
EC=VL*ZVU/H3 
E=«-CN«EA»0N*EP»EN*EC+SYY-AN1/YS1G 
r,N=H0P*B2/A2 
GM=rOP*A2/02 
FD=(ZOL-ZUU)/An 
FE = (U!-*ZUL-UU*ZUUI/AB 
FG=(ZUL*UL**2-ZUU*UU**2I/A2 
GD=<ZVL-ZVU)/AB 
GE=(VL«ZVL-VU*ZVU»/AB 
GG=»ZVL*VL**2-ZVU*VU**2)/B2 
HU=tL*ZtL/A2 
HE=LU*ZLU/A2 
ED=VL*ZVL/B2 

(cont'd on next page) 
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TABLE 7-9 (cont'd) 

ClZe EE=VU*ZVU/P2                                                                                                                                                               '- 
0129 FHX=»-BN*FA«(UL+F«I-GN*F0**2»FN*(HB-FB*»2I+DN*FC*<UU-FC)-AN»/VX                                 ') 
C130 FHY«(-H0P*FD*G0)/XS1G/YSIG                                                                                                                            », 
0131 FSX«|-F*XSIG-eN*HA*|UL*FAI-GN*FO*FE + FN*<FG-FB*MB>+ON*HC*(UU-FCI-SX :'-■■>: 

U/VX                                                                                                                                                                                              ' i 
0132 F5Y=(-KnP*Fn*Gr)/XSIG/YSI0 ■>• 
01 3J 1,11 Y (-O'*i,A*tVl.»t,Al-0M*i;t)*«2*0N*(tU-0H**<?)»tM*GC*«VU-f;CI-AM)/VY '. ! 
ci^t, csxM-nop*i;i)*rF)/X5IG/YSIG                                                                                                       i 
C135 GSY=(-0*YSIG-CN*CA«tVI.*CAI-GM+OD*GE + (3N*IGG-Gn*EB»4EN*EC*(VU-GCJ-SY                              ' 

ll/VY '] 
0136 HSX=(-ll*XSlG-BM*HA*«HA*UL**2-l.DO»-GN*FE**2+FN*(HO*(UL**2-l.DOJ-HE ' 

l*tUt**2-1.00l-MB**2»+ON*<HC*CUU**2-l.DOt-HC**2l-2.DO*SXX)/VX                                        '' 
0137 MSY^I-MDP*FE*GE»/XSIG/YSIG *' 
one PSY=I-E*YSIG-CN*EA*JEA»VL**2-1.DO>-GH*GE**2+ON*<EO*<VL**2-1.00I-EE                           n 

l*IVt**2-l.O0>-E0**2l*EN*<EC*IVU**2-l.D0»-EC**2l-2.O0*SYY»/VY I : 
0139 CAHI^FN'X                                                                                                                                                                                 " 
OlAO CA(2)=FMY                                                                                                                                                                                    ! 
Cl«l CA(3)=FSX                                                                                                                                                                                    ' 
C1A2 CA(«»=FSY                                                                                                                                                                                 i' 
Cl'.3 CA(«)=FMY 
CH^ CA(e)-GMY 
Ol'iS CA(7»=GSX 
Cl'.6 CA(e)=GSY 
CH7 CA(9(=FSX 
C1'V6 CAIIO^GSX 
Cl«9 CA(11)=HSX 
CliO CAI12I=HSY 
0151 CAtl3)=FSY 
C152 CA(1«I=GSY 
CHS CAtl5)=HSY                                                                                                                                                                               ! 
C154 CA(im)=ESY                                                                                                                                                                  : ;. 
Cl-^S BA(1)=-F 
Cl';6 BA(2)--G 
C157 0A{3)=-H                                                                                                                                                                              ;.   i 
C158 BAI'i»'-G                                                                                                                                  Y. 
C159 CAIL   S|M0tCA,0A,4,KS» 
C160 iF(CAns(nAm )-.ooiii5o»i50,zoo                                                                            ,.,■. 
CIM 150         IF(0ABStBA(2n-.001)16Ofl60f200                                                                                               .;           , 
C162 160        IF(CAnS(BA(3»)-.0011170,170,200 
Clr>3 170        IFICAMSCBAU) I-.001)180,100,200 
Cl<>« 2C0        XMU = XMU»HAU( 
C|h5      ' YMU'YMU4nA|2) 
C166 XSIG=XSIG*0A(3I 
C167 YSIG^YSIG + BACV)                                                                                                                                                           ;      , 
Cl'>8 JM = jn4l 
0169 IFtJH-lOIUO,130,210 
C170 leo        WRnE(6,2010MXM),Y(n,I»l,N»                                                                                                                          I 
0171 WR|TE(6.?0A0»HP3,N13,N23,N33,Hl,Ni2,N32,H3,Nll,N2l,N3l,MPl,M0P 
0172 WRnEI6.10'J0l 
0173 WRnE(6,l060lAW,BH 
CIT) WRITE«6,1070»N 
0175 WRlTEt6,l080IXM,YM,XVAR,YVAR,XSD,YSD 
0176 HRITEt6,lC90)LN 
0177 WRi IE(f'.2C00»XMU,YMU,VX,VY,XSIG,YSIG 
C17B no   TT   ICO 
0179 210        WRnEI6.?C10MX(I I ,YII » ,1=1 ,N» 
C180 WRnEtft.20'.0)MP3,H13,N23,N33,Hl,N12,N32,M3,Nll,N2l,N3l,HPl,MDP 
ClRl WRIIE(6.10301                                                                                                                                                                     ;, 
0102 WRnc(6,1060»AW,BH 
0183 WRnE(6,1070)N 
ClB'i WRlTE«6,1080)XM,YM,XVAR»YVAR,XS0,ySO 
0185 WRITE<6,20201 
0186 WRITE<6,2050»XKM,YHM,XVV,YVV,SDX,SDy 
0187 GO 10 ICO 
C188 250   STOP 
0189 END                                                                        ' 

*HPTICNS IN EFFECT*  NOID,EBCDIC,SOURCE,NOLI ST,NOOECK,LOAD,NOHAP 
♦OPTICNS IN EFFECT*  NAME =   H&IN    , LINECNT =       50 
♦STATISTICS*    SOURCE STATEMENTS =      189,PROGRAM SIZE =     8688 
♦STATISTICS*  NO DIAGNOSTICS GENERATED 

(cont'd on next page) 
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TABLE 7-9 (cont'd) 

CCOl SU"ROUT!NE PRNnRM(X,Z,P| 
{€■);» IHILICI 1 l(LAL*H(A-ll,(J-n 
CC03 T'l).\t!S( X) 
CCO'i iFn-5.nciio,in,5 
(005 5 1=5,00 . 
CCQ6 IC C = .3'?P'1'i2280A01 
CC07 0 = ,23U'.l9 
CCO0 Bl=.31938153 
C009 02=-.3!36';63702 
COlO e3 = i.7ei'tr7937 
coil B't=-1.821255978 
COIZ n5 = 1.33C27'i'i29 
C013 Z=C*0EXP(-T*T/2.00» 
ecu V=l.00/(1.00+0*T) 
CC15 - P = 1.0C-Z*V*(Bl*V*(B2»V*IB3tV*IB« + V*B5ini 
CC16 IF(J<)15,Z0,20 
CC17 15 P»l.DO-P 
CC18 zo RETIRM 
ccn END 

7-11    PARAMETER ESTIMATION FOR TRUNCATED POISSON SAMPLES WITH 
MISSING ZEROS 

The use of order statistics and truncated sample theory go hand-in-hand as we have often illustrated in this 
chapter. Hence usually the need exists for joint studies of both statistical areas. Moreover, some form of order 
statistics and truncated sample theory is very often useful in dealing with practical problems relating to 
discontinuous distributions. A type of Army appHcation we mentioned earher for missing zero observations is 
certainly no exception in this connection. In fact, there exist many applications for which we have need of the 
Poisson or binomial distribution and for which, in practice, the number of zero observations is not observ- 
able. Some combat data, or other sampling experiments, are cases in point. Often it becomes desirable to 
study the results of combat data for purposes of inference, and the number of hits on targets, such as tanks that 
were knocked out in a battle, provides a useful and often typical illustration. After the battle is over one can 
survey the battlefield and try to gather analyzable data. However, the number of misses is not observable, and 
yet this figure would be important in establishing the total number of rounds fired in the battle, which in turn 
might be required to predict the chance that a fired round will result in a kill, or no kill, or this figure would be 
needed to predict logistical requirements of the total number of tank rounds needed in future battles, etc. Then 
again, there is the problem of estimating parameters of the assumed population in an unbiased manner even 
though the sample data were truncated. The problem for the Poisson distribution may be framed as indicated 
in the discussion that follows. 

Since the chance of a hit overall against another tank on the battlefield is often small and the number of kills 
is not very large, we could safely assume that the number of hits per tank killed follows a Poisson distribution. 
Hence if we assume that the expected number of hits would be \, the chance of exactly x hits would be given by 

p{x) = X'^exp(-A) lx\ 

whereas the chance of h or more hits would be determined from 
CO 

P{h)= XK''Qxx>{-k)lx\. 
x=h 

(7-63) 

(7-64) 

In 1959 Cohen (Ref. 36) investigated the estimation of the parameter A by using Fisher's ML approach and 
found that the estimate A of A. could determined from the equation 

k 2,/;/[l-exp(-X)]= Xxf, (7-65) 

where/t is the number of observed cases or frequencies for which exactly x hits occur, and the summation is 
stopped when the frequencies/x are exhausted. 
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Note that only the frequencies for x = 1, 2, 3, etc., hits are included in the summation and that zero 
frequency, or number of rounds fired without any hits, is excluded, i.e., truncated from the estimation, Eq. 
7-65. It should be clear that the solution of Eq. 7-65 for the unknown X is rather easily obtainable on a pocket 
calculator by cut-and-try methods. 

Cohen (Ref. 36) points out that regardless of the value of the true unknown parameter k, the asymptotic 
variance of the estimate satisfies the equation 

kln<a\X)<2kln (7-66) 

where n is the total number of observations or the total frequency included in Eq. 7-65, but it does not include 
the unknown number/ofor the zero class. In Ref. 36 Cohen did not address the problem of the estimation of/o, 
an important parameter nevertheless. The estimation of the zero class frequency was undertaken by Cohen in 
1960 (Ref. 37) and later by Dahiya and Gross (Ref. 38) in 1973 for the truncated Poisson distribution by using 
ML estimation techniques, and their procedure gives an estimate, first, of the total number of observations 
including the zero frequency. Thus the estimate of/o for the zero class frequency is obtained from the equation 

00 

N=fo+f, f=  t f. (7-67) 
x= 1 

and the estimate of A^, the grand total, from 

N=  t xf.jX. (7-68) 
x= 1 

Thus and regardless of the fact that the frequency for the zero class is not observable in many appUcations, we 
nevertheless can obtain efficient estimates of the parameter k from Eq. 7-65 and also the proper estimate of the 
zero class frequency/o from Eqs. 7-68 and 7-67. 

These ML estimators of the Poisson parameter k and the zero class frequency/o turn out to be quite 
satisfactory although recently some further investigation has been done on the estimation problem by 
Blumenthal, Dahiya, and Gross (Ref. 39). They develop the ML and modified ML estimators further and 
investigate their asymptotic properties theoretically in some detail, as well as making use of Monte Carlo 
experiments to judge comparisons. Also an example is given in Ref. 39 concerning the use of the new 
estimators. 

In Example 7-11 we will illustrate the appHcation of the truncated Poisson distribution in relation to a 
combat survey to collect data for further inferences concerning tank engagements. 

Example 7-11: 
A major battle broke out in Western Europe between Blue's First Army and Red's Fifth Army with a series 

of tank battles over a wide landscape. For this conflict Blue decided to attach many additional tanks to its 
force since it believed that tanks would be the key striking arm that would win the battle, as Blue did. 
Nevertheless, Blue decided to conduct an analysis of Red's capability to engage and destroy Blue tanks and, in 
particular, to estimate the expected number of Blue tank kills due to Red in a typical battle and decide on just 
how many rounds total Red may have fired at Blue tanks in such an engagement. After the battle subsided, a 
Blue military operations research team surveyed the battlefield and made a count of the number of Blue tanks 
killed and of the number of hits on each killed tank. The latter figures were taken, for past experience had 
shown that a single armor-piercing projectile hit on a tank would normally result in a kill. 

The number of Blue tanks with x = 1 or more hits that were knocked out of the battle and the f requency/^ of 
hits per killed tank are given in Table 7-10. 

To obtain an efficient estimator of the the expected number of Blue tanks that may be killed per Red 
antitank round fired, we note using the second equation of Eq. 7-67 that 

/=65+22+3 + l =91. 
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TABLE 7-10 

BLUE TANKS WITH ONE OR MORE HITS AND OBSERVED FREQUENCY 

Number of hits Number of tanks 
per Blue tank with x hits 

1 65 
2 22 
3 3 
4 1 
5 0 

Then, calculating the RHS of Eq. 7-65, we see that 

Xxf, = 65(1) + 22(2) + 3(3) + 1(4) = 122. 

Thus by cut-and-try methods with Eq. 7-65, we obtain the estimate 

\ = 0.618 

or in other words, the tank battle was so intense and at such close range that Red's potent antitank guns would 
be expected to kill 0.62 Blue tanks per round! 

With reference to the number of rounds fired by Red that missed we use Eq. 7-68 and obtain A'^= 122/0.618 
= 197.4, so that 

/o= 197-91 =106 rounds. 

For the information and further enlightenment of the reader (or even the ubiquitousness of order 
statistics!), the observed data in Table 7-10 actually were taken from a study and classical example of 
Bortkiewicz (Ref. 40), which describes the number of deaths from kicks of horses in the Prussian Army during 
the period 1875 to 1894, except that the number of exposures for which no deaths occurred was reported to be 
109 as compared to the 106 estimated! Furthermore, if one now uses the complete sample including the 
frequency 109 of the zero class, the estimate of the Poisson parameter results in 

\ = 122/(109+ 91) =0.61 

an expected number very close to that predicted from the truncated sample, which was A. = 0.618! 

7-12    SUMMARY 

In this chapter we have attempted to bring together some of the more basic and useful tools concerning the 
analysis of sample order statistics that the Army statistician will have occasion to apply in his work. These 
include—but are not limited to—the sample range, the distribution of the largest and smallest sample values, 
the quasi-ranges, the expected values of sample order statistics, linear estimation of population means and 
standard deviations from truncated samples, the statistics of extremes, relations to the outlier testing problem, 
tolerance intervals of general distributions, the relation of order statistics to reliability analyses, radial order 
statistics in target accuracy analyses, the estimation of parameters from truncated target firings, and the 
truncated Poisson distribution. Several examples were given to illustrate the applicable theory. 
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CHAPTER 8 

DETERMINATION OF SAMPLE SIZES 

The problem of sample size determination represents—for both the present and future—one of the most 
important requirement applications for the practicing Army statistician or analyst. We therefore introduce 
and discuss the analytical problem area in sufficient detail to present a good introduction and to encourage 
additional research of the general subject. 

It is often true that the determination of sample sizes on the basis of statistical grounds alone is insufficient 
and that the engineering or physical aspects must frequently be brought to bear. This is especially the case for 
some very high-reliability requirements and also for the investigation of critical, but low-chance, types of 
materiel defects. Nevertheless, statistical considerations do indeed solve, in a very satisfactory manner, many 
of the problems of sample size determination faced by the Army. 

In this chapter we present the various methods of determining sample sizes for the common statistical tests 
of significance and introduce the estimation of sample sizes for designs of experiments. The subject is 
approached either by requiring a high level of confidence that an important or stated difference will be 
detected or, better still and secondly, by controlling errors of rejecting the statistical null hypothesis when it is 
true or accepting a false null hypothesis when an alternative is true. 

Many examples are given to illustrate the theory. 

8-0    LIST OF SYMBOLS 

a = hypothesized or stated value of JJ. 

b = particular calculated value or constant (see Eq. 8-62) 
c = allowable number of failures in a binomial sampling plan 
d = stated difference of interest to detect when calculating the sample size 

E{d) = mean value of 6 
F = Snedecor-Fisher variance ratio or statistic 

Fi = a theoretical frequency (relative to/) 
Fi.„ = upper a probability level of F 

Fjj = lower fi probability level of F 
fi = observed or preliminary frequency 

Ho = null hypothesis that is tested for acceptance 
H\ = alternative hypothesis (to Ho) of special interest 

k = ratio of sigmas or number of classes in a contingency table 
m = number of normal populations sampled 
n = number of observations in the sample 

na = number of observations on which Xa is based 
n] = size of the "first" sample, so designated 
«2 = size of the "second" sample, so designated 
P, — expected proportion 
p — true unknown proportion in a binomial population 
Pi = ;th preliminary proportion 

Po = null hypothesis HQ value of the binomial parameter, usually representing the 
"acceptable" fraction 

Pi = alternative hypothesis H\ value of the binomial parameter, representing the 
"unacceptable" fraction 
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J} — computed value of p that determines the critical region 
p = preliminary observed proportion 
p = estimate of p from the sample 

Pi = occurrence ratio for estimating the binomial parameter/? for a sample from the 
rth population = Xi/n 

q = stated percentage of 6 
r = number of failures 

s = sample standard deviation based on {n — 1) degrees of freedom 
si = "new" sample variance based on the divisor (n — 3) instead of (n — I) 
si = sample variance based on {n\ ~ 1) degrees of freedom for sample number 1 
S2 = sample variance based on («2 — 1) degrees of freedom for sample number 2 

; = Student's / statistic 
/ = random variable, e.g., for an exponential distribution 

/i-a = upper a probability level of Student's ? 
Var(    ) = variance of quantity in (    ) 

Xi = observed number of occurrences in a sample of n from /th binomial population 
Xij = /th item drawn at random from the /th normal population 
X = sample mean (based on sample of size n) 

x\ = sample mean of the first sample ... 
X2 = sample mean of the second sample 
x.j = sample average for the /th population 
X.. = grand (sample) average for all mn observations when m normal populations are 

sampled with n from each 
Z = (l/2)lnF= Fisher's/statistic 
z = standard normal deviate, i.e., random variable from A^(0,1) 

z„ = upper a probability level of the standard normal deviate z. (It could better be 
designated as zi.«, so we call it +z<,.) 

zp = standard normal deviate associated with the Type II error /3. (usually taken as 

1 = value of the standard normal deviate z, which determines the boundary of the 
"critical" region 

a = chance of rejecting the null hypothesis Ho if true (also Type I error) 
P = chance of accepting Ho if the alternative Hi were true (Thus, P is the Type II 

error.) 
8 — ratio (of mean lifetime parameters) as in Eq. 8-72 
17 = ratio as in Eq. 8-74 
6 = hypothesized fraction of sigma (see par. 8-7) 

6 = mean lifetime parameter of the exponential distriDution as in Eq. 8-66 
00 = hypothesized value of 6 under Ho 
6\ = hypothesized value of 6 under Hi 
6 = angle in radians, determined from the arc sine transformation 
A 

6 = best estimate of the mean lifetime parameter 

X = ratio of specified mean failure times 0o/0i as in Eq. 8-71 
A = ratio of two unknown population standard deviations 
X = expected number of occurrences for a Poisson distribution 
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\ = ratio of the desirable to the undesirable standard deviations, equal to the ratio of 
two chi-squares as in Eq. 8-28 

Xo = expected number under the null hypothesis Ho 
X.1 = expected number under the alternative hypothesis Hi 
Ai = expected number of occurrences for the first Poisson population 
X2 = expected number of occurrences for the second Poisson population 
K' = particular value of X (see Eq. 8-59) 
X = calculated value of lambda giving the boundary of the critical region 

H = true unknown mean of (usually) a normal population 
;uo = specified or stated value of the population mean ji (for Ho) 
/ii = value of the true mean if an alternative hypothesis Hi is true 
Hi = specified value of ^i under Hi 
a = true unknown standard deviation of a population 

ao = hypothesized value of sigma under Ho 
oi — hypothesized value of sigma under y/i 
oi = true unknown standard deviation of the first population 
02 = true unknown standard deviation of the second population 
Xa = "available" value of chi-square (e.g., from past data) 
xi = desired or projected significant value of chi-square 

X^ (v) = lower 7 probability level of chi-square with u degrees of freedom (df) 

8-1 INTRODUCTION 
One of the questions most frequently asked of the statistician is, "What sample size should I use?" A simple 

question, but one that usually has a very complex answer! In fact, all kinds of "qualifications" are really 
required even to begin to answer this question, and perhaps the universal answer could be "You get what you 
pay for." Nevertheless, we will explore this general question in some detail since the practical man must have 
some kind of suitable answer, and he wants some assurance that his experiment will not have been for naught. 
Clearly, just any or a small sample size will often fail to detect a real difference between treatments, and 
obviously, there is no need to use a large sample size to attain a definitive conclusion that could have been 
attained with only a fraction of the effort expended. Stated another way, one would like to have high 
confidence or high assurance that his conclusions from an experiment will be valid and that they could be used 
for prediction purposes in future, similar, or even more general situations. 

Sample size is necessarily tied in with the population variance or standard deviation. Thus if one is sampling 
a population of interest and desires to estimate the true mean with "precision", the observed sample mean, or 
even an individual observation, could be "close" to the parent mean if the individual observations in the 
population are "tight" or close together. On the other hand, if they are spread out or there is much 
"randomness", enough sampHng has to be done so that the observed sample mean will exhibit suitable 
stability. Since the variance of a sample mean is equal to the population variance divided by the sample size, 
i.e., a^/«, it follows that—since in practically all cases nothing can be done to decrease or reduce to zero the 
population sigma—one must use the proper sample size to control or deal with the sampling variation or 
randomness. 

Another factor that must be taken into consideration is the size of the difference one would like to detect or 
how close he would like to get to the true value. Thus one could have very high confidence with any sample 
size, but the width of the confidence interval within which one states that the population parameter lies 
depends on the sample size and, in fact, very markedly so. If the underlying sigma is relatively small, perhaps a 
"practical" sample size would be sufficient to detect a relatively small difference; otherwise, increasing sample 
sizes would be needed to make valid judgments. In estimating the population mean, for example, one might 
decide to perform enough tests to be able to state with 99% assurance that the observed sample mean is within 
a preset, small interval or distance of the unknown population mean. Therefore, he controls the width of the 
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confidence interval to some desired value, but he must take both the sigma and the sample size into proper 
consideration. At this point, we should emphasize that the population sigma is not known, nor may one have 
much detailed knowledge about its actual size, so that the confidence statement or interval may depend on 
fuzzy thoughts about this "nuisance" parameter, which invariably is included in the analysis! It is for such 
reasons that the statistician seeks to find and use confidence intervals that are void of nuisance parameters if at 
all possible. The reader will recall, for example, that if one is samphng a normal population and uses the 
Student's t test to make inferences about the size of the population mean, only sample data — i.e., the sample 
mean, sample standard deviation, and sample size n—are involved with the result that a nonnuisance 
parameter confidence interval can be placed about the unknown normal population mean. However, this very 
desirable, or "complete", or "sufficient", analytical statement is not valid for so many other needed 
apphcations. In any event, we see so far that in trying to establish principles for the determination of sample 
size, we must deal with precision or variance and also concern ourselves with the size of a difference to be 
considered, which hopefully relates to practical significance. 

In the determination of sample size, one could simply focus on controlling the precision of the estimator to a 
given (small) size, i.e., the value of the variance of the estimator, for example, or he could determine the sample 
size such that the estimate of the parameter will be within a stated percentage of the true value. Such 
procedures to determine the sample size almost invariably run into the problem of needing to know much 
about the size or value of the population parameter, or especially the true variance. If one desires to estimate 
the fraction of defective articles in a binomial population, the precision of the estimator depends on the true 
fraction or percentage, which causes somewhat of a stumbling block to arise. For another case, if one is 
sampling a normal universe to estimate the true sigma, he could use the chi-square distribution, and with the 
aid of the sample variance, he could determine the sample size, or more exactly the number of degrees of 
freedom (df) in the sample estimate of variance, either to control the width of a confidence interval or to 
guarantee some high level of assurance that his estimator will be within some stated percentage of the true 
population parameter. Thus controlling precision might be easy if the sigma were known with sufficient 
accuracy, at least for many sampling situations involving various populations. 

As a very useful and statistically sound procedure of estimating sample sizes, one of the more elegant and 
important practical ways is to determine the sample size so that errors of judgment are controlled, provided 
that sample sizes so determined are "reasonable" and "practicable". With this approach we are dealing with 
the power or the "operating characteristic" of the test. "Power" ordinarily deals with the probability that the 
statistical test of significance will very infrequently reject the null hypothesis when it is true, but it will, on the 
other hand, detect and hence reject the null hypothesis when it is false by some given amount. The test that 
rejects the null hypothesis when false with the greater frequency is the more powerful test. We will explore this 
formulation of the problem more in the sequel, and it is based on statistical theory developed by Jerzy Neyman 
and Egon S. Pearson. In connection with basing determination of the sample size on the power of the test, we 
are all aware that there are risks associated with sampling and, furthermore, that one cannot make a 100% 
positive judgment unless the whole universe is sampled. Obviously, one cannot afford to sample the entire 
population due to costs, or in the case of destructive tests such extensive sampling would be prohibitive 
because it would leave no useful items. 

In any introductory account or discussion of sample size determination, we should mention the possibility 
that the selection of sample sizes based on only statistical procedures might, at least in some or even many 
cases, lead to what some managers refer to as "impractical" amounts of sampling or turn out to be too costly 
otherwise. Thus we enter a domain of thought that might prohibit the exercise of appropriate "statistical 
power". It is in such cases that "one gets what he pays for". We reahze that restrictions on samphng must be 
invoked by management at times, but hopefully in situations of this kind suitable tests can be conducted that 
ordinarily will be sufficiently meaningful for the practical problem at hand. In fact, sometimes it might be 
possible to conduct some kind of sequential procedure to save on costs or sample size, and the Army 
statistician must be constantly aware of this possibility. 

With this background concerning the problem of determination of the most appropriate sample sizes in test 
procedures, we will now describe a number of cases and methods. Wherever possible, we will give some 
informative examples to highlight the principles involved. First, we will discuss the problem of samphng 
binomial type populations and then proceed to the sampling of continuous distributions and the various 
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significance testing techniques that are commonly used in this area of appUcation. As might be expected, 
practically all of the sample size determination problems in one way or another lead to the existence of 
normaUty or asymptotic normality for many sampling procedures. This applies, for example, to many 
binomial sampling problems. Therefore, it would be wise to record initially the technique that will be useful in 
such cases. We will now illustrate this point so the reader will acquire immediately some useful orientation of 
the methodology; then we will proceed to apply the procedure of asymptotic normality to the determination of 
binomial sample sizes and will later check on the accuracy of the normality assumption for particular cases. 

Finally, and before proceeding to the various technical or statistical details involved, we mention in a 
preliminary way some of the more useful references the Army analyst might keep in mind for his various 
applications. Again, as for other statistical endeavors, there exists a large volume of accounts into the 
investigation of sample sizes that is scattered widely in the statistical literature. It is our problem to cite and 
expose some of the more important tools for the Army analyst. 

As a source of some preliminary and already published recommendations for the Army analyst on sample 
size determination, the Engineering Design Handbooks (Refs. 1 and 2) contain some very valuable curves for 
sample size choice (much of which is based on or originated from Ref. 3 and, in particular, the operating 
characteristic curves of that paper). Thus Refs. 1, 2, and 3 all contain continuing contributions—which the 
Army analyst will long have use for—to the sample size determination problem for the more common 
statistical tests of significance. In this chapter we will repeat only those power curves or attainments 
considered necessary to make this chapter as complete as need be without requiring the joint use of any other 
material. 

The paper of Chand (Ref. 4) also contains many very useful equations for the determination of sample size, 
especially from the hypothesis testing point of view, i.e., the control of Type I and Type II errors. 

The American Society for Testing and Materials (ASTM) "practice" (Ref. 5) gives an illustration of some 
sample size determination problems, perhaps more closely allied with actual practice in industry, and its 
approach might be said to determine sample size based on significance tests or to detect a difference of some 
size of interest with high confidence, say 95%. 

Although Ref. 6 had as its primary aim the design of single sampling inspection plans to control errors of 
judgment in Army testing, the content of that paper really addresses the problem of samphng a binomial 
population to test the hypothesis that the true proportion of defectives, or the proportion of successes, is some 
stated desirable fraction as compared to an undesirable fraction of occurrences. A very similar problem is 
addressed by Clark in Ref. 7 through use of the incomplete beta function of Karl Pearson. 

For some "popular" or very practical approaches and for background education for those in applied fields, 
Hahn's papers (Refs. 8 and 9) contain some very informative points on sample size. A confidence level alone is 
not sufficient! 

It might be said that Refs. 1-9 contain some of the basic procedures for sample size determination in the 
day-to-day task of the Army analyst who must deal often with tests of significance or who might be required to 
suggest a design of experiment that likely will produce clear-cut conclusions. On the other hand, there is a very 
large area of application for sample size selection, which applies to the more complex statistical experiments, 
and references to the pertinent literature for such applications will be covered as required in the sequel. 

8-2 THE ROLE OF THE NORMAL DISTRIBUTION IN SAMPLE SIZE DETERMINATION 

As previously stated, we will discuss the choice of sample size for several different approaches, but one of 
the usual procedures is to seek a normally distributed statistic or one that is approximately or asymptotically 
normal and to make calculations of the power of the test in detecting shifts in the normal population mean. 
Thus this procedure sets a relatively low risk, such as 0.05 or 0.01, for rejecting the null hypothesis when it is 
true and then requires calculations of the probabilities of rejecting or accepting the untrue null hypothesis 
when an alternative hypothesis, indicated by a shift in level, is actually true. The more quickly or the more 
frequently the null hypothesis is rejected when a shift in level occurs, the more powerful the test is, and this 
depends on the particular statistical test used, the variance of the statistic, and perhaps most of all on the 
sample size. We may easily illustrate this analytically by dealing with normally distributed variates and the use 
of the sample mean when the population sigma is assumed known. Here, we start with the standardized 
normal variate z given by 
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Z = {X- fx)/io/y/Jl)] (8-1) 

where 
X = sample mean 
a = the standard deviation of an individual observation 
II = true unknown mean 
n = sample size 

and the individual observations X, are from A^()Lt,CT). 
Next, we take the null hypothesis Ho to be 

Ho: n = Ho 

or that is, the true unknown mean of the normal population is a stated value MO. We then take the probability 
level of the test to be a, and the observed value of z for the assumed population ju = Mo substituted in Eq. 8-1 is 
compared with (in absolute value) the size of the upper normal percentage point +Za; the null hypothesis is 
rejected when that probability level is exceeded. If in fact we were to draw a sample of size n from the normal 
population with mean ^o, then our chance of accepting ;Uo—the true state of affairs—is clearly 

Pr[-z„ < z < z„] = (1 / y/2^)j;^^yxpi-t'12)dt = I - 2a. * (8-2) 

The Type I error, or chance of rejecting the null hypothesis when it is true, is therefore 2a (for this formulation 
of a two-sided test), since this is the probability that a random normal deviate will fall outside the significance 
level points. 

Now let us suppose that Ho is false and that actually an alternative hypothesis Hi is true, i.e., the real state of 
affairs is that H\ holds, where 

Hi: yL = n\> jxo 

where 
Hi = value of true mean if an alternative hypothesis Hi is true. 

Such a situation could have resulted, for example, from a shift in the population mean or perhaps from the 
fact that we are ignorant of the true mean of the normal parent we are sampHng. In any event, our calculation 
of the quantity z will now be in error because we would use no instead of the correct true mean /ui. We can 
nevertheless calculate the true chance of accepting the null hypothesis when it is false by entering the normal 
tables with the correctly assumed mean HU which again "centers"the normal population sampled. Therefore, 
the chance of accepting the false Ho when Hi is true can be correctly calculated by using new limits on the 
integral or, in other words, from the probability statement: 

13 = Pr[-za +\/n\lJii-lJLo\la<z< + Za +\/n\ixi-no\/a]** (8-3) 

where z is the correctly centered and standardized normal deviate, and the normal tables would be entered 
with the new limits in Eq. 8-3. We have used the quantity P to designate the new probability of accepting the 
null hypothesis Ho when Hi is true. Note in particular that /3 ^ (1 - 2a) unless ^o is true, i.e., the true mean of 
the normal population sampled is /u = /xo = Mi also. 

Examination of Eq. 8-3 shows that the distance between its end points in the probability statement is still 
2z„ as in Eq. 8-2, although we see also that when n\^ Ho the larger the sample size is the more "magnification" 
or the larger is the shift in the population mean, so to speak. This means that, whereas the Type I error—when 

"For brevity we often use z^_^ = +2^. 

"Usually and when no confusion should arise, we will take z„ to be the upper positive a probability level of A^(0,1) although strictly z„ 
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i^o is true—equals 2a, or that the chance of accepting a true null hypothesis Ho\s{l — 2a), the probability (3 of 
accepting the incorrect Ho when Hi is actually true decreases rapidly with an increasing sample size n. Thus 
many readers will regard the hypothesis testing approach as being rather "negative" because we first set up a 
"straw man", or null hypothesis, which is very infrequently rejected when true. However, when a significant 
level of the test is attained using the observational data, we decide that such a result is "so rare" or unexpected 
that we must reject the null hypothesis and accept the alternative hypothesis as the correct state of affairs, so to 
speak. Nevertheless, an advantage of such an approach is that we can set a low chance of a Type I 
error—rejecting the null hypothesis when it is true—and furthermore control the Type II error—accepting the 
null hypothesis when false and an alternative is very hkely—with the proper choice of sample size. Indeed, this 
approach certainly appears to be a very sound one especially if the sample sizes are not "impracticable". 

For the test relating to the assumption of a normally distributed statistic z, we see that either the two-sided 
test of Eq. 8-2 or a one-tail test is used to set the significance level at the desired value; Eq. 8-3 is then used to 
find the operating characteristic (OC) curve (one minus power) of the two-tailed test. The OC curve is a graph 
of the chance of accepting the null hypothesis, as in Eq. 8-3, against all possible values of the normal 
population mean /x; thus the OC exhibits the "power" of the test, including sample size effect. OC curves, or 
one minus them, which give the power curves, are now widely used as aids in the determination of sample size. 

In summary, we see from Eqs. 8-2 and 8-3 that an important relation exists between the Type I and Type II 
errors, the standard deviation a, the true difference between possible population means, or /xi — no, and the 
samnle size n. This relationship, solved for the sample size n, is given by 

a\z„ + z ^^ 
n = - -^ (8-4) 

(Ml - Mo) 

where 
zp = standard normal deviate associated with the Type II error /3. 

Thus the sample size to guarantee a Type I error of only a* and a Type II error of only j8* for accepting the null 
hypothesis Ho when actually H\ is the true situation—is the product of the variance of the normal population 
sampled and the square of the sum of the two upper percentage points of the normal distribution representing 
the Type I and Type II errors divided by the square of the difference in population means to be detected. A 
fairly easy way to prove this is by using a one-sided test involving the upper a probability level for the test of 
whether the true unknown normal population mean has shifted to an unacceptably large value. For this 
particular case, the rejection or "critical" region is given by an observed value of z from Eq. 8-1, which exceeds 
the percentage point z^ of the normal distribution when Ho is true. However, if H\ is true and the true mean has 
shifted to a higher level, the chance of rejecting the null hypothesis when false must be calculated from an 
observed z exceeding the negative of the left-hand side (LHS) of the inequality in the probability statement of 
Eq. 8-3, which is really zp. Equating these two and solving for n gives Eq. 8-4. 

As it turns out, the sample size n could be determined from a much more general problem. In fact, we not 
only could have let the mean level shift, but also have a change in the variance. That is, if the variance under the 
null hypothesis is al but the correct state of affairs is H\ for which the variance is a\, the sample size should be 
determined from 

(z„ao + ZBO\) 
n = ^ (8-5) 

(Ml ~ Mo) 

Of course, we need to know not only the sample size but also have at hand a general equation for the critical 
region, and this is based on a value of z given by the quantity 

if. A 

z„n\ao-\- Zp^lQax 
z> z =  (o-o) 

z„ao + zpox 
*a and ji are both small, i.e., < approximately 0.10. 

**See, for example, the paper of Chand (Ref. 4). 
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where 
"z — value of the standard normal deviate z, which determines the boundary of the "critical" region 

which should be exceeded for the one-sided test when trying to guard against a higher population mean than 
expected. Hence we see that if we can reduce the sample size problem to that of using an approximately 
distributed normal variate, the equations connecting the key parameters are rather simple. In fact, we will 
show that Eqs. 8-4,8-5, and 8-6 are very useful even for a discrete variable, such as a binomial one. Otherwise, 
we will apply these normal approximations since they will be of value in the determination of sample sizes for 
continuous random variables wherever appropriate. 

Finally, for cases in which the required sample size equations are not so simple or it is otherwise convenient, 
graphs may be constructed from which the needed sample sizes may be read with facility. This, in fact, is just 
what has been done for the treatment of the sample size problem insofar as that covered by Refs. 1 and 2. Also 
OC curves are generally used in Ref. 3 and many other pertinent publications instead of equations. 

8-3 SAMPLE SIZES A^D CRITERIA FOR BINOMIAL- AND POISSON-TYPE DATA 

8-3.1 SAMPLING A SINGLE BINOMIAL OR POISSON POPULATION 

When one draws a single random sample of size n from a binomial universe to test a hypothesis concerning 
the value of the unknown parameter^, representing the true proportion of successes, or failures, etc., he will 
often be interested in the size of the sample to be taken and the acceptance criteria. By this, we mean that, for 
example, a sample of size n =20 will be drawn, and we conclude that the proportion of defectives in the 
population is no more than, say, 5% if no more than one defective is found in the sample. This, in fact, is the 
samphng plan of the test or the acceptance samphng plan. We will illustrate this binomial-type sample size 
problem by using (1) a "significant difference" equation, such as that given in Ref. 5, then (2) the control of 
Type I and Type II errors approach with the normal approximation of par. 8-2, and finally (3) the direct or 
exact solution, especially for some comparisons. 

Some investigators have advocated the use of the significance level of a test to estabHsh the needed sample 
size. In fact, this approach is rather widely used, as indicated in the "standard recommended practice" of Ref. 5. 
For this approach of determining sample size, it is evident that the Type I error is taken into consideration, but 
no mention is made of the Type II error, which, of course, is greatly influenced by the sample size and its effect 
on the power of the test. Apparently, this approach was conceived and used from the standpoint of 
determining sample size for the purpose of estimating a key parameter only and not to control errors of 
judgment based on Type I and Type II errors. For this approach, and the use of binomial-type data, one takes 
the quantity z 

^ = (p-p)l\pil-p)lnV'' (8-7) 

where 
p — sample success (or failure) ratio as an estimate of p 
p = true unknown binomial parameter 
n = sample size. 

as being normally distributed. 
With the quantity z, Eq. 8-2 is used in the form 

Pr[-z,<z<z,]=Pfi\z\ <Zc]*=Pr{\(p-p)l{p{l -p)lnV''\ <z„}. (8-8) 

Finally, the two sides of the inequality in the very last probability statement of Eq. 8-8 are equated and the 
sample size n is solved for, i.e., 

♦Since this is a two-sided test, it is at the 2a level. To guard against a high/?, use the upper level only. 
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n=zlp{\-p)l{p-p)\ (8-9) 

Clearly, one has to have knowledge of, or estimate,p which may be taken as the null hypothesis valuepo 
and also needs to specify just how close the sample estimate must be to the population value/), i.e., the 
quantity (p — p). 

Example 8-1 will illustrate just how Eq. 8-9 might be used for sample size determination. 

Example 8-1: 
In acceptance sampling procedures for Army tests of mechanical time fuzes, the practice is to take a random 

sample from each lot, assemble them to high explosive (HE) projectiles, and fire them from a gun for both the 
estimation of the percentage of duds and their timing precision and accuracy. A dud rate of not over about 1 % 
was considered acceptable, and most manufacturers were apparently meeting this requirement. On the 
assumption that it was desired to estimate the dud rate within 1% from the sample fired, how large a sample 
should be taken to do so? To guard against a high dud rate, use the upper 5% level. 

For the stated problem, it is easily seen that the sample size would be based on Eq. 8-9 and is 

n = (1.645)'(0.01) (0.99)/(0.01)^ = 268. 

Actually, it is believed that this is a very large sample size for the particular problem stated, and one should 
question whether the cost of the test is too high! We will, therefore, reframe the question in Example 8-2. 

As a point of interest, we note in passing that Eq. (3) of Ref. 5 indicates the use of 3 instead of the 1.645 we 
have used; the 3 is for the upper 0.3% level of the normal distribution. Had we used 3, the required sample size 
would have been 891—a prohibitive value indeed! 

Now let us reframe the problem requirements in terms of the use of Type I and Type H error protections and 
see what this turns out to be in practice. 

Example 8-2: 
Suppose in Example 8-1 we had, in addition to the data given, simply said that we certainly could not 

tolerate 10% duds in mechanical time fuzes and would like to reject lots of such fuzes at least 90% of the time. 
This new formulation of the problem clearly calls for further and more detailed practical and statistical 

insight into the use of mechanical time fuzes. Furthermore, we have now set an "acceptable" and an 
"unacceptable" level, and we control the errors that are to be allowed in the sampling plan. For this particular 
formulation, we see that Eq. 8-5 is required, and we have 

po = 0.0\,pi =0.10, a = 0.05, i8 = 0.10,z„= 1.645, andz^= 1.282. 

Hence by applying Eq. 8-5, one calculates that the sample size is determined from 

Za\/poil -po) + zpy/pi{\ -px) 
n = 

Po-Pi 
(8-10) 

where 
po = null hypothesis i/o value of the binomial parameter/p, which represents the "acceptable" fraction 
pi = alternate hypothesis H\ value of the binomial parameter/), which represents the "unacceptable" 

fraction 

and for our particular hypothesized problem, we find n — 31,a. very acceptable value. In this connection, one 
might argue that the/7i =0.10 has been set too high. If, for example, we were to usep\ =0.05 as the greatest 
unacceptable value, then we would determine that the sample size should be 123, which is perhaps a more 
reasonable value than n — 268. 
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To complete the sampling inspection plan, we substitute, in Eq. 8-6 to obtain p =p, which is determined 
from the equation 

_      z„p\\Jpo{\ —po) + Zppo\/p\(l -p\) 
P^ ,  , (8-11) 

Za\/PQ{^-po)+Zji\Jpi{\-pi) 

where 
^ = computed value of/>, which determines the critical region. 

For the data of this example, we calculate^ = 0.037, which, if multiplied by the sample size of « = 37, gives 
an acceptance number of 1.36. It will be found that if we use the acceptance sampling plan c = 1 (a whole 
acceptance number) and « = 37, then when the true fraction defective of the sampled lot is 0.01, the chance of 
the lot passing is 0.947 (i.e., only a single or zero defectives are found in 37 items inspected), and when the lot of 
fuzes has 10% duds, the chance of it passing the sampling plan is only 0.104—the values 0.947 and 0.104 are 
determined from the OC curve. Thus these probabilities are as close to the desired risk values as can be 
obtained with discrete binomial-type data. 

In contrast to this asymptotic normal approach, Guenther (Ref. 10) has shown that both the sample size n 
and the acceptance number c may be obtained simultaneously and with great accuracy by using the chi-square 
statistic. It should be very clear that the chi-square approach makes much sense because the Poisson 
distribution is the same as the chi-square distribution for the case of an even number of df, and the Poisson 
distribution is an excellent approximation to the binomial distribution for either small or large p and large 
values of n. Actually, Guenther (Ref. 10) apparently has shown that the chi-square procedure may be very 
accurate in determining n and c for values of/7 <0.50, which means that all values ofp from zero to one will be 
covered by working with the parameter (1 ~p) instead oip when necessary. Guenther's chi-square technique 
is based on the inequality 

(1/2)[(1//J, - 0.5) xlp{2c + 2) + c] < n < (l/2)[(l/po - 0.5) xl{2c + 2) + c]       (8-12) 

where X7 is the (lower) 7 probability level of chi-square with j^ df. 

To use Eq. 8-12, one takes the lower aleveland the upper/3 level of the percentage points of the chi-square 
distribution with the given/Jo and/p 1, and then by trial with different c's, or (2c + 2) df, finally finds the interval 
that contains at least one integer—the value of n. For example, applying Eq. 8-12 to the data of Example 8-2 
for/Ji = 0.10, we may first try c = 0, for which we get 

(1/2)[(4.61) (9.5)] = 21.9 <«<(1/2) [(0.103) (99.5)] = 5.12 

which obviously does not work. But next trying c- 1, we find the inequality 

(1/2) [(7.78) (9.5) + 1] = 37.46 < « < (1/2) [(0.711) (99.5) + 1] = 35.87, 

which shows that the «'s are close, but c should perhaps be just greater than 1. If we use c = 2, we find for 
Eq. 8-12 that we obtain 

51.5 <«< 82.6 

indicating that we have gone too far above the proper value of c. 
We thus conclude as before that the correct plan is c = 1, « = 37. 
As a further comment on the two different methods for determining the sample size, we see that the 

"significant difference" approach requires "a good estimate" of the true unknown p and leaves matters 
unresolved. The control of Type I and Type II errors approach, on the other hand, requires some very clear 
thought as to just what truep is really acceptable and what is unacceptable. This means better engineering or 
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physical insight into the problem at hand. Nevertheless, this latter approach is \'ery desirable it would seem 
and certainly gives a "concrete" answer. In such a hypothesis-testing situation, one does have to come to a 
decision concerning the problem requirements! 

Since we have used a normal approximation to determine the sample size and also the acceptance nunriber 
(approximately), it should be asked whether such an approach is good enough. In this connection, Griibbs 
(Ref. 6) and later Clark (Ref. 7) set up this binomial sampling plan on a more "exact" basis by using percenitage 
points of the binomial distribution or the incomplete beta function. In Ref. 6 there are two tables; Table I g;ives 
values of the truep =/7ofor which the sample size n and acceptance number c are such that the probabili ty of 
accepting the lot is 0.95 (the upper 5% point), and Table II gives values of p =p \ with accompanying n and c 
such that the chance of passing the plan is only 0.10, or the lower 10% point of th e binomial distribution. Thus 
one may enter Table I with/? =po (=0.01 in our case) and search for the n and c using also Table II for ^^fhich 
P — P\{— 010 for our problem) which are the same. When, for the same n ;and c the two conditions are 
satisfied, the sampling inspection plan is determined. For Example 8-2 it will be found that the best or closest 
plan is indeed n = 37 and c = 1. Therefore, the normal approximation gives the "exact" answer, and hence 
there would seem to be no need to construct such extensive tables as those in Refs. 6 and 7 for this particular 
purpose, unless bothp's are too "small" for the normal approximation. 

In case po and p\ both do not exceed approximately 0.10, the Poisson approximation applies very 
adequately. We will demonstrate this by using Table III of Ref. 6, which is reproduced here as Table 8-1. 

TABLE 8-1 

95% AND 10% PROBABILITY LEVELS FOR THE POISSON DISTRIBUTION 

Acceptance Values of M/JO Values of «pi 
Number c for 95% Point for 10% Point 

0 0.0513 2.303 
1 0.3554 . 3.890 
2 0.8177 5.332 
3 1.366 6.681 
4 1.970 7.994      '"- 
5 2.613 9.275 
6 3.285 10.53 
7 3.981 11.77 
8 . 4.695 12.99 
9 5.425 14.21 
10 6.169 15.41 
11 6.924 16.60 
12 7.690 17.78 
13 8.464 18.96 
14 9.246 20.13^ 
15 10.04 21.29 

Reprinted with permission from "On Designing Single Sampling Inspection Plans" by Frank £i. Grubbs, Am.ials of Mathematical 
Statistics XX, No. 2 (June 1949). Copyright© by Institute of Mathematical Statistics. 

To use Table 8-1, one merely has to divide the 95% Poisson points by the accepta ble level/? ofor c = 0,1,2, etc., 
and the 10% points by the unacceptable/? i; the results are the safnple sizes. Wherever the s ample sizes "cross", 
as they will for some value of the acceptance number c, the sample size to use with that particular c value is 
determined. For illustration, if we use the data given for Example 8-2, then we comput e for c = 0, 1, and 2: 

c = 0  c= 1   c = 2 (only th rough c = 1 needed) 

0.0513/0.01 = 5.1, 0.3554/0.01=35.5, 0.8177/0.01=81.8 for «'s 
2.303/0.10 = 23.0, 3.890/0.10 = 38.9, 5.332/0.10 = 53.3 for «'s. 
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These simple calculations show that the sample sizes calculated cross at approximately c = 1; moreover, we 
should probably use n = (35.5 + 38.9)/2 = 37.2 or « = 37 as before. It is seen, therefore, that even though the 
acceptable/? is small, i.e., O.G'l, and the unacceptable/? =0.10 is not so small, the normal approximation is still 
quite good. In the sequel we will give another approximation that is quite good, especially for small values ofp 
or high reliability; it is the ar c sine approximation. Before turning to that, however, we should point out that 
Table 8-1 is limited in scope because it is for a Type I error of 0.05 and a Type II error of 0.10 only. In this 
connection, one may take a more complete table of the percentage points of the chi-square distribution, such 
as that of the Biometrika Tables for Statisticians (Ref. 11), enter it for even numbers of df, and divide each 
valuer of chi-square for a give n percentage point by two in order to extend Table 8-1 to all desired probability 
levels or various degrees of p rotection. Thus this approach could be very useful either for an "exact" type of 
calculation for smallp's or as a check on approximation equations. Guenther's chi-square (Ref. 10) is also very 
accuriite and useful. 

Ancither good approximation to be used in connection with small or highp's (high reliabilities) is the arc 
sine transformation often appilied in the analysis of variance (ANOVA) techniques. It is well-known that for 
small values oip the angular approximation 

6 = 2Sin"'Vprrad (8-13) 

is ver V nearly normally distributed with mean value 

E(d)=2Sin'y/i' (8-14) 

and variance 

Var(0)«l/n. (8-15) 

Of some particular note for th(; arc sine transformation of small percentages is the fact that the mean value is of 
the same fcrm as the transformation itself and that a very desirable feature is that the variance depends only on 
the sample i.ize and not on the nuisance parameter/) at all. The sample size to control Type I and Type II errors 
to sizes a an d )8, respectively, for the case of sampling a single binomial (Poisson) population is rather widely 
known to be 

n = (114)1 -^     .   ^ (8-16) 
\Sin'v^-Sin"'v^/ 

and the crit ;ajl region is determined from the quantity - 

-I /r~ I _ o:_-i /r~\ i, _        /z„Sin  \/p\ + znSin 
P = 2[ —^ ^! (8-17) 

or, that is, the acceptance number is taken as the lowest integer in \_np\ 
Although both Eqs. 8-10 and 8-16 are asymptotically normal statistics, it should not be expected that they 

give exactly the sa me sample size n although the values they do give are sufficiently close together. We will give 
an example of possible uses of Eq. 8-16 that appHes to the problem of sample size determination for the 
investigation of prematures, safety, or high reliabiHty types of items or components under test. 

Example 8-3: 
Suppose the premature rate of only 1/100,000 for artillery projectiles is desired, and a rate of 1/1000 would 

be considered unacceptable. (Of course, we would like the premature rate to be zero, but it is not possible to 
always manufacture projectiles so that no prematures would ever occur.) Determine how large a sample 

*The angles are in radians. 
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should be tested to guarantee that a lot of projectiles with the objectionable rate of 1/1000 would be rejected 
with 95% assurance and that a lot sampled with only 1 /100,000 prematures would be accepted 95% of the time. 

As a preliminary statement, we remark that it is not easy for the manager or engineer to set such rates, 
especially for prematures as those given. We merely are illustrating just what the sample size problem might be 
on a statistical basis only in order to discover the resulting economic implications. 

The reader may verify, using Eq. 8-16, that the required sample size is about 3339. The allowable number of 
prematures is zero using Eq. 8-17 and checking the Type I error at the acceptable rate of 1/100,000. Hence in 
an actual test of the items, one would stop the firing as soon as a single premature occurred and reject the null 
hypothesis at that stage of testing since there would be no point in firing all 3339 rounds. 

In view of this, it would seem that we have arrived at such a large sample size, at least for some items, that a 
statistically determined sample size cannot be afforded. Moreover, since the 1/100,000 and 1/1000 are 
"relatively far apart" and we have set risks at a "sizable" level, i.e., 1 in 20, for any tighter conditions the 
required sample size would be astronomical indeed. Thus often it may be the case that the testing of very large 
sample sizes becomes prohibitive, and in fact, nothing might be learned in such testing because the basic 
problem may be one of design. Therefore, once a critical defect such as a premature is observed and the 
frequency appears too great, one must delve into the item design problem to try to correct the engineering 
fault. In this connection, a combination of engineering and statistics will often result in designing test 
programs for the purpose of examining each possible cause of a premature that the design judgment might 
indicate. An interesting account of the investigation into the possible engineering causes of prematures for 
artillery projectiles is given by Simon (Ref. 12) in his discussion of the relation of engineering to very high 
reliability. In fact, since our Example 8-3 concerns prematures, i.e., safety problems, we will by contrast also 
include an example on high reliability insofar as sample sizes are relevant (Example 8-4). 

Example 8-4: 
Suppose we desire a reliability of 0.9999 for proper launch of the Gemini vehicle, and the National 

Aeronautics and Space Administration (NASA) expert judgment arrives at the conclusion that a failure rate 
of 1 in 1000 could not be tolerated. Before we put a man in the capsule, how many items would have to be 
tested to assure that this high degree of reliability is guaranteed? 

For illustrative purposes, we might again start with a risk of, say, 5% of rejecting the "acceptable" design 
and a risk of 5% of accepting the undesired reliability of 0.999. By using Eqs. 8-16 and 8-17 and checking the 
Type I and Type II errors by computation, one finds that the acceptance sampling plan should be c = 2, 
n — 5784. Had we reduced the errors of classification from 5% down to 1%, the sample size would have to be 
11,570 (c = 4)! Therefore, just how has NASA solved this type of problem? The answer almost has to be by 
sound technological considerations, excellent engineering, quality control, the use of redundant components, 
good simulation experiments, extensive testing of components, perhaps accelerated life-type tests or tests of 
increased severity, and elaborate checkout methods. In summary, high reliability and safety should begin with 
the actual design of a system and follow through the development, fabrication, and the testing of system parts. 
Statistical techniques, including the design of experiments and sample size determination, are an aid to 
management. 

In addition to our account so far of sample size determination for safety- and high reliability-type problems, 
there is a sequential method of testing that might result in some savings of effort. This is based on stopping the 
test at the event of a single critical defect or failure, and in addition, it indicates just what the lower confidence 
bound on reliability would be at a point of stopping for which no failures or critical defects such as prematures 
have occurred. That is, one continues to sample with only the occurrence of "successes"and decides to stop at 
some point because of already having expended a large number of items in the test. The method to which we 
refer is covered on pp. 21-9 of the Army Weapon Systems Analysis Handbook (Ref. 13). Table 8-2 is repeated 
from Ref. 13 for the reader's use. 

By reference to Table 8-2 we see that if in a test one attains 50 successes and no failures, it can be stated that 
the lower 95% confidence bound on the reliabihty of the item tested is 94.0% Had we achieved 400 successes 
with no failures in the 400 trials, then the lower 95% confidence bound on reliability would be 99.3%, etc. Note 
how slowly the bound rises for increasing numbers of tests as shown on Fig. 8-1. For example, in going from a 
sample size of 1000 to 2000, the increase in the lower confidence bound is only 15 in 10,000. Perhaps this adds 
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TABLE 8-2 

LOWER 95% CONFIDENCE BOUNDS ON RELIABILITY BASED ON ZERO 
FAILURES IN n TRIALS 

Number ot Lower 95% Confidence 
JTests n Bound on Reliability 

50 0.940 
100 0.970 
200 0.985 
300 0.990 
400 0.993 
500 0.994 

1000 0.997 
2000 0.9985 
3000 0.9990 
4000 0.9993 
5000 0.9994 

29957 0.9999 

some insight into the formidable problem of guaranteeing very high reliabihty. Also it "drives one back to the 
need for genius in design problems"! 

Although we have given sample size equations for drawing a single random sample from a binomial 
population with a small percentage of occurrences, we should nevertheless deal with the sampUng of a Poisson 
population. Generally, the parameter of the Poisson population, which we will refer to as A. or the expected 
number of occurrences, is related to the binomial case by A. = n/j; however, there are many situations for which 
the sample size is never known, and one counts the number of failures, defects, etc., only. An example is the 
number of defects in a square yard of Quartermaster cloth and for which the standard or acceptable number 
may be only a single defect or even none. 

For the sampling of a Poisson population, the sample size is set by specifying an acceptable expected 
number of occurrences Xo under the null hypothesis and an unacceptable number of occurrences A.i (> Ao) 
under the existence of the alternative hypothesis. The approximate sample size n, determined very similarly to 
that for the binomial population by using asymptotically normal considerations, is 

« = (l/4)    "7^= '-j=] (8-18) 
\V ^1 ~ V ^0 / 

and the critical region is based on 

X =    . (8-19) 
Za + Zp 

In the determination of sample size the reader will no doubt understand that we have proceeded to control 
the errors of misclassification at two different values of the binomial or Poisson parameter, i.e., the acceptable 
one and the unacceptable one. We have not however made a computation of the entire OC curve or the power 
curve, but this calculation is rather easily performed. Note in particular that each of the Eqs. 8-5, 8-10, 8-16, 
and 8-18 may be solved for z^in terms of the sample size n, the Type I error deviate z„, etc. Thus for any values 
of these latter quantities, one may easily find the quantity zp, which, when referred to a table of the standard 
normal distribution, will give the desired Type II error for that particular calculated condition. By changing 
these conditions one sees that the entire OC curve may be found and plotted if desired.* 

As a brief summary of determining sample size for binomial and Poisson populations, we observe that the 
significance level type of approach is useful for the case in which one desires to estimate the population 
parameter to within a certain bound, whereas it seems of considerable value in practice to control errors of 

*Many complete OC curves are given in Refs. 1 and 3. 
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judgment in many applications. Nevertheless, for discrete data or binomial-type sampling, the sample sizes 
determined can be very large, unfortunately, for the desired protection. Perhaps a way around some of the 
difficulty in this connection is to perform some type of sequential sampling or, even better still, to try to inspect 
on a variables basis, which we discuss in the sequel. Finally, extensive binomial sampling to guarantee 
protection against critical defects would seem to lead invariably to very detailed evaluation or reevaluation of 
the basic design of the system. 

Par. 8-3.2 discusses the comparison of two binomial populations. 

8-3.2 SAMPLE SIZES TO COMPARE TWO BINOMIAL OR TWO POISSON POPULATIONS 

When samples are drawn randomly from each of two binomial populations, we may no longer have primary 
interest in parameter estimation, but rather our interest centers around comparing the size of the two binomial 
parameters, which we will refer to aspi and pi. In fact, very often we will have some rather key interest in 
knowing whether one of the p's is greater than the other or, just as importantly, whether the two different 
processes or treatments are equivalent, i.e., have equal/J'S. If we were primarily interested in the estimatipn 
problem, we could be better off to use the data of each sample to estimate the individual/?'s for the population 
from which each sample came. Alternatively, we would want to be quite sure that the twop's are equal, i.e., not 
significant in a statistical test, before we combined the two sample results for the purpose of estimating a 
common binomial parameter. Finally, we might have the problem or the desire to determine the required 
sample size that will lead to some control of results for estimating the common binomial parameter. 
Otherwise, we would be interested in detecting a given or stated difference between the twop's if one exists and 
is of significant practical interest or value. 

Since we are now dealing with two binomial samples and we do not know whether they were drawn from a 
single binomial population, we must exercise some care in whether or not we estimate the variance on the basis 
of combining the two sample results into a single sample to estimate a common p or of keeping the two 
samples apart and thereby proceed as though we have distinct/?'s. This particular problem, as we recall from 
Chapter 5, was indeed the major consideration for comparing the two different binomial populations. 
Moreover, as we recorded in Chapter 5, a completely satisfactory answer to this point is still not available 
although it did seem best on practical grounds usually not to combine the two sample results but rather to treat 
the two/>'s as possibly being distinct. This consideration complicates the sample size determination problem 
somewhat although it is fortunately true that the arc sine transformation avoids the difficulty while it 
possesses rather good accuracy over the primary regions of interest. In fact, for/j's very near zero or one the 
Poisson distribution can be used with excellent results. 

We will frame the problem of determining sample size for comparing two binomial populations in terms of 
the following definitions: 

pi = true unknown proportion of population designated as 1 
P2 = true unknown proportion of population designated as 2 
Pi — Xil n = occurrence ratio for estimating the parameter of the /th binomial population,«' = 1,2, with xi 

the number of occurrences of interest 
n = common sample size to be determined for the sampling of each binomial population. 

For testing the hypothesis Ha :/?i = pi versus the possibility that/>2 >p\ for the alternative H\, the arc sine 
transformation leads to the approximate sample size of 

„.(l/2)f—-i^i^^-.^^V* (8-20) 

If one were interested in guarding against whether p2 is greater than or less than/^i, he would conduct a 
two-sided test with the significance level of ajl so that the desired overall level of the test would be a. 

The critical region of the test (Eq. 8-20) is based on the quantity 

*z„ and Zo are the upper a and )3 probability levels of A^(0,1). 
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z>^=zJ^f2rl. (8-21) 

Perhaps it would be illuminating to illustrate the two-binomial population sa mple size problem by referring to 
Example 5-3, in which a significant resuU was found. In Example 5-3 a combat simulation of Red versus Blue 
resulted in only six Blue infantrymen in 60 being lost in a battle versus 18 of 60 Reds; apparently, Blue seemed 
to have the superior rifle. In view of this, we will construct an example. 

Example 8-5: 
In a limited combat simulation between Blue and Red riflemen, it appeared that Blue might be able to kill 

about 30% of the Red riflemen, whereas Red's rifle capability was such ithat Red would kill only 10% of the 
Blue infantrymen. What sample size would be required to control errors of judgment to, say, 5%? 

To solve the sample size problem here, we will setpi =0.10,/72 = 0.30, and use the one -sided test to be sure to 
pick upp2 >p 1 if true and also take a = ;3 = 0.05. The calculation based on Eq. 8-20 gi^ /es « = 81.4 to control 
risks to 5% each; however, a sample size of 60 was used. (If we had set more liberal risk;5 at, say, 10%, then an 
« =49 would have been required. We see, therefore, that the determination of sample sizte in advance has some 
merit.) 

Since we have given only the arc sine normal approximation for determining the sample size, we suggest 
that the reader may well use the significance test of Eq. 5-20, for which the variances arc kept separate, and 
develop an asymptotic normal approximation for n. Once this is done, he should make a comparison of his 
calculation of n using the developed equation with the one we obtained by using the arc sine approach. 

For the case of sampling two Poisson populations with parameters we will call K\ and A2, the sample size 
equation result is similar to the one for sampling a single Poisson population. In fact, the o'ifference between 
the square roots of the mean number of occurrences is approximately normally distributed with the expected 
value equal to the difference in the square roots of A.2 and Xi, and the variance does no t depend on the 
parameters but is equal to simply 1 / {In). Hence the sample size to control errors to the risks o f a and j8 may be 
obtained from 

« = (l/2) ( ^    '^^\ \ (8-22) 
\ \/A.2 ~ 

and the critical region depends on 

z>T=l/V2«^ ' (8-23) 

Again, if one desires to plot the OC curve, he may solve Eq. 8-22 for z^as a function of the othe r variables. 
Since many of the OC curves of this paragraph are based on asymptotic normality, their shape a nd general 
appearance would be similar to those of Fig. 6 of Ferris, Grubbs, and Weaver (Ref. 3) for the "no rmal test" 
and an equivalent sample size. Only OC curves needed for specific usage will be repeated in this' chapter, 
however. 

For binomial- and Poisson-type populations, therefore, we have given a number of useful equa tions to 
determine sample size and also have given a variety of redundant approximations to assure some accu racy of 
estimation. We believe that the procedures outlined herein should be sufficient for most applicatio ns the 
Army analyst will require in connection with sample size determination problems. For other cases the n'Jader 
may extend his knowledge considerably by studying the references. 

We have not covered the matter of determining sample sizes for general contingency tables in this 
paragraph since the problem here relates more to the use of the chi-square variate—a continuous randi^m 
variable—and the ANOV A techniques. We will therefore proceed in par. 8-4 to discuss sample size determin a- 
tions for continuous variates and initially will consider a treatment of the chi-square distribution and some lof 
its applications. 
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8-4 SAMPLE SIZES FOR VARIANCE ESTIMATION AND COMPARISONS 

8-4.1 SAMPLING A SINGLE NORMAL POPULATION TO ESTIMATE SIGMA 

In Chapter 4 we discussed the sample variance, the sample standard deviation, and other measures of 
dispersion, such as the sfimple range, along with unbiased estimates of the normal population parameters. 
Also we established confidence bounds for appropriate population parameters. Since the chi-square distribu- 
tion is more or less central to the^ statistical treatment of the sample variance and standard deviation, we 
describe some of its pro perties as related to the determination of sample sizes and the OC or power curves. In 
fact, it seems appropriate to deal first with either the variance or the standard deviation before proceeding 
with any treatment of mean values. 

Although chi-square possesses a variety of applications to many different statistical problems, our initial 
discussion will involve the sampling of a normal distribution—either to obtain a "proper" estimate of the 
population variance cjr sigma or to control errors in assessing its size. In this connection, we recall that the 
quantity 

x' = {n-l)s'loi (8-24) 

with 

s' = Xixi-xfl(n-l) (8-25) 

foUowsthechi-sq uare distribution with (« — l)df. One should note in particular that o\ must be the standard 
deviation of the normal population actually sampled. 

Our problem, Loosely stated, is to determine the sample size necessary to estimate the true unknown normal 
population sigrria. To do this, we may, as before, simply choose a significance level, such as the upper a 
probability leve 1 of the chi-square distribution, for which we would reject (with risk a) the null hypothesis if it 
is true and deter mine the sample size to obtain significance in case our null hypothesis may be false. Thus, and 
again, there is no effort to control the Type II error for a specified but very undesirable value of the normal 
population signia. To be more specific and precise, especially in dealing with chi-square, one states that the CTI 

of the normal population is equal to a value o, say, and thus his null hypothesis is //o : 0i = a. Then he 
calculates s~ emd substitutes these two values into Eq. 8-24 to obtain what we call the observed value of 
chi-square. T his observed value is then compared with the selected significance level or percentage point of 
chi-square. Vv'e could be interested in whether the true unknown population sigma is much larger than, much 
smaller than , or just "different" than the hypothesized value we assign. Thus we would use, respectively, either 
an upper sig.nificance level only of chi-square, or only a lower percentage point, or judge whether the observed 
chi-square ifalls between the upper and lower levels selected to give a Type I error of a total for the two-sided 
type of significance test. We can see in this connection that it is wise to enumerate with specific symbols the 
exact perc entage points to which we have referred. Since for the normal distribution the lower percentage 
points are; the negative of the upper ones due to symmetry about zero, we have rather loosely called z^ the 
"upper" ^significance kvel when in fact a much improved and completely satisfactory designation would have 
been zi-.^. Hence in dealing with the use of x^ we will call Xathe lower percentage point and x?-a the upper 
signific ance level. This means that for the two-sided test one would enter tables of the percentage points of 
chi-square with a/2 and not a in order to have an overall level of a. 

To 'proceed, we will mow state that we want a high probability that if the true sigma of the normal population 
we actually sample is a, we will accept this stated or null hypothesis. In fact, the rejection rate will be only a. 
Hen.ce if we further specify that we want the observed s to have this chance of being no farther than some given 
distance from the hypothesized value oi = Q if true and we also want to guard against a normal population 
wi'ih a standard deviaticm much larger than our stated value of sigma, the form of our probability statement in 
pe.Tcentage (fractional) change is 

Pr[{s -o)lo<d\ = l-a (8-26) 

'A'hen; 
d = allowed fractional deviation from sigma. 
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By using R. A. Fisher's transformation of chi-square to approximate normality, which indicates that 
(2x^) "^ is nearly normally distributed with mean [2(« — 1)] '^^ and variance unity, Thompson and Endriss (Ref. 
14) have shown that the approximate sample size required is 

n=zlji2d\* (8-27) 

For the two-sided test for which one is interested in guarding against the sample standard deviation being too 
far below or too far above the true sigma of the normal population sampled, the upper half-alpha percentage 
point, i.e., 2,.„/2> is used in Eq. 8-27. One can see that Fisher's transformation of chi-square is very useful 
indeed in this connection because it makes unnecessary a good bit of juggling around with the tables of 
percentage points of chi-square to determine the number of df by employing Eq. 8-24. (The sample size would 
then be one plus the number of df.) 

We note that Eq. 8-27 is a very simple equation for determining the sample size because it requires only an 
upper percentage point of the standard normal distribution and the fractional (or percentage) deviation in 
terms of the unknown sigma allowed. (It does not consider Type 11 errors, however.) 

Example 8-6: 
A new conical boat-tailed artillery projectile—designed and developed for an 8000 m range—was thought 

to give a sigma in range of approximately 30 m, whereas current projectiles for this same firing condition were 
known to have a sigma in range of 45 m. Find the sample size needed for a verification test firing that would 
not allow the observed sigma to deviate more than, say, 15% above the desired value of 30 m with 95% 
assurance. 

It is clear for this example that o = 30,d= 15%, and a = 0.05. Hence we see from Eq. 8-27 that the sample 
size n is determined from 

«= (1.645)'/[2(0.15)'] = 60.13 or «= 60. 

In summary, therefore, if we fire 60 rounds of the newly proposed projectile and compute its standard 
deviation in range, we would have 95% assurance that if the true sigma were indeed 30 m, the observed sigma 
would exceed this value by more than (0.15) (30) = 4.5 m. (If the true sigma were much greater than 30, Eq. 
8-24 Hkely would show significance.) 

We remark for this example that we have depended only on the idea of estabUshing significance if it be the 
case, so that the sample size is determined without consideration of placing a low risk on the possibility that 
the new projectile may even have a sigma equal to that of the current projectile. We will, therefore, now 
consider this other method of determining « and make a comparison of the two. Is there better guidance than 
planning to use a sample as large as 60? 

For the control of errors of the misclassification approach, we set the null and alternative hypotheses as 
follows: 

Null hypothesis:    Ho: oi = o, with rejection risk of a 
Alternative hypotheses:    Hi. O] = \o, with k > 1 and varying p. 

Thus for this particular formulation we are using a one-sided test and in particular are guarding against a 
larger sigma than we can tolerate in our decision. For this case Ferris, Grubbs, and Weaver (Ref. 3) have 
shown that the ratio of the undesirable sigma to the stated value of sigma and the probability levels of 
chi-square are functionally related as follows: 

^=(xlalxh''' (8-28) 

*z ^_^ is the upper a probability level of the standardized normal distribution. 
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where the number of df for chi-square is understood to be (« — 1), and we fix the Type I error rate but allow the 
Type 11 error rate P to vary. Thus for all sample sizes and any value of k, the Type II errors can be found or P 
may be taken as some percentage point and the value of k determined so that the entire OC or power curve 
maybe obtained. The OC curves of the chi-square test based onEq. 8-28 are given as Fig. 8-2, which is a repeat 
of Fig. 4-1 of Ref. 1. We illustrate the use of Fig. 8-2 in Example 8-6. 

For the purpose of detecting a normal population sigma much less than that hypothesized, the OC curves 
are given here as Fig. 8-3, which is Fig. 4-2 of Ref. 1. 

Again, some juggling is required to obtain very clear-cut answers from Eq. 8-28 since it does not give the 
sample sizes directly. Some approximate equations for determining the sample size directly can be given, 
however, and the first one we list is based on the assumption that the sample standard deviation is nearly 
normally distributed. This is not a really "wild" assumption; it has long been more or less "accepted"that the 
chi-square distribution is "nearly normal" when the df are "approximately thirty or more". Moreover, to have 
any respectable power in making any important decisions, one can probably expect the sample sizes must be 
about 25 or more! With this assumption and by applying the rather general expression (Eq. 8-5) to this case, it 
can be shown that the approximate sample size to control Type I and Type II errors to a and j8 is 

n = ill2)l-^—j-j (8-29) 

The critical region (Ref. 4) is 

_        Xo{Za + ZB) 
z>z^  (8-30) 

Za + kz^ 

Another approximate equation for the sample size is given by Chand (Ref. 4) and is based on using the 
distribution of ln(5^), which has been shown by Bartlett and Kendall (Ref. 15) to be more nearly normally 
distributed than s^, and furthermore, this logarithmic variance has the desirable property that its distribution 
depends on the unknown population sigma only in its expected value. The approximate sample size based on 
the logarithmic variance is 

/z„+z«y 
„=,+2(^ (8-3„ 

Based on a comparison of Eq. 8-29, Eq. 8-31, and the more exact values that may be determined with the aid of 
Eq. 8-28, Chand (Ref. 4) has shown that all three estimates of the sample size are only a very few, if any, units 
apart, and for the cases considered the agreement is within a unit. Thus it seems safe to conclude that a very 
satisfactory determination of the sample size to control errors of misclassif ication in tests of hypotheses about 
the size of the normal population variance or sigma can be obtained by any of the three methods. Let us now 
give an example (Example 8-7) that brings out some of these points. 

Example 8-7: 
Referring to Example 8-6, let us now add the condition that we would like to be able to reject the null 

hypothesis that sigma is equal to 30 m with 95% assurance if in fact it were the same as that of the present 
round, i.e., 45 m. 

It is now clear that we have k = 45/30 = 1.5 and j3 = 0.05 in addition to the basic data of Example 8-6. 
Referring to Fig. 8-2 for X = 1.5, we see that the required sample size for the desired protection is no more than 
approximately n = 35, if that large, as we read the curves. On the other hand, if we were to calculate n from Eq. 
8-29, we would get n = 33.8, and the calculation based on Eq. 8-31 gives n = 33.9. These sample sizes are 

♦One must be careful to note that Chand's X in Ref. 4 is actually the square of ours. 
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certainly close together on practical grounds and are smaller than the n = 60 calculated without regard to the 
control on the Type II error. In fact, a sample of size n = 60 almost surely would reject the null hypothesis that 
the round-to-round sigma in range is 30 m when it is actually 45 m. Moreover, by reconstructing the problem 
somewhat differently, one may show by using Eq. 8-29 or Eq. 8-30, that for a sample size of 60 the Type I and 
Type II errors (or "producer" and "consumer" risks) may be reduced to practically negligible values a = P = 
0.007. Thus we see that the sample size of « = 60 may not be needed for this particular problem and that on 
practical grounds it seems best to set acceptable and rejectable values of the unknown population sigma with 
suitable risks to determine sample size. Moreover, as the sample size increases, there seems to be little 
justification for sticking with a Type I error as high as 0.05 when this risk could probably be reduced to a lower 
value such as 0.01, etc. Thus it appears to be wise to frame the sample size problem very carefully in terms of 
the practical problem. 

With regard to Example 8-7, it will be of some interest for the reader to use Fig. 8-3 to find the sample size 
that will detect a sigma of 30 m when it is hypothesized that the sigma of the normal population sampled is 
45 m, the larger value. 

8-4.2    CHI-SQUARE SAMPLE SIZES FOR CONTINGENCY TABLES OR FOR CURVE FITTING 

Since the chi-square distribution is very widely used or is found to solve many diverse problems in statistics, 
it should be expected that the chi-square statistic may be employed to estimate sample sizes for contingency 
tables or for the fitting of frequency curves to show a good or poor fit, etc,. Thus expressions such as Eq. 8-28 
are found to be much more general in application than thought initially because the association relates the 
power of a significance test for the parameters involved. In fact, as an example and alternate derivation, the 
reader may substitute Fisher's transformation of chi-square in Eq. 8-28 and show that this will lead directly to 
Eq. 8-29 for sample size. 

In the statistical analysis of contingency tables as presented in Chapter 5, one often will want to know 
whether his sample size is "adequate" or, better still, will try to plan his experiment in advance by using the 
proper sample size at the beginning. If one has some preliminary data on observed proportions for a 
contingency table study that will be carried out and knows fairly well the expected or theoretical proportions, 
the sample size may be estimated from 

n^x'l{^p]lPi-\) (8-32) 
1=1 

where 
Pi = preliminary observed proportion 
Pi = expected or theoretical proportion 
k = number of classes in the contingency table 

X  = upper or lower significance level of chi-square. 

If one is deahng with frequencies instead of proportions, the sample size may be determined from 

n=Xf]lF,-x' (8-33) 
/ =1 

where 
/   = preliminary or observed frequency for the /th class 
Fi = theoretical frequency 
X^ — some percentage point, e.g., the 95% point. 
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Uitert (Ref. 16) suggests that an alternate form for estimating the sample size n is 

n = naXd/Xa (8-34) 

where 
xl = "available" value of chi-square from preliminary data 
«a = number of observations on which xl is based 
xl = "desired" or projected significant value of chi-square. 

In passing, we remark that Eq. 8-32 and/or Eq. 8-33 when solved for chi-square will give very useful 
methods of computing x^ See, for example, AUison (Ref. 17). 

Example 8-8: 
In Example 5-5, which represented a "double dichotomy" type of contingency table analysis, it was found 

that of 40 recruits selected at random and divided into one group of 18 who had previous experience shooting 
rifles and a second group of 22 who did not have any rifle-shooting experience, no discernable difference in 
expertise was shown in rifle practice. In fact, the observed proportions of 12 in 18 showing expert and 9 in 22 
showing the same degree of proficiency could occur by chance about 10% of the time under the null hypothesis 
of no difference. Could it be that the sample size was too small, and if so, what sample size would be suggested 
for another test since there seems to be a "practical" difference in the two ratios? 

Although chi-square was not calculated in Example 5-5, from Eq. 5-11 it is 

x'= 40[(12) (13) - (6) (9)f/[(18) (22) (21) (19)] = 2.63 

with 1 df. We note from a table of percentage points of chi-square with 1 df that an observed value of 
chi-square equal to about 3.85 would have been significant at the 95% level. Hence we note from Eq. 8-34 that 

«= 40 (3.85)/(2.63) = 59 

or that is, if we were to run another experiment, it would be wise on the basis of this evidence to test 59 or more 
recruits, about half with and half without experience shooting rifles. 

8-5    SAMPLE SIZES FOR COMPARING TWO NORMAL POPULATIONS VARIANCES 

The variance-ratio test or the Snedecor-Fisher ^statistic, which is the ratio of two sample variances, is used 
to test the hypothesis that the true variances of two normal populations are equal. This significance test is 
often carried out as a preliminary test before Student's t statistic is applied to compare normal population 
means (Chapter 4). If the two normal populations sampled have unequal variances, this should be known to 
the experimenter. Thus one would show some concern if the variance of one population were much larger than 
that of the other, and he would like to settle this point early. Moreover, if we are going to conduct the 
variance-ratio test, it is appropriate to have the proper sample size. Therefore, to study the problem of sample 
size determination, we define the following: 

oi = true unknown standard deviation of the first normal population 
02 = true unknown standard deviation of the second normal population 
ni = sample size for samphng the first normal population 
«2 = sample size for sampling the second normal population , 
s] = sample variance based on («i — 1) df for the first sample 
52 = sample variance based on («2 — 1) df for the second sample 
X  = ail ai = ratio of the true unknown standard deviation of the first population to that of the second. 
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In a manner similar to that of finding the sample sizes for the previous significance tests, we could determine 
the sample size from being able just to detect significance should it occur. We might, on the other hand, 
proceed to find the sample size to control the error of rejecting the null hypothesis if the variances are equal but 
to be relatively sure of rejecting this hypothesis if the quantity k should be as large as, say, 1.5 or 2, for 
example. ,We might say, however, that the present problem is a bit different from the preceding ones of this 
chapter. Specifically, we are not trying "to get close to" a parameter of the single population we are sampHng; 
rather our prime interest centers around learning as much as possible about the ratio X of the two unknown 
population standard deviations from available data. Of particular interest, for example, is the determination 
of the sample size such that the ratio of the two population sigmas will be within confidence limits of a given 
range. (The problem of placing confidence bounds about the ratio of the two sigmas was covered in Chapter 4 
but not necessarily from the standpoint of sample size determination.) 

If the two sigmas were actually equal, i.e., \ = 1, the F statistic defined by 

F = sysl (8-35) 

would follow the Snedecor Fdistribution exactly. On the other hand, for the case of unequal sigmas this is not 
so although the quantity given by 

F = syj{slol)=s'jik'sl) (8-36) 

which has been corrected for the ratio of sigmas, does follow F. Moreover, it should be clear that the relation 
(Eq. 8-36) enables one to determine the power function or the OC curve of the Ftest rather easily. In fact, 
Ref. 3 shows that the relationship between the percentage points of the F statistic with (m - 1) df in the 
numerator and {rii - 1) df in the denominator, and the ratio k of the two unknown sigmas is 

k^iFuJF^y" (8-37) 

where 
F\-a~ upper a probability level of F 
F^  = lower /3 probability level of F. 

Hence with the aid of Eq. 8-37 and tables of the percentage points of F, one can plot the OC curves of the F 
test, which we give in Fig. 8-4 for equal sample sizes. (Fig. 8-4 is taken from Ref. 3 and may be found also in 
Ref. 1. For unequal sample sizes, or unequal df in the numerator and denominator of F, OC curves are given in 
Refs. 1 and 3, which originally were published in Ref. 3.) It should be noted that Fig. 8-4 is only for a Type I 
error of 0.05. To find the sample size from Fig. 8-4, one also must specify the Type II error he is willing to 
accept and the objectionable ratio of sigmas, so that with k he enters the curves and reads the sample size n for 
the value P on the ordinate scale. We illustrate this in Example 8-9, but first we take up the matter of suitable 
equations to calculate the sample sizes directly—at least for many applied problems. 

Eq. 8-37 does not lend to the calculation of the sample size «in a very direct manner. Nevertheless, by using 
Fisher's Z, which is related to the Snedecor F through 

Z = (l/2)lnF (8-38) 

and which is nearly normally distributed for large enough df, it can be shown without much difficulty that the 
approximate relationship between the sample sizes, the ratio k, and the standard normal percentage points is 
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Chand (Ref. 4) points out that Eq. 8-39 is not very accurate for sample sizes as low as about six although, in 
practical applications, one might expect to have to deal with much larger sample sizes. In any event, with the 
aid of Eq. 8-39 one can substitute values of «i and m on the LHS of Eq. 8-39 until a match in the calculated 
value is attained with the right-hand side (RHS). Furthermore, when the sample sizes are equal, i.e., 

ni=n2 = n (8-40) 

the common sample size for the variance-ratio F is found to be approximately equal to 

n = l+4[(z,-a + z,i)/\nXY (8-41) 

so that the sample size per variance is about double that for the chi-square test as in Eq. 8-31 in sampling a 
single normal population to estimate the population sigma, and for the same risks. 

A slightly different approach to estimate sample sizes for pinning down the ratio of two normal population 
sigmas is to use an approximation for Fthat depends on a sufficiently "large" number of df and, hence, may be 
no real problem. This rule states that when one of the df is fairly large, the Fratio can be constructed so that F 
is nearly distributed as chi-square divided by the numerator number of df. (We should state here that the 
"textbook" rule to place the largest sample variance in the numerator of Fis rather artificial—and perhaps 
even a bit confusing or misleading—for actually one may take the ratio in the practical order of variances 
desired, especially since the lower percentage points of Fmay be found by switching the numbers of df and 
taking the reciprocal of the F so obtained to find the correct percentage points anyway!) This particular 
transformation of Fto an approximate chi-square would lead to the sample size of 

"=IT^J ,8-42, 
which is clearly double that of Eq. 8-29 for the variance estimation problem in sampling a single normal 
population. In fact, the reader may examine Figs. 8-2 and 8-4 simultaneously in this connection. He will note 
that if he enters Fig. 8-2 with any value of X and goes to the sample size curve for selected value of the 
probability of accepting Ho, he will find that the sample size so determined is only about one-half that for the 
same X and acceptance probability on Fig. 8-4 for the Ftest of the ratio of population sigmas. Thus it may be 
remarked that for practice one could get by quite well with only the chi-square OC curve of Fig. 8-2! 

Example 8-9: 
Let us return to Example 4-5 concerning the firing of only ten 20-mm projectiles for which the variance in 

the horizontal direction was compared with that in the vertical direction by using the Ftest. It was found that 
no significant difference was observed in the horizontal and vertical true sigmas. What sample size would one 
need to fire to reject the hypothesis of equal sigmas with 95% probability if the true sigma in the vertical 
direction were actually 1.5 that of the horizontal true sigma? By entering Fig. 8-4 with A = 1.5 and by trying to 
read the OC curves for a P probability of 0.05 on the ordinate scale, we see that the sample size n is greater than 
50 but less than 75. A computation using either Eq. 8-41 or Eq. 8-42 gives an « = 67. Thus the test of only 10 
rounds becomes somewhat superficial, and a much larger sample size would have been required to pick up 
even a 50% difference in the horizontal and vertical sigmas! 

So far we have used the power function of the Snedecor-Fisher ftest to determine sample sizes for the 
comparison of two normal population sigmas or to control the ratio of them. However, we should remark, as 
is well-known, that the F variance ratio is much more general in application. In fact, the F ratio is just as 
important in the ANOVA test for any number of treatments, and thus we would often need to determine 
sample sizes here. We will reserve this type of discussion for a later paragraph. It is best now to proceed with 
sample size determination problems for one or two populations. 

With our discussion of the problem of sample size estimation to compare two unknown normal population 
sigmas, we are now ready to take up the next topic, i.e., sample size determination for normal population 
means. 
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8-6    SAMPLE SIZES FOR ESTIMATION OF NORMAL POPULATION MEANS 

8-6.1    SAMPLE SIZES FOR MAKING INFERENCES ABOUT THE SIZE OF A NORMAL 
POPULATION MEAN 

The idea is to draw a single random sample of size n from some normal population and on the basis of it to 
determine the size of the true mean within given bounds. The ordinary Student's / test is a natural statistic for 
this purpose since the only unknown population parameter in it is the population mean itself. Moreover, the / 
statistic has the sample size directly in it! As we well know, Student's t for a single sample from N{IJL,O) is 

'n(x — u.) 
t = ^-^^ — (8-43) 

s 

and this quantity follows the t distribution with (« — 1) df as in Eq. 4-100. Suppose we would hke to require 
with "large" probability that the population mean will be within a given distance of the sample mean or to be 
able to pick up a departure, say, d between the two if it occurs. That is, we want 

Pr[-d <{x- n)<+d\ = \- a 
(8-44) 

= Pr{—Jndls < ^Jn{x - /x)/-^ ^ ^/nd/s]. 

But since the middle quantity is / and hence distributed as Student's /, we can equate the positive bound to the 
upper half-alpha level of probability and solve for the sample size n from 

2.2 
S ti-a/2 

r n-\= r-~l-* (8-45) 
d 

Thus the sample size necessary to guard against a departure of the population mean from the sample mean by 
as much as d or to detect the departure d if it should occur is determined from the sample variance multiplied 
by the square of the half-alpha probability level of Student's t divided by the square of the departure sought. In 
this connection, the reader should note that we have not assumed that the true sigma of the normal population 
sampled is known. Rather, we may have merely an estimate s of it. Had we actually known the true sigma, we 
could simply replace s in Eqs. 8-43 through 8-45 with it and deal with a normally distributed statistic instead of 
a / variate, and the sample size would then be determined in terms of the known population variance in Eq. 
8-45. 

Another possibihty for this type of problem is to hypothesize that the true mean of the normal population 
sampled is, say, /x = a and to compute the / of Eq. 8-43 as if this were so. However, should it be that the correct 
value fj. of the true mean of the normal population departs from a by the amount d, on the average (x — a) 
would either increase or decrease by the amount d; therefore, we would have confidence (1 — a) that such 
deviation would be noticed in our significance test. 

In summary, our test procedure is simply to be able, with "high confidence", to observe some departure dm 
means if it occurs, and we have set only the Type I risk level but not the Type II error, which we might like to 
guard against also. 

An alternate, approximate procedure for sample size determination is to divide the sum of squares (SS) 
about the sample mean by (« — 3) instead of the usual (n — 1) and hence have a quantity that is almost 
normally distributed, as in Eq. 4-105. This new quantity will be referred to as 2, a normally distributed variate, 
so that the relation with / is given by 

z = /[(n-3)/(A7- 1)]'^'. (8-46) 

♦This equation has df on the left since Student's t is in df. 

8-28 



DARCOM-P 706-103 

This would mean that the sample size n is determined from 

2   2 
SaZl-a/2 

n = -^ (8-47) 

where the new variance Sa is based on the divisor (n — 3). It will be of interest to make a comparison of these 
two methods, or equations, for estimating sample size. 

Example 8-10: 
Given the 11 muzzle velocities of Example 4-1, use these data to find the sample size necessary to determine 

the true muzzle velocity of the 155-mm projectiles within a distance of one sample standard deviation with 
95% confidence. 

The sample standard deviation in Example 4-1 based on (« — l)df is 10.25, so that we take J= 10.25, which 
cancels with the 5 of Eq. 8-45 anyway. Hence for the 95% confidence level all we have to do is look in a table of 
the 97.5% points of Student's / until the square of a value of? in this column minus one equals the number of df 
or the square root of one plus the number of df is equal to the tabulated point. We find for this problem that 
(n — 1) is just larger than 5, so that we would taken =6, which is a smaller sample size than in Example 4-1. 

Alternatively, Sa based on the divisor (n — 3) instead of (« — 1) would be 11.46 instead of 10.25; therefore, the 
sample size calculated from Eq. 8-47 would be about 5. Since we are dealing with very low sample sizes, it 
cannot be expected that the agreement, especially with an approximation, would be perfect. 

Thus in drawing a random sample from a single normal population, we see from the examples that it will 
often be of interest to decide just what we are really sampling for, especially since we may be able to save on 
costs of tests that otherwise might be expensive. The proper determination of sample size often leads to some 
surprising conditions in experimentation! Again, however, we have so far dealt with only one end of the OC 
curve in our test relative to a normal population mean. We say this even though we do have a useful procedure 
for assuring a high degree of confidence that if a difference of interest is present we will notice it, except for a 
low chance result. Let us now, however, proceed to the use of the entire OC curve for Student's / statistic or at 
least to the two key points for the size of an acceptable population mean and the alternative relative to an 
objectionable or unacceptable value of the mean. As before, we frame the problem in terms of a null and an 
alternative hypothesis. 

For the control of Type 1 and Type II errors approach, the null hypothesis is 

Ho: the unknown normal mean n = a. 

Then we will be concerned to determine the sample size to guard against alternatives of the form 

H\: l/x — a| = Xa 

that is, if the departure of the true mean n from our hypothesized value a is some lambda sigma units away, we 
will want to be able to detect this with high probability, especially if lambda is, say, as large as 1.5 or 2. The 
reader should note in particular that we have expressed the deviation in units of sigma since this seems to be 
desirable and indeed also fits in better with the theory. OC curves for the / test were published in 1946 by 
Ferris, Grubbs, and Weaver (Ref. 3) as their Fig. 7. These curves are also given in Ref 1 and repeated here as 
Fig. 8-5. The abscissa of Fig. 8-5 is for values of the relative deviation A. in the number of sigma units the true 
mean is from the stated or hypothesized mean value, and the ordinate gives the chance of accepting the null 
hypothesis of no difference as a function of the quantity lambda. The Type I error is 0.05 only. As a quick 
example, suppose one desired the sample size to be able to detect with 95% assurance a departure of the true 
normal mean from the stated value of one sigma. Then, by entering the curves of Fig. 8-5 with A. = 1, he will 
read that n » 15. Thus one would select a sample of size 15 from the single normal population, carry out 
Student's t test at the upper 5% level, and reject the null hypothesis of no difference if the observed t exceeds 
the 95% level of ? for 14 df 
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If the null hypothesis Ho is true, the chance of accepting it is given by 

Pr[-/„^2 < ^ < + to,2^ = 1 - « (8-48) 

where we usually set a = 0.05. On the other hand, if Ho is not true and some alternative H\ becomes true 
because the correct mean of the normal population sampled is not equal to a, but departs from it by lambda 
units of the population standard deviation a, Eq. 8-48 becomes equal to ^, where from Ref. 3, 

P = Pr[-t„i2slo + X\fn<sJn(x- ^l)|a< + ta,2s|o + k^fn'\ (8-49) 

and also where X is equal to 

\=\ix-a\lo. (8-50 

Thus for any given values of the percentage points of the t distribution selected—along with values of sigma, 
the deviation A in sigma units, and the sample size—one can calculate the power or OC curves from Eq. 8-49. 
Ref. 3 covers several methods that were used and checked against each other to determine the OC curves given 
on Fig. 8-5 for the? test. In fact, instead of the form given in Eq. 8-49, Ref. 3 shows that one may use the chance 
of Type II errors ji as expressed by 

y/n(x — u)lo + \\/n 
P=Pr[-ta/2<  : <+ta/2] (8-51) 

sj a 

where in the middle expression of the numerator, the first term is a unit normal variable and the second term is 
known as the noncentrality parameter of the noncentral t statistic expressed by the middle fraction. The 
denominator in the middle term is a chi variate. Rather extensive tables of the noncentral t distribution were 
pubHshed in 1957 by Resnikoff and Lieberman (Ref. 18). With their tables the OC or power curves may be 
determined for Student's t statistic. 

In comparison with the OC curves of Student's / on Fig. 8-5, we give on Fig. 8-6 the OC curves of the normal 
test, which assumes that sigma is known as indicated. Of course, the two sets of OC curves are very similar, and 
as the sample size increases we know that t becomes normally distributed so that ultimately the OC or power 
curves of t and the normal variate would coincide. In fact, it is interesting for the reader to make a direct 
comparison by superimposing the normal OC curves of Fig. 8-6 over those of the t test on Fig. 8-5. It becomes 
easy to observe in this connection that for the very small sample sizes of about four to seven the OC curves of 
the t test with n increased by two are about the same as those of the normal statistic! Then for somewhat larger 
sample sizes the OC curves of the rtest f or (« + 1) nearly coincide with those of the normal statistic for sample 
size n. When the sample sizes get above « = 20 or more, the OC curves of t and the normal variate begin to 
coincide for the same sample sizes. This suggests that the normal approximation for sample sizes, i.e., Eq. 8-4 
or Eq. 8-5, would be sufficiently accurate for many problems in the determination of sample sizes for t. 

If we were to know sigma accurately and desire to test the hypothesis that the true mean of the normal 
population sampled is equal to a, i.e., iJ.=a, versus an alternative that states that the true mean is not equal to a 
but rather that n = m, the sample sizes to control the error of rejecting the null hypothesis when true to the 
value a and the risk of not rejecting the null hypothesis when it is false and )U = /xi to the value of ^are simply 

n = [iz„ + zp)IXf (8-52) 

where k is the departure of the true mean from a in standard deviations, i.e., 

k = \ni-a\lo. (8-53) 
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Furthermore, if we were to sample two normal populations for the purpose of comparing their true mean 
values and they have a common known sigma, the sample size for this purpose is simply double that of 
Eq. 8-52 since the variance of the difference in sample means would be double that for a single mean. The 
critical region is always based on the significance level a chosen. 

Now returning to Student's t test of Eq. 8-43 and our problem of controlling Type I and Type II errors to 
find the sample size, Neyman and Tokarska (Ref. 19) have contributed a key study of this problem and give 
samples sizes needed. On the other hand, Chand (Ref. 4) gives an approximate sample size, which is found 
from 

n = [(z„ + zp)/ kf + zi/ 2 + 1. (8-54) 

In a comparison of sample sizes based on Eq. 8-54 with those of Neyman and Tokarska (Ref. 19), Chand 
(Ref. 4) shows that the agreement is excellent even for the smaller sample sizes. However, the sample sizes 
based on the normal approximation of Eq. 8-52 are off about two for the smaller sample sizes of about four to 
seven. We note in this connection that Eq. 8-54 actually provides a correction to Eq. 8-52 in the form of adding 
half the normal significance level squared plus unity. 

Although the straight normal approximation of Eq. 8-52 is off for the very smallest sample sizes, we might 
nevertheless consider the approximately normal Student's t with the divisor of (n - 3) for the SS deviations 
about the mean, that is, the quantity given by Eq. 4-105. The approximate normal variate is the z given in 
Eq. 8-46, so it should be clear to the reader that the actual sample size from this approximation is the normal 
sample size multipUed by the ratio (« - 1) / (n - 3). This means, as the reader may check, that for the smaller 
sample sizes one adds about 2, i.e., n is given by 

n^2 + [(z„ + zn) I kf (8-55) 

and for sample sizes over about 25 we simply use the normal approximation of Eq. 8-52. Let us now give an 
example (Example 8-11). 

Example 8-11: 
Suppose that an acceptance test were being conducted for the 11 observed muzzle velocities for the 155-mm 

projectiles in Example 4-1. It was desired, furthermore, that the true mean velocity of the projectiles should be 
the nominal velocity of 2500 ft/s but no lower. Thus if the true or large sample muzzle velocity of the 
projectiles were, say, 2480 ft/s, one should have a very high assurance that the lot sampled for firing should be 
rejected. With these data find the sample size required in such a test to control risks of erroneous judgment to 
about 5% each. 

Although we may have some idea concerning the size of the round-to-round standard deviation from the 
previous firing of Example 4-1, we should be cautious concerning the firing of only 11 rounds for either 
acceptance or rejection of an expensive lot of ammunition. Since the round-to-round standard deviation in 
muzzle velocity is expected to be about 10 ft/s, we will use this for sigma. Also we have that A = 2. Using the 
straight normal approximation of Eq. 8-52, we get n = 2.1, which we know is too small, and hence we know 
that Eq. 8-55 would give 4.7, so we take « = 5. The reader may also note that Eq. 8-54 gives n = 5.06 (we use 
n = 5). Therefore, to our surprise, a sample of size five would meet our specified risk requirements. (One may 
note that the sigma of an average is 10/x/5 = 4.5 ft/s, and we are picking up a deviation of over four times this 
value.) 

8-6.2    SAMPLE SIZES FOR COMPARING THE MEANS OF TWO NORMAL 
POPULATIONS 

After determining the sample size for making inferences about the single normal population mean, our 
purpose is to find sample sizes relating to the problem of comparing two normal population true means when 
the common standard deviation is unknown. Recall that significance tests for comparing normal population 
means were discussed in Chapter 4. This included the use of the F test to establish that the two normal 
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populations sampled had a common (or equal) variance(s), and it also included the Behrens-Fisher-type 
problem for the case in which the two unknown population variances might be unequal, as in par. 4-7.3.2. 
Student's t statistic for conducting a comparison of two means in a significance test for equal sigmas was 
discussed in par. 7-3.1. First, however, we will start with the comparison of two unknown normal population 
means for the case in which the variances are equal and accurately known. The notation for this particular case 
is as follows: 

a = known population sigma of the two populations 
x\ = sample mean of first population sample 
X2 = sample mean of second population sample 
fX[ = first population unknown true mean 
fi2 = second population unknown true mean 
a =risk of rejecting the null hypothesis that JJLI — 1x2 when true 
)3 =risk of accepting the null hypothesis when actually ii2> ixiov H\ is true 
A. -\1x2- iJ.^\lo. 

If it is assumed that the sample sizes are equal, i.e., n\ =«2 =n, the sample statistic used for testing the null 
hypothesis that the two true means are equal is simply 

z = {xi-X2)\/n/\/2o. (8-56) 

The \/2in the denominator is necessary because we are dealing with the standard deviation of the difference 
between two sample means. Thus without going through the usual derivation, we can see immediately that the 
needed sample size is 

n = 2[z,+ Zp)/Kf. (8-57) 

Note that the sample size to control the stated risks is now double that for the single sample case of sampling 
only one normal population. Moreover, it also should be clear that when the variance is doubled, the sample 
size must be doubled also. 

When the sample sizes and the two population sigmas are unequal, but the sigmas nevertheless are known 
accurately, the sample test statistic for equality of the two normal population true means is 

z = iXi-X2)l{oilni + al/n2y'\ (8-58) 

A solution may still be found if we know the A: for which 02 = ko\ and the relationbetween the two 77's, i.e., 
«i = dn2. Moreover, Ferris, Grubbs, and Weaver (Ref. 3) point out that the Type II error (3 may easily be 
found from Fig. 8-6 for any A'—say, n\ and «2, and k—by selecting the OC curve for any convenient sample 
size n and taking 

. X = X'(«i«2)'^'/[A2(A:'«i+«2)]'^'. (8-59) 

In summary, rather complete knowledge of the relation between the sigmas and the ratio of the n's must be 
known for this situation. 

The more prevalent and important case for comparing two normal population true means concerns the 
situation for which we have no knowledge about either the relative size of the variances or the true means. We 
will, however, have established that the two normal populations have a common standard deviation or will 
resort otherwise to the Behrens-Fisher test of par. 4-7.3.2. For the case of equal sigmas or a common sigma, 
the determination of sample size is somewhat more complicated than for the case of known sigmas; and for the 
unequal sigma case requiring the Behrens-Fisher statistic, the best choice is probably to use the normal 
approximation for which the quantity {n — 3) instead of the actual number of df equal to (« — 1) is used as the 
divisor in Student's / statistic. 
8-34 
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When it has been established on the basis of an Ftest that the two normal population sigmas are practically 
equal, one proceeds to calculate Student's t statistic 

t = {x^-x^)^l{s^Jl) (8-60) 

where the quantity s^is the unbiased estimate of the common variance as in Eq. 4-108 and we assume equal 
sample sizes n. For this very prevalent case Chand (Ref. 4) suggests that the proper sample size to take from 
each of the two populations should be found from 

n = ; z  (8-61) 

where the value of 6 is 

b=2 + il+zll4)k'/iz,+ zp)\ (8-62) 

If one endures the algebraic trouble of substituting for b from Eq. 8-62 into Eq. 8-61 and simphfies as much as 
possible to two terms involving the expansion of the square root term, he will find that Eq. 8-61 is 
approximately equal to the normal approximation of Eq. 8-57 plus about 2! 

To add to this enUghtenment, one might well consider the Smith (Ref. 20) approximately normal statistic of 
Eq. 4-124 for comparing two unknown normal population means assuming no knowledge of the two 
sigmas—and which he will find in consonance with what we established previously—that the sample size may 
be taken as approximately equal to the numerical value determined from Eq. 8-57, which we further multiply 
by (« — l)/(« — 3) by using the n from Eq. 8-57. Thus we may now establish a rather general rule for the 
calculation of sample sizes. First, calculate n from Eq. 8-57 and use it if « exceeds about 20 or 25. Otherwise, 
and especially if n is perhaps 15 or less, multiply by {n — l)/(n — 3); or if you hke, use the normal 
approximationofEq. 8-57 and multiply by the quantity (« — 1)1 {n —3) to obtain the final n! IfnfromEq. 8-57 
is very small, say four or five, then add two! 

As a point of particular interest, the reader may have observed by now that the determination of sample size 
often seems to be detached from a given problem. For example, if one faces the problem of determining 
sample sizes for mean values, he very often must take the sum of the two upper probability levels of the 
standard normal distribution, divide this sum by the difference between the desired and undesired mean levels 
(which must be expressed in standard units), and then square the result for the single sample case. If he is 
dealing with the two-sample case, he merely doubles this answer! Of course, the problem of dealing with the 
ratio of two sigmas seems a bit different, but the normal approximations work very well there too! Example 
8-12 illustrates the process of determining sample sizes for comparing the means of two normal populations. 

Example 8-12: 
Consider the data of Example 4-8 relative to a comparative test of current standard mechanical time fuzes 

used for reference purposes and a "better"fuze proposed by a manufacturer to replace the reference lot when 
exhausted. In this connection, it would seem that the mean value of 4.8 s for the proposed fuze is a bit low, and 
perhaps such a lot should be rejected, i.e., not used for reference purposes. The sample size of 10 would appear 
to be quite small and perhaps would give a flawed judgment! If we were to set the risks of erroneous judgment 
concerning the new lot of reference fuzes at, say, 2.5% and were to desire to pick up a difference of 0.10 s 
between mean values of the new lot of mechanical fuzes and the current reference lot (which has always been 
quite satisfactory), what sample size of each lot should we test? 

To begin with, we should use whatever information can be gleaned from the data of the previous test. We 
note that the standard deviation of an individual fuze appears to be about 0.03 s less than that of the current 
reference lot although such an observed difference may not be significant. In any event, we have some reason 
to believe that a standard deviation of about 0.10 s should be quite satisfactory, and it will be difficult and 
perhaps costly to produce better fuzes. Thus we may as well take sigma equal to 0.10, and the difference of 
0.10 s in which we are interested amounts to one sigma. 
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Next, if there were a difference in standard deviations of the current and proposed fuzes, perhaps an Ftest 
for large samples would show this, and perhaps the Behrens-Fisher test of par. 4-7.3.2 should be used. On the 
other hand, we know that the approximate test of Smith given by Eq. 4-124 and detailed in Ref. 20 takes care 
of different standard deviations very well. Therefore and in summary, we propose to use the normal 
approximation of Eq. 8-57, determine what it gives for n, and perhaps multiply the result by {n — l)/(« - 3). 
Finally, if we become a bit puzzled, we could calculate n from Eq. 8-61, which, however, assumes equal 
sigmas. If we need to get very fussy about the sample size, perhaps we need to do a bit of research to see 
whether one of the Behrens-Fisher types of tests would give a different—larger—sample size. 

Since we are using the 97.5% probability levels, both standard normal deviates are equal to 1.960; by using 
Eq. 8-57 with A = 1, we find that « = 31.7. If we multiply this value of « by («-!)/(«- 3), i.e., 29.73/ 27.73, we 
get the final n = 32.95, or 33. On the other hand, assuming equal sigmas (and we are somewhat assured they 
will be about 0.10 s), we find from Eq. 8-61 that « = 31.7; therefore, we conclude a sample size of about 31 
would be quite appropriate. 

This completes our coverage of the problem of sample size determination for the more common statistical 
tests of significance, which are carried out in many experimental situations. We believe that our presentation 
of this coverage will be useful for most of the applied problems the analyst will face in sampling a binomial or 
normal population. However, we will now devote a little attention to sample sizes and the power function or 
OC curves for the ANOVA test. 

8-7    POWER FUNCTION AND SAMPLE SIZES FOR THE ANALYSIS OF VARIANCE 
TESTS 

Although Student's t statistic is used to compare two unknown normal population means, the Snedecor- 
Fisher F test is used for the purpose of making judgments concerning whether or not several normal 
population means can be considered to be equal. 

We will consider an ANOVA for samples of size n drawn from each of m normal populations, which are 
assumed to have the same variance, either for the observations on their original scale or after a variance- 
stabilizing transformation. The requirement is to decide, on the basis of the sample results, whether or not an. 
undesirable amount of variation among the true means of the m normal populations exists. The usual test is 
the F test of significance—calculated by taking the SS of the m sample means about the grand average, 
converted to the equivalent variance of an individual observation, and divided by the number of df (m — 1); 
this result is divided by the SS within the m samples divided by the min - 1) df. Thus we define 

Xij =  rth item (observed value), / = 1,2, . . .,n, of theyth sample,/ = 1,2, . . .,m, drawn at 
random from theyth normal population 
m 

x.j =   X Xij In = sample average from theyth population 
1=1 

x.. = grand average of all wn observations. 

The calculated F statistic or ratio is 

m r- n m -t 

F = nm{n - 1) S{x.j - x..fl   (m - 1) 2 S(xy - 3c.,)'   . (8-63) 
y'-i L 1=0-1 J 

Thus we are dealing, for illustrative purposes, with a one-way classification in the ANOVA although the use of 
the F ratio here could be considered to be much more general. If the observed Fin Eq. 8-63 exceeds the (upper) 
significance level chosen, we conclude that the population means are not equal. If some of the normal 
population means are unequal, there is an additional component of variance among them as contrasted to the 
residual or "within" variance a^ of the m normal populations sampled. Therefore, we might say that if the null 
hypothesis of no difference in levels of the m normal populations is invalid, we may describe this additional 
variance as, say, d^a^. Then under the null hypothesis we have 
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And under the existence of an invalid Ha, so that the alternative hypothesis of unequal true means prevails, we 
see that 

Hi:d>0. 

Moreover, since the variance among sample means of n observations is a^/n, the total variance among the 
sample means if H[ holds is 

a'/n + 0V = xV/« (8-64) 

where we have set 

X^ = 1 + nd\ (8-65) 

At this point, we must consider that there are two possible models for the ANOVA. First, there is the Model I, 
or fixed-effects model, for which our interest is only in the particular m treatments we tested in the experiment. 
Therefore, for the fixed-effects model we might, for example, be interested in which of the m treatments is the 
superior one and not regard a hypothesis that covers the possibility that m treatments may have been random 
selections from a larger population or universe. There is also the Model II, or random-effects model, for which 
we assume that the m treatments are chosen at random from a universe of their own, so that the sample results 
may be used to infer characteristics of the "population of means" from which the m samples were randomly 
drawn. 

For the Model I, or fixed-effects case, the power function of the ANOVA test has been thoroughly studied 
by Tang (Ref. 21), who tabulated the relevant characteristics of it. Thus we refer interested readers to that 
publication for dealing with the case of a (relatively small) number of fixed effects. 

For our limited purposes we will cover only some points concerning the random-effects means, i.e.. 
Model II. For this case, the quantity Fj X^ follows the Fdistribution with {m — 1) and m{n — 1) df, respectively, 
so that the OC curves of F could be entered to find, for various values of 6, the chance of accepting the null 
hypothesis Ho when the alternatives Hi are true. Thus such OC curves for F would have to be for different 
sample sizes, «i = m and «2 = nm ~m + I, with the value of X for entering the curves given by Eq. 8-65. The 
OC curves for Fon Fig. 8-4 are for equal sample sizes, whereas for illustrative purposes we indicate on Fig. 8-7 
just how the OC curves may appear for certain cases of the sample sizes. Additional OC curves for some other 
sample sizes are given in Refs. 1 and 3. 

As an example of the use of such OC curves as those depicted for certain sample sizes on Fig. 8-7, suppose 
we were faced with the design of some experiment for which the number of populations to be sampled were 
rather indefinite and the total sample size of the experiment had to be limited to, say, mn = 24. Then our 
divisionof the An/2 =24 into the number m of samples and the size « of each would depend on the size of 0we 
would like to be very positive of detecting if Hi were actually true. This particular computation has been made 
by Ferris, Grubbs, and Weaver (Ref 3), and we give their informative table here as Table 8-3 for the best 
division of only 24 test observations. Note that for the smaller values of 6 one places more emphasis on the 
estimation of sigma by sampling only two or three of the possible different normal populations. On the other 
hand, and as the value of 6 becomes large, i.e., there is quite a significant variation among the true means of the 
populations, more emphasis should be directed toward sampling as many of the different populations as 
possible. 

Perhaps there will be a large number of cases for which the approach and tables of Tang (Ref. 21) will be 
required; on the other hand, the rather simple Model II approach covered here also may be found useful 
perhaps as a preliminary calculation to more or less decide on the particular Model I experiment. Moreover, 
the random treatments dealt with here for Model II obviate the difficulties imposed by the noncentral 
chi-square distribution, and there often will be cases in which one will want to know the relative sizes of 
components of variance in many experimental situations. For a suitably large number of treatments, it can be 
said that the Model I case approaches that of Model II. 
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TABLE 8-3 

VALUES OF m, n, AND 6 FOR BEST POWER WHEN mn = 24 (Ref. 3) 

m n e 

2 12 0.00-0.32 
3 8 0.32 - 0.60 
4 6 0.60-0.91 
6 4 0.91 - 1.37 
8 3 1.37 - 2.50 

12 2 2.50- 

Reprinted with permission from "Operating Characteristics for the Common Statistical Tests of Significance" by Charles D. Ferris, 
Frank E. Grubbs, and Chalmers L. Weaver, Annals of Mathematical Statistics XVII, No. 2 (June 1946). Copyright©by Institute of 
Mathematical Statistics. 

For numerous practical or experimental situations, one does not have to know either the power of the test 
or the sample size exactly; good approximations will be sufficient. In this connection, Pearson and Hartley 
(Ref. 22) have provided charts or graphs of the power function, derived from the noncentral ^distribution, for 
the ANOVA technique, and these should be adequate for most experimental situations. The reader is urged to 
use these charts, at least as a first try. 

Guenther (Ref. 23) has made a study of the power and sample size determination problem when the 
alternative hypotheses are given in terms of the quantiles of normal distributions. In fact, the power of 
normal-theory tests about mean values of populations depends on a noncentrality parameter, which unfortu- 
nately is a function of the unknown parameter sigma. Hence to calculate the power and solve sample-size 
problems, one usually expresses differences in mean values in terms of the unknown sigma, which overcomes 
this problem and is quite natural anyway since sigma characteristically is the parameter that well describes the 
width of the distribution sampled. Guenther (Ref. 23) points out that one may express alternative hypotheses 
in terms of quantiles. In other words, instead of hypothesizing that the mean of one normal distribution is 
greater than that of another, one could say that the 50% point of one normal distribution is at the same level as 
the 60% point of another normal distribution, which is another way of describing that the mean of the first 
normal population exceeds that of the second one. Furthermore, Guenther points out in his paper that the 
quantile approach also eliminates the unknown population sigma from the problem. In Ref. 23 Guenther 
covers the problem of sample-size determination using quantiles for sampling a single normal population, 
comparing two normal population means, or making hypotheses about the true means in a one-way 
classification of the ANOVA. He also covers several treatment means for randomized complete blocks. The 
key parameter used for the alternative hypotheses is expressed in terms of the SS of deviations of the true 
means from a central mean. Thus the reader may also want to consider this approach for the determination of 
sample sizes in the more complex experiments or even for some of the common statistical tests of significance. 

Odeh and Fox (Ref. 24) have published a series of charts for dealing with the sample-size-choice problem 
for tests of statistical hypotheses in connection with designing experiments. As we have indicated, one should 
consider both the significance level and also the power (or OC curve) of the test for experimental comparisons. 
One can control both of these quantities by selection of the number n of replicates since the power for a fixed 
significance level a increases as the sample size n increases. The Odeh and Fox charts of Ref. 24 are designed to 
enable one to find the proper sample size n for a given a and desired power in experiments for which linear 
models are appropriate. A wide range of both significance levels and degrees of power are covered in Ref. 24. 
Ref. 24 also has extensive tables of the percentage points of both the Fand chi-square distributions, and in 
addition the tables give pertinent references concerning previous tables, charts and programs, and many 
examples and computational methods. 
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8-8    SOME ADDITIONAL DISCUSSION ON SAMPLE SIZE DETERMINATION FOR ATTRIBUTE 
AND NORMAL POPULATION SAMPLINGS 

Although we have covered a considerable amount of the statistical Hterature concerning sample size 
determination for binomial and normal population sampling in connection with some typical Army experi- 
ments, there are some additional topics the Army analyst might find of interest in his work. 

With reference to an extension of binomial-type comparisons to the analysis of multinomial populations, 
Guenther (Ref. 25) gives some very pertinent discussions relevant to the power and sample size for 
approximate chi-square tests that are so often used in multinomial comparisons. In Ref. 25 Guenther presents 
methods of power calculation and sample-size determination and then illustrates the three most frequently 
used types of the multinomial comparison tests. These include the specification of multinomial p's under the 
alternative hypothesis, the test of independence in association, and the test of homogeneity. Such calculations 
involve noncentrality parameters of chi-square, as would be expected, and these are given in Guenther's paper 
(Ref. 25) together with an example of each of the three types of multinomial analyses. In particular, the tables 
of the cumulative noncentral chi-square of Haynam, Govindarajulu, and Leone (Ref. 26) are found to be very 
useful. 

For the binomial type of sampling inspection, Hahn (Ref. 27) discusses the problem concerning what is the 
smallest number of units that need be sampled from a lot for the probability to be at least a given percent that 
the lot will be rejected if it contains/? percent or more defectives. These particular sampling plans call for zero 
observed defectives in the sample for the lot to pass inspection. Thus an important shortcoming of the 
"minimum size sampling plans" is that the percent defective of the lot sampled must be appreciably lower than 
the allowed percent defective for there to be a high probability of passing the inspected lot. The reader may 
check this by calculating the OC curve for any zero defects single sampling inspection plan, and he should note 
that the OC curve comes down very sharply for increasing values of the percent defective in the lot. 

The subject of order statistics and the many types of applications to various Army problems are discussed in 
Chapter 7. One of the rather important topics presented in par. 7-7.5 is tolerance intervals. Recall that the 
tolerance interval is that interval of the largest and smallest sample values, for example, and no matter what 
the distributional shape, one can make a confidence statement that the tolerance interval includes a certain 
percentage of the distribution sampled. Eq. 7-31 gives the relation between the sample size, the proportion of 
the population covered by the tolerance interval, and the confidence level stated or desired. Hence it is seen 
that Eq. 7-31 may be used to determine the sample size necessary to include a desired percentage of the 
population sampled for a given level of confidence. We record here that the determination of the sample size 
may be by the methods of Guenther in Ref. 10 or in Ref. 28. There would seem to be many Army applications 
for which such sample sizes are desired. 

If one is interested in the determination of sample sizes for tolerance intervals on the normal population 
sampled, it is suggested that he study Faulkenberry and Daly's paper (Ref. 29). They discuss both the 
one-sided and two-sided types of tolerance intervals. If one knows that the sampled population is normal, this 
would lead to either a shorter tolerance interval for the same sample size as that used to sample a general 
unknown distribution, or for the same width of tolerance interval, the sample size would be smaller for the 
known normal distribution than for a general unknown shape. Thus this represents another area of applica- 
tion for which sample sizes are important. ^ 

Returning to the sampling of two normal populations to make a comparison of their mean levels, or 
especially to determine whether one of the normal populations generally exceeds the other in level of 
operation, Guenther (Ref. 30) discusses the determination of sample sizes when one desires to make the 
comparison on the basis of quantiles. As stated in Ref. 30, Guenther shows that the solution to this problem 
depends on the noncentral t distribution, and he establishes a rather simple equation (his Eqs. 2.7 and 2.9) for 
the estimation of sample size. An instructive example with a detailed solution is also given by Guenther in Ref. 
30. 

As contrasted with the ordinary ANOVA technique using the Ftest to judge whether the means of several 
normal populations are equal, Bechhofer, for example, in Ref. 31, began a series of studies relative to multiple 
decision procedures for ranking the means of normal populations that are sampled for the purpose. In this 
connection, one may sample to some predetermined sample size and then stop to make a judgment concerning 
the ordering of the normal population means. A number of papers have been published on this procedure for 
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sampling several normal populations, and in fact, the amount of literature has grown rather extensively. For 
the sample size determination problem we suggest that interested readers consult the paper of Ramberg 
(Ref. 32). Ramberg gives two conservative sample-size approximations for this particular sampling proce- 
dure. Although there could be many applications of the Bechhofer type of sampling to rank normal 
population means and/or variances, we cannot explore this area of investigation any more thoroughly. 

In addition to our somewhat useful—but also rather incomplete—account of the sample size determination 
problem in general, the reader will have noticed that we limited our discussion to some of the more usual types 
of statistical problems he will face in day-to-day work. However, we also should remark that many other 
problems exist that require the a priori selection of sample size in order to conduct an experiment properly. 
For example, in addition to our coverage there is the whole area of curve fitting, least squares, and regression 
applications. The determination of sample sizes for these types of problems has not appeared very widely in 
the statistical literature as yet although it is expected that more and more papers on this and other subjects will 
appear. An example of a study on the selection of sample size for regression analysis is that of Park and 
Dudycha (Ref. 33). Park and Dudycha (Ref. 33) have developed what they refer to as a "cross-validation" 
approach to determine sample sizes for regression models. They discuss both the fixed model case, for which it 
is assumed that the independent variables are (mathematical) quantities free of error, so to speak, and also the 
random model, which refers to the case for which the dependent variable y is predicted in terms of random 
variables x,, which follow the multivariate normal distribution. Several tables are given in Ref. 33 to aid in the 
selection of sample sizes. This type of problem can become rather involved when one also may have to select 
several variables from many possible independent ones in the course of his regression studies. 

So far, our sample size determination discussion has centered around two of the more important distribu- 
tions in much analytical work, i.e., the binomial and the normal distributions. Nevertheless, we think it 
desirable to include some hmited account of sample sizes for sampling exponential distributions. In this 
connection, there are many problems in the currently important fields of reliability and life testing that also 
require selection of sample sizes. Therefore, it seems advisable to give some guidance in these areas before 
completing this chapter on sample sizes. 

8-9    SAMPLE SIZES FOR EXPONENTIAL POPULATIONS 

Many Army applications of statistical methods are related to the sampling of exponential populations 
especially in the areas of reliability analyses and life testing situations. Hence there are occasions for which the 
determination of appropriate sample sizes is of interest either for estimation purposes or for controlling Type I 
and Type II errors. Since lifetimes are generally taken on the basis of a time scale, we will use / as the measured 
random variable. Thus the exponential probability density function (pdf) of lifetimes is taken as 

y(O=(i/0)exp(-//0) (8-66) 

where ' 
0 = true unknown time-to-fail for the items tested. 

Moreover, if one were to put n items following the exponential distribution on test and measured the lifetimes 
of the first r failures, at which point the test is truncated, it is well-known that the minimum variance, best 
unbiased estimator 0 of the parameter 0 is ,.-   .    ,..„.w,^-. 

d = lXti + {n-r)t'r]/r. (8-67) 
:1. 

Moreover, the quantity 

2reid=x^{2r) (8-68) 

follows the chi-square distribution with 2r df. Thus with the aid of Eq. 8-68 one can place a confidence bound 
about the unknown parameter 6 and hence obtain the sample size or, more appropriately in this case, the 
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number of failure times r necessary to estimate Q within any desired limits. For example, suppose we wanted to 
determine the number of failures r such that the estimate of Eq. 8-67 will be within qQ of the true unknown 0, 
where q — \%, 5%, etc. Then this would mean that the bounds on d jd would be (1 — q') to (1 + q) so that we 
could equate the difference between the upper and lower aj 2 probability levels of chi-square to the difference 
[2r( \+q) — 2r{\—q)= 4qr] to obtain the needed number of failures r to achieve the estimate 6 of 6. The reader 
may verify that 

r = zi.a,2/{4g) (8-69) 

where we have used Fisher's square root transformation of chi-square to approximate normality. Thus for 
having (1 — a) confidence of getting the estimate Eq. 8-67 within a fraction q of the unknown true parameter of 
the exponential distribution, one must sample until the number of failures is equal to the upper a/ 2 level of the 
standard normal distribution divided by four times the quantity q. Example 8-13 is helpful at this point. 

Example 8-13: 
Past experience indicates that the number of miles to failure for an M ill personnel carrier is believed to 

follow an exponential distribution. It is desirable in this connection to know within 5% just what is the mean 
number of miles to failure for the population of M111 vehicles. Therefore, determine the number of failures 
that must be observed to establish the mean-miles-to-failure within 5%. 

For this problem, let us decide to use the 95% level of confidence and the two-sided test, i.e., we merely want 
the estimate to deviate either above or below the true value by no more than 5%. Thus we see that +z„/2 — 1.96, 
and from Eq. 8-69 

r = 1.96/(4 X 0.05) = 9.8, or use r = 10 failures. 

Now recall that we are deahng with the number of failures required and not the sample size, which may be 
greater. Hence we could put only 10 vehicles on test and run them until all 10 have failed and estimate the 
parameter 6 from 10 failure times, using Eq. 8-67 with r = n. Better still, to save time, put about« = 15 or more 
vehicles on test until the number of observed failures is r = 10 and stop the test, using Eq. 8-67 with n = 15 (or 
whatever) and r = 10. 

It might be interesting to point out for this example that one could logically be interested only in being 95% 
confident that the true value of the parameter of the exponential distribution will not fall below the estimate 
by more than 5%. In this case the value of r would be 

r = 1.645/(4 X 0.05) = 8.3 failures. 

Thus if we ran the test until eight failures occurred, we would have less than 95% confidence that the true 6 
would not be below the estimate by more than 5%, and if we were to continue the test until nine failures 
occurred, then our confidence would exceed 95%. 

Now we will discuss the determination of the required number of failures for guarding against a low error of 
rejecting the null hypothesis when true and also a low error of accepting the null hypothesis when it is false and 
an undesirable value of the unknown parameter prevails. 

We will refer to the acceptable value of the mean life under the null hypothesis as do and have 

Ho: 0 = 00. 

On the other hand, for the alternative hypothesis 

Hx.e = di 

and since we will usually desire that the mean life of an item, component, system, etc., be as long as possible, it 
becomes important to guard against the possibility that the true unknown mean life 6 is as low as the 
undesirable d\ (0i < 0o). 
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It is well-known from the exponential life testing theory of Epstein and Sobel (Ref. 34) that the power 
function relation between the parameters and the number of failures depends on chi-square and is given by 

doie,^xlpi2r)lxli2r) (8-70) 

where Xa(2r) is the lower a probability level of chi-square and xf-/3(2r) is the upper )3 probability level with 2r 
df each. Thus we see that the problem of determining the sample size for the exponential distribution is very 
similar to that encountered elsewhere in this chapter, as for the comparison of variances from a normal 
population. As before, a number of suitable approximations to chi-square may be used to estimate the needed 
sample size for the desired protection. In Ref. 35 the Wilson-Hilferty transformation of chi-square to an 
approximate normal variable was used in the interest of rather accurate calculation of probabilities. (The 
Wilson-Hilferty, or cube root, transformation of chi-square is covered in their paper, Ref. 36.) However, for 
the calculations of the required number of failures, the more accurate Wilson-Hilferty transformation is 
unnecessarily complicated, and some simpler approximations are quite satisfactory for sample size or number 
of failures computations. We shall present them. 

Let us take 

\ = 6oldi (8-71) 

that is, \ is the ratio of the desired mean life 0Q to the undesirable value 0i of the mean life. Then for the defined 
quantities 

S = ((9o/e,)'^^ (8-72) 

r? = (z,-/3 + 6zJ/(5 - 1) ■ ■ (8-73) 

Grubbs (Ref. 35) shows that the number of failures to control errors to a and /8, respectively, may be found 
from 

r = {4l9Mrj' + 4y^'-nf. (8-74) 

Narula and Li (Ref. 37) have investigated a number of simpler approximations for this particular problem and 
have found that all of the approximations are close together, especially when the calculated r's are rounded 
upward to the next integer. Hence, for example, one may as well use the simpler normal approximation given 
by 

r = [izi-p + eoZa/di)/idoldi-\)f. (8-75) 

For an example (Example 8-14), we will use the same one as in Ref. 35 for the mean-miles-between-failures 
(MMBF) of some "main battle tanks". Although Ref. 35 used the rather complex approximation of Eq. 8-74, 
we will use the simpler normal approximation of Eq. 8-75. 

Example 8-14: 
Suppose we would like to test some main battle tanks to determine whether as a class they have a MMBF of 

600 mi or a MMBF of only 300 mi. We set a risk of 5% of rejecting the null hypothesis MMBF = 600 mi when 
true and a risk of 10% of accepting the null hypothesis MMBF = 600 mi when actually the true unknown 
MMBF is only 300 mi. 

With this statement of the problem, our basic data are 

a = 0.05 13 = 0.10 
(9o = 600 01 = 300. 
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Hence the required number of failures is calculated from Eq. 8-75 as 

r = {[1.282 + (2) (1.645)]/(2 - 1)}'= 20.9 

which is about 1 unit larger than the more "accurate" number (20) of failures to observe computed from 
Eq. 8-74. However, Narula and Li (Ref. 37) also recommend an improved approximation over that of Eq. 
8-75, which is 

r = {(z,-^ + zi-a)/[ln(V0i)]}' (8-76) 

which for our data gives a value of r = 17.84, and this number rounded up to 18 gives a number of failures that 
is two less than the corresponding value from the more exact number of failures calculated from Eq. 8-74. 

The reader should not regard any of these approximations as "exact", and one should expect that 
differences of this order might occur. In fact, the normal approximations are simple indeed, but it cannot be 
expected that they are exact in any sense. We believe that the use of the Wilson-Hilferty transformation of 
chi-square to an approximate normal variate, which is used in Eq. 8-74, should generally be more accurate 
because it has been checked widely, especially insofar as probabihties are concerned. However, it is more 
complex than the other approximations, and on practical grounds one might argue that it is not worth the 
extra effort for a difference of one or two units. 

8-10    SUMMARY 

The determination of sample sizes in Army problems is a very important and always timely problem 
because the aim is usually to save on the amount of testing and the number of dollars expended. In day-to-day 
applications the analyst faces many problems that involve the determination of sample size for the more 
common statistical tests of significance. However, in the future there will be more and more requirements to 
estimate sample sizes needed for the more complex types of experiments. Therefore, we have endeavored in 
this chapter to give a good introduction to both areas. 

Two primary methods for the determination of sample sizes were discussed—the first was sample size 
selection on the basis of a high level of confidence that a given difference of departure from our expectation 
will be detected, and the other method considers the technique of controlling errors of judgment. This latter 
procedure has as its aim the setting of allowable errors—along with preselected confidence levels for 
rejecting the null hypothesis when it is true and the acceptance of the null hypothesis when it is actually false 
and an alternative is true. This approach, it seems to us, is the more sound one to select for many important 
Army problems. The sample sizes for low risks, low rates of prematures, or high reliability may in some cases 
be prohibitive; accordingly, engineering judgment often must be applied along with the statistical con- 
siderations. 

Insofar as possible, we have endeavored to record the simpler equations for sample size determinations and 
take into account the need for quickness in making the required calculations. In many cases the sample size 
required is a calculation calling for the ratio of the sum of two normal percentage levels or points in the 
numerator divided by the appropriate standard deviation of the difference in two estimated values. Often, 
such a calculation of the sample size may not be off more than a unit or two. 

We realize that much additional research will be needed in connection with the determination of sample 
sizes for all types of Army applications. Hopefully, this account will not only give an introduction to the 
problem but also will serve to stimulate much additional thinking on this ever-important subject. 
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CHAPTER 9 

SENSITIVITY ANALYSES OF QUANTAL RESPONSE TYPE DATA 

The term "sensitivity analysis"has been used in recent years to describe the statistical analysis ofquantal 
response (all or nothing) type data. There are many important Army problems, for example, the ballistic limit 
of armor plate or the sensitivity of explosives to impact, which require this type of analysis. Moreover, it 
becomes highly desirable to estimate the low or high percentage points of an underlying distribution of the 
proportions of responses so that efficient test strategies to estimate these percentage points, or even the 
parameters of the distributions, may become very important. 

Likely underlying distributions of the normal, logistic, and Weibull models are treated analytically, and the 
more efficient methods of estimation are covered. The applicable theory should suffice for many of the 
sensitivity analysis problems that the analyst may face in practice. We present a variety of examples to 
illustrate just how sensitivity analysis theory developed over the years applies to typical problems. 

9-0    LIST OF SYMBOLS 

A = lower boundary of Langlie's test strategy 
A = arbitrary point 

Oi = series of constants in the Robbins-Monro approximation method (see Eq. 9-9) 
a, = substitution for xi for which there are positive responses or penetrations 

ai,bj,SiJj — coefficients, constants, or transformations used by DiDonato and Jarnagin 
B = upper boundary of Langlie's test strategy 

bj = substitution for Xj, for which there are nonresponses or nonpenetrations 
(' = constant 
d = interval of interest ... 

E{x) = expected value of X 
E(8i) = p, = expected value of 5, " 

F = F{x) = cumulative probability distribution ~ 
fix) — probability density function of a random variable 

/ = denotes the /th trial 
L = natural logarithm of likelihood function 

Lp = designation of Einbinder to specify a percentage point 

L„ = first partial derivative of logarithm of likelihood with respect to a 
Lg^p — second partial derivative of L with respect to both a and /3 
L^^ = second partial derivative of L with respect to a 

logitp, = Inipilqi) = denotes the logit transformation 

m = number of nonpenetrations (see Eq. 9-14) 

A^ = n-I-w = sum of penetrations and nonpenetrations (see Eq. 9-14) 
n = number of penetrations (see Eq. 9-14) 
n = denotes sample size, number of items, number of levels 
«, = number of items tested at stress level x, 

no = Wetherill's designation for the number of positive responses at a stress level before a 
change of stress (also a key parameter in Einbinder's test strategy) 

9-1 
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ni = number of test specimens responding at xi 

m = number of test specimens responding at X2 
OSTR = one-shot transformed response 

P = transformation of Einbinder, such as p^ p', etc. 

P = fip) = function of p 
p = p{x) = F{x) = cumulative probability distribution or proportion 

p' = alternative value of p 
p(5,) = transformed p, used by DiDonato and Jarnagin 

Pi = p{xi) = F{xi) = proportions of responses at stress xi 
PI, P2 = proportions of response corresponding to stress levels xi, X2 

q — 1—p, or a percentage 
q{tj) = transformed ^, used by DiDonato and Jarnagin 

Yi = observed number of responses at stress level x, 
ri = number of test specimens that respond at xi 

n = number of test specimens that respond at X2 
Si = OiP — a = transformation used by DiDonato and Jarnagin 

TMP = transformed median percentage 
ti = bjP — a = transformation used by DiDonato and Jarnagin 

Ui = Ui{Si) = designation of DiDonato and Jarnagin for a normal probability distribution 
function 

Ui, Vj = designations of DiDonato and Jarnagin for normal probability density function (pdf) 
Var( ) = denotes variance of the quantity in ( ) 

F50 or Fo.50 = striking velocity at which 50% of the projectiles penetrate the armor plate 
V, = Vi(ti) = designation of DiDonato and Jarnagin for normal probability distribution 

function 
w = Wetherill designation for a current estimate of the median 

w — average of the w's 
X — Einbinder's notation for a "positive" response 
X = often designates a random variable, but is used in sensitivity analyses to denote the stress 

or stimulus level 
xi = X, = stress level 
Xc = designation of a stimulus level by Ross (see Eq. 9-70) 

Xs = transformed stress 
xi, X2 = different levels of the stress 

x„ = percentage point giving probability level a ' 
Y— F~\ )= designates inverse transformation of function f" ., 
^ = z-|-5 = probit p = a probit for the normal model 

yi = Xi — y = transformation for the WeibuU model 

ys = transformed responses 
J;Q^ J,^ y^ = different values of the argument y for p = F{y), i.e., the transformation 

Zi = z(x,) = standardized normal deviate 
0 = Einbinder's notation for a "negative" response 

0 = "negative" response = an initiation in Table 9-4 ^B 

9-2 

1 = "positive" response = no initiation in Table 9-4 

a = iija for the logistic model 
a = parameter of the logistic model 
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ao, Po = initial estimates for an iteration 
au Pi — first iterated estimates, etc. 

j8 = parameter of the logistic model 
P = Weibull model shape parameter 
P = llo>0 

y = Weibull location parameter or start of frequency 
jR = starting frequency point for a reflected Weibull model 
Aa = small change in a 
Aj8 — small change in /? 
Aa = small change in o 

8, = random variable which takes on the value zero or one 
d = a"'' = parameter of Einbinder for the Weibull model 
M = population mean, usually of a normal population 
a = population standard deviation, usually a normal universe 
o = Weibull model scale parameter 

Oy = denotes standard deviation of the subscript y whatever y represents, a( ) also used 
OS — standard error of the o 

* = denotes estimate of 

(There is some special notation used by DiDonato and Jarnagin or Einbinder in Computer Programs 9-1 and 
9-2, which is not listed here. However, wherever possible, we have endeavored to use the authors' notations for 
the key parameters, as described in the text.) 

9-1    INTRODUCTION 

As contrasted to the topics discussed so far in this handbook, the statistical analyses of sensitivity-type 
experiments represent some very different methodologies in which the Army analyst may desire expertise. 
Nevertheless, sensitivity experimentation and the associated special statistical analyses are quite important in 
their own right. Such procedures are required, for example, in penetration of armor studies, the analysis of the 
sensitivity of primers or explosives, dosage-response curves, bioassay experimentation and analyses, dosage- 
mortality curves, quantal response curves, radiation-mortality curves with risk analyses of people, and 
time-response or time-mortality curves. Thus our label "sensitivity analysis" is merely a fairly well-accepted 
Army term that has come into some prominence due perhaps to explosive sensitivity or to the penetration of 
armor studies to determine the ballistic limit of armor plate and the apparent desire to distinguish it from the 
long-existing field of bioassay. 

During World War II, our country had a major problem relating to tests for the acceptance of armor plate 
to be placed on tanks for personnel protection. An important analytical task in this connection was to 
determine the penetration limit of armor plate fired at with armor-piercing (AP) rounds for the purpose of 
estimating the ballistic limit of the plate. The ballistic limit, or the F50* as it came to be known, developed 
along with it the definition that F50 would be the striking velocity for which 50% of the AP projectiles would 
penetrate the plate. As is well-known, all projectiles fired from weapons exhibit random variation in velocity 
caused by slight variations in the amount (weight) of propellant loaded into the cartridge case, the random 
position of the propellant in the case when firing occurs, some variation in ignition properties, etc. For even a 
constant level of striking velocity against the plate, it is found that only a fraction of the projectiles might 
penetrate, depending on the velocity level. At some "low" velocity level, no projectiles will penetrate the armor 
plate; while at some "high" level of velocity, one might expect that 100% of the projectiles will penetrate. 
However, there will be cases for which some percentage of the striking projectiles will break up and not 
penetrate, even for the higher velocities, especially for "sloped" armor or armor plate at the higher angles of 
obliquity. Thus, and somewhat in summary, it is reasonable to expect that a lower velocity will exist for which 

*The correct label would be F(50%) or K0.50. 
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there will be 0% penetrations and the percentage of penetrations will increase up to 100% for some minimum 
higher velocity. The zone in between has often been called a "zone of mixed results", but somewhere in the 
middle is the F50 or ballistic limit. Clearly, it becomes quite difficult to determine the lower and upper 
endpoints of the zone of mixed results since either a penetration or a nonpenetration occurs in firing, i.e., a 
"quantal" response, and a large number of rounds must be fired to estimate the 0% or the 100% penetration 
levels with any precision or accuracy. Indeed, with quantal responses, i.e., "all or nothing" responses, even the 
estimation of the median striking velocity F50 for 50% penetrations would be difficult enough with small 
sample sizes. An added problem is that the zone of mixed results might extend over several hundred feet per 
second, or even a thousand feet per second, and the standard deviation in velocity level of armor projectiles 
fired could easily be 10, 15, or 20 ft/s. Thus the striking velocity against the armor plate cannot be controlled 
very precisely either. For an assumed cumulative normal distribution of the proportions of penetrations over 
the zone of mixed results, therefore, the standard deviation of the curve can be expected to be as large as a 
hundred feet per second or perhaps several hundred feet per second. 

Similar considerations apply to other Army sensitivity analyses, including the sensitivity of explosive to 
shock, or the comparative sensitivity of primers, etc., although the height of drop onto such devices can be 
controlled rather accurately. In any event, whatever analytical methods we develop will apply equally well to 
bioassay-type problems, dosage-mortahty curves, or quantal response studies, whatever the field of applica- 
tion. Our major point concerns the urgent need for small sample sizes, especially since most Army tests are 
destructive in nature. Before proceeding, we must say that the assumption of only a normal distribution for 
the cumulative percentages of penetrations is not always tenable, so that we must often consider the possibility 
of applying other models, including the use of nonsymmetric distributions, such as the Weibull or logistic laws 
or models. We might add that we will primarily be interested in the estimation of the location and scale 
parameters of the distribution of sensitivity results even though the endpoints of 0% occurrences and 100% 
occurrences are quite critical in many appUcations. 

To acquire the proper understanding of the more basic problems in sensitivity analysis, we will formulate 
the approach in terms of some analytical procedures, which help depict what is really taking place. 

9-2    BRIEF ANALYTICAL FORMULATION OF SENSITIVITY ANALYSES 

For the treatment of later estimation problems, our discussion starts with a rather general probability 
density function (pdf), which we will call/(x). The pdf may take on any of several different forms of interest in 
Army applications. For example, often there will be the need to analyze sensitivity-type data, which follow the 
normal density, or 

fix) = (l/>y2;^)exp[-(x - M)'/(2a')]* (9-1) 

where the population mean ju is also the median or 50% striking velocity, dosage, etc., and the scale parameter 
a gives the measure of the width of the zone of mixed results since it is the standard deviation. Thus for all 
practical purposes the expected width of this zone would be about 6a for the assumption of a normal 
distribution. We must hasten to point out the exact nature of a quantal response. For example, suppose that 
we are firing AP projectiles at armor plate, and the striking velocity is represented by the variable x, which, for 
illustrative purposes, we set equal to 1000 m/s. Even though our problem is to estimate the K50 or ix and the 
standard deviation o, let us assume that /x = 800 m/s and that a = 100 m/s. ** Then, by designating the unit or 
standard normal variable z, we see that 

z = (x-M)/a = (1000-800)/100 = 2. (9-2) 

This means that under the specified firing conditions the chance that a response, in this case a penetration, 
occurs is 

p=p(x) = F(x)=£,/(^)c/z = 0.977 (9-3) 

*We use X for a general variable to represent the striking velocity, height of drop onto an explosive, a dosage level, stimulus, etc. 

**For a normal population, the mean yu = .Voso- 
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Therefore, the actual firing of the AP round with a striking velocity of 1000 m/s, either a penetration or a 
nonpenetration would occur, but the chance for a penetration of the armor is very high indeed, i.e., 98%. Put 
another way, if a very large number of A P projectiles with a striking velocity of 1000 m/s were fired against the 
same plate, approximately 98% would penetrate the plate and 2% would not. As we have indicated, however, 
our problem is to take the penetration and the nonpenetration results with their particular striking velocities 
and to estimate ^ and a.The reader will immediately recognize that we need to develop a method of test that 
will more or less guarantee the minimum number of striking velocities, which will render a mixture of 
penetrations and nonpenetrations from which the ;u and o may be estimated with precision. This is called a 
strategy. In fact, the problem of developing the "best" strategy in some sense turns out to be rather critical in 
sensitivity analyses, such as the determination of the ballistic limit. If we are concerned primarily with the 
estimation of the mean M of the normal distribution assumed, it would appear wise to shoot with those striking 
velocities that give about equal numbers of penetrations and nonpenetrations. If we also want to estimate the 
standard deviation of the distribution, then it would appear wise to go somewhat away from the center of the 
distribution because the standard deviation reaches out to the point of inflection of the normal curve. Finally, 
if our interest were primarily to estimate a level of some very small percentages of penetrations, our strategy 
should involve converging on such a small fraction. A similar problem applies to the estimation of a very high 
level of successful penetrations of the armor. For the mean and standard deviation, and estimation thereof, 
the "up and down" strategy of Dixon and Mood (Ref. 1) seems appropriate and has gained wide acceptance. 
For the up and down procedure, and for tests of armor, the striking velocity is increased if a nonpenetration 
occurs, and the striking velocity of the next round fired is decreased if a penetration occurs—thus the term up 
and down. This strategy keeps testing near the middle of the distribution although the problem of starting the 
test at a good level remains, and one needs to know the best interval at which to change the striking velocity. 
For a normal distribution the best interval c/is such that 2a/ 3 < J< 3a/ 2 (Brownlee, Hodges, and Rosenblatt, 
Ref. 2). With this spacing, Brownlee, Hodges, and Rosenblatt (Ref. 2) found that small samples will give an 
efficient estimate of the median dosage, or here the VM striking velocity, i.e., xo.50. 

We will delve more into the use of various strategies in the sequel, but for the present our main purpose is to 
continue with two other useful models for Army applications, namely, the Weibull and the logistic models as 
contrasted to the normal. 

For the Weibull and logistic models, simplicity is attained by expressing their analytical form as cumulative 
distributions so that the corresponding pdf's may be obtained by differentiation. Hence the cumulative 
distribution of the Weibull model for sensitivity analyses would be taken as 

F{x) = 1 - exp[-(x - yflo] = 1 - exp{[-(x - 7)/^''^]'^ - (9-4) 

where ' 
7 = start of the frequency 
/8 = shape parameter 
a = scale parameter. 

If we deal with the two-parameter Weibull model instead of the three-parameter one in Eq. 9-4, the start of the 
frequency is at zero, and hence 7 = 0. The reader is aware that the Weibull model can take on a variety of 
shapes and is more general than the symmetric normal distribution. A number of authors have in recent years 
become very interested in the Weibull model. See Einbinder (Ref. 3) and others in the references and 
bibliography for the use of the Weibull model in sensitivity analyses. 

Undoubtedly there are a rather large number of Army applications for which the logistic model is 
applicable, especially perhaps in bioassay-type problems. The logistic model is represented by 

F(x) = {l +exp[-(a + /3;c)]r' (9-5) 

where in terms of the parameters a and /3, the mean of the logistic distribution is 

E{x) = n = -ajfi. (9_6) 
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The reader will thus understand that the logistic curve—like the normal curve—will range over the limits from 
minus infinity to plus infinity, but on the other hand it will take on a variety of shapes between its limits. To 
date, it does not seem that the logistic distribution has been used very widely in Army engineering-type 
applications.* 

The normal, Weibull, and logistic models represent the basic three types of distributions we will cover in this 
chapter although others, such as the gamma or exponential distributions, also could have extensive applica- 
tions. (The Weibull model includes the exponential model as a special case.) Even though we have indicated 
the three models we will discuss, there is yet another very important consideration to be brought forward 
concerning sensitivity analyses before we proceed any further, i.e., the rather indirect method of estimation of 
the parameters that is required. 

If we observe the normal model of Eq. 9-1, the Weibull model of Eq. 9-4, and the logistic model of Eq. 9-5, 
note that F{x) is the cumulative distribution function and hence gives the chance of a response at the level of 
stimulus X. Hence ifwe designate that the levels of response are xi,X2, . . .,x,, the probability of a response at 
level Xi is notationally 

p,=p{x.) = F{x,) (9-7) 

where we use p simply to mean probability. Now in a test of a "specimen"—whether it be armor plate, an 
explosive, a primer, etc.—we will observe either a "response" (penetration) or "no response". That is, the 
observed random variable is either a one or a zero; "one" represents a response and "zero" the lack of any 
response. Thus we may look upon the sensitivity experiment as did Golub and Grubbs (Ref. 4), who pointed 
out that a random variable 5, could be considered that takes on a zero value or a one for each level of stimulus, 
so that the likeUhood of occurrence of the observed sample, or the chance of the observed set of observations, 
is given by 

P = Uip.fO - P.y- (9-8) 

where we take the product n with respect to a series of observations, / = 1, 2, 3, etc., to range over any number 
of trials we may want to include in the experiment for our particular estimation problem. Hence we have used 
the concept of 3, simply to denote the actual observational responses. When 6, = 1, a response has actually 
occurred even though its probability of occurrence isp, (which may take on any value between zero and one), 
and when 6, = 0, there is no response with probability of occurrence equal to (7,= 1 — p,. Themean valueof 5,is 
E{d,) — Pi, and the probability that 5, = 1 is Pr(5i = 1) =/?,. 

Recall at this point that p orp, is a cumulative distribution—whether it be the normal integral of Eq. 9-1 up 
to a value x„ the cumulative Weibull given in Eq. 9-4, or the logistic form in Eq. 9-5—so that the estimation of 
the indicated parameters may become somewhat cumbersome to say the least. In fact, it can be seen that one 
approach would be to take logarithms of the likelihood indicated by Eq. 9-8 and to proceed with Fisher's 
principle of maximum likelihood (ML) estimation. In fact, this is often just what is done. Some readers may 
wonder why we have formulated the sensitivity analysis problem in terms of the rather general but particular 
response model as given in Eq. 9-8. The answer is that a solution for estimation of the unknown parameters 
based on Eq. 9-8 would apply to a wide variety of practical problems for which small sample sizes are more or 
less mandated. Moreover, in the case of firing at armor plate, one cannot launch a projectile at any desired 
velocity level. Rather he may aim for 1000 m/s, but due to random variation in muzzle velocity, the striking 
velocity at the plate may be, for example, 990 or 1008 m/s, and p, is general. 

With this discussion, we have reached the stage at which it seems advisable to discuss some test or firing 
strategies often followed in sensitivity analyses. After that, we will go briefly into the problem of estimation of 
parameters. 

9-3 SOME USEFUL TEST STRATEGIES 
Perhaps the more useful test strategies for many Army applications include the complete rundown test, the 

up and down test of Dixon and Mood (Ref. 1) developed in connection with explosive sensitivity-type 

*Use of the logistic distribution is about equivalent to using the normal model. (See par. 9-3.) The normal model is often called the 
"probil" form, and the logistic, the "logit" form. 
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investigations, tiie Langlie (Ref. 5) one-shot test, the Robbins-Monro stochastic approximation method (Ref. 
6), the one-shot transformed response test, and other transformed response strategies. All but the first of these 
testing strategies may be referred to as sequential sensitivity tests, which do not involve fixed or preset sample 
sizes for the tests, and it becomes desirable to use some kind of stopping rules along with them whenever a 
suitable number of tests have been attained. 

9-3.1    THE COMPLETE RUNDOWN TEST 

In the complete rundown test, the idea is to test a fixed number of items at each level over the estimated zone 
of mixed results so that the percentage of responses will vary from near zero to 100%. For example, this has 
often been a natural test in primer sensitivity studies. In this application, perhaps 50 primers are tested at each 
inch of drop height from the level where nearly all 50 explode down to a low height for which none of the 50 
function. With the percentage of responses so varying, one may fit a curve, for example, by the method of least 
squares to the observed fractions of responses to summarize resuhs. 

9-3.2   THE UP AND DOWN TEST OF DIXON AND MOOD* 

For the up and down test strategy, designed by Dixon and Mood (Ref. 1) to estimate the mean and standard 
deviation of the normal distribution, the basic idea is to increase the level of stimulus when the test specimen 
does not respond and to decrease the level of stimulus by a step when the test specimen does respond. The 
Dixon and Mood up and down test strategy is indicated on Fig. 9-1, where an "X" means a response and a "0" 
means no response. The initial test level is at the stimulus level that represents the best estimate of the 50% 
point of the distribution. The true value of the 50% point is hardly ever known; we are, in fact, testing to 
establish it; therefore, one has to make a wild guess at first to get started. The step size also is fixed and must be 
set in advance and the best value is about one standard deviation, as indicated in par. 9-2. Clearly, the up and 
down test procedure concentrates the observations very near the mean—just where they should be for the 
normal distribution. However, the up and down strategy does not do very well for the problem of estimating 
the extreme percentage points of a distribution—unless the curve is in fact a normal one, and the mean and 
standard deviation are determined quite accurately. It has been claimed that the up and down test may be too 
sensitive to the starting level of stimulus and the step size although the nature of sensitivity analyses is such 
that in many applications little is known about the true location of the underlying distribution and its shape! 
Moreover, if one has to rule out a very large number of tests, but still is interested in the general nature of the 
phenomena studied, he may want to use the up and down strategy, at least initially. 

S     1 

I -1 
GO 

-2 

-3 

-4 

■X- 

—X—0—0 

— 0   

■X—X—0 —0 

 0 — 0   

NOTE: X = response   0 = no response 

Figure 9-1, A Typical Up and Down Experiment 

*The up and down method of testing has often been referred to as the Bruceton method. 
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9-3.3    THE LANGLIE ONE-SHOT STRATEGY 

Langlie (Ref. 5) suggested a sequential test strategy that was to overcome certain of the difficulties 
associated with the up and down procedure. In fact, the Langlie test strategy also makes use of continuously 
variable stress levels and was suggested to be insensitive to the starting level and the a priori choice of the step 
size. It does, however, depend on estimates of the endpoints of the zone of mixed results that apparently are 
obtained most often from engineering considerations. Also these endpoints may come into play during the 
selection of the next level of stress in the test. Some analyses have indicated that the Langlie test strategy may 
be more efficient than the up and down procedure for estimation of the location and scale parameters of the 
normal distribution although some further comparisons should be made. We note in passing that Langlie 
labeled his strategy as involving a reliability test method of one-shot items. In this connection, LangHe 
apparently visualized items operating in some region of the environment for which the stress levels were such 
that all items were supposed to operate satisfactorily. However, for the higher and increasing stress levels, the 
items would begin to fail. In fact, there would be a distribution of failures on the stress scale. As Langlie stated 
in Ref. 5, "In the case of specimens having extremely short lives, it is possible only to anticipate a stress level 
and then operate the specimen under this environment to see whether or not it is successful. Such items are 
referred to as 'one-shot' items. Examples of 'one-shot' items include short duration rocket motors, switches, 
relays, and a host of similar items. Each part, when tested, will function satisfactorily or unsatisfactorily; such 
an 'all or nothing' situation is referred to ... as a 'one-shot' test.". Hence it is seen that Langlie's one-shot 
label simply refers to the test of an item in the ordinary sensitivity test procedure and not to something 
otherwise quite special. 

Perhaps the best way to illustrate Langlie's test strategy is to give his own example, which presents some 
resuhs on the test of thermal batteries, as depicted in Fig. 9-2. The purpose of Langlie's actual one-shot test on 
thermal batteries was "to determine the reliability with regard to high temperature". In this instance, the 
batteries were designed to perform reliably at 145°F. Langlie indicates that on the basis of conservative 
engineering judgment and some limited development test data: (1) the lower limit on temperature was selected 
to be 100° F—the level at which all thermal batteries would be expected to perform satisfactorily—and (2) the 
higher temperature limit was selected to be 350° F—the level at which all thermal batteries would be expected 
to fail. Thus stress was taken to be the temperature level, and "Once the test level and failure criteria have been 
established, the test commences by selecting the first stress level at the midpoint of the interval.". Therefore, 
the first battery is tested at the temperature of (100 + 350)/2 = 225° F, and Langlie records a "1" (in the 
right-hand column of Fig. 9-2) if there is a "positive" response, which in this case means a failure of the battery, 
and a "0" if the response is "negative", i.e., the battery operates satisfactorily. 

The general rule of Langlie for obtaining the {n + l)st stress level, i.e., after n trials, is to work backward in 
the test sequence, starting at the «th trial, until a previous trial (call it ihtpih trial) is found such that there are 
as many successes as failures in the pih through nXh trials. The {n + l)st stress level is then obtained by 
averaging the nth stress level with the pih. stress level. If, however, there exists no previous stress level 
satisfying the requirement just stated, the (« -|- l)st level of stress is obtained by averaging the «th stress level 
with the lower or the upper stress boundary of the test according to whether the nth test result was a failure or a 
success, respectively. To illustrate the second stress level, it is noted that the first test at 225° F resulted in a 
battery failure, and it is not possible to find any previous stress level in the test where all intervening results 
even out. Therefore, for the second stress level we take it equal to (100 + 225) / 2 = 163° F since we clearly must 
go to a lower temperature to search for a successful battery operation. The result is a zero or success. 

For the third stress level we have a zero in the second test and a one for the first trial, so the numbers of 
failures and successes are equal. Hence we simply average 225 and 163 to obtain the temperature of 194° F for 
the third trial, and the result of the next one-shot test is a successful battery operation, i.e., a zero. 

The process continues. For example, observe the eighth shot or stress level. We note in this particular case 
that the immediately preceding tests, or the 4th through the 7th (but not the last two or three tests), give two 
positive and two negative responses—an equal number—and hence for the 8th stress level we average the 4th 
and the 7th and obtain (178 + 227) / 2 = 203° F. 
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Figure 9-2. "One-Shot" Test to Determine Failure of Thermal Batteries (Ref. 5) 

Finally, if no previous level exists to satisfy this criterion, the very last stress is averaged with either the 
upper or lower limit (this depends upon whether an increase or a decrease in stress is required). This should be 
sufficient to give the reader a good idea of the proposed Langlie test strategy, and this procedure more or less 
concentrates the test results near the median although occasionally the last stress level may have to be 
averaged with one of the original limits. 

The actual process of estimating the mean and standard deviation of the assumed normal distribution by 
Langlie involves Fisher's MLestimation, which we discuss in par. 9-4. Noteon Fig. 9-2thatthe MLestimates 
of the mean and standard deviation are, respectively, 199.8°F and 20.4°F. 

Thus as we have said, both the up and down and the Langlie strategies tend to concentrate the test results 
near the central part of the sensitivity distribution, and they are efficient for estimating the mean and the 
standard deviation of, for example, the assumed normal distribution of responses. However, there is another 
efficient procedure for estimating the median of the response curve, i.e., the Robbins-Monro stochastic 
approximation process (Ref. 6), which has been studied rather thoroughly in a key paper by Wetherill (Ref. 7). 
In fact, Wetherill's paper covers a rather extensive study of a number of possible strategies for estimating not 
only the median or xo.so of the response distribution, but also percentage points such as a lower one, e.g., jco.os 
or an upper one, xo.95. Note that if we are dealing with a normal distribution, the estimation of jco.84 - Xo.50 
would give the standard deviation. 

9-3.4    THE ROBBINS-MONRO STOCHASTIC APPROXIMATION METHOD 

In 1951 Robbinsand Monro (Ref. 6) introduced a very general method of stochastic approximation for the 
regression-type situations, and hence it applies to the sensitivity analysis problem. Suppose in the quantal 
response type of endeavor we want to estimate any general percentage point or probability level/? in terms of 
the value of the response level x that results in such a desired probability. Then the Robbins-Monro procedure 
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means that in a series of observations, such as S, = 0 or 1 taken at levels of stimulus x„ one uses for the next trial 
a stochastic approximation to obtain Xi+\ based on 

p = Xin = X, — ai{8i — p) (9-9) 

wherep is the probability level desired, for example, 0.50, and the quantity a, is a series of constants chosen to 
depend on / in a manner that successive changes in the level become smaller and the observations converge to 
the true value p desired. It would appear, based on a theorem of Chung (see Ref. 8), that the best asymptotic 
function for a, is a constant divided by /, i.e., f / /, c being the constant. This function is best in the sense that it 
produces the most rapid convergence of the estimator to the value oip desired when the x, are linearly related 
to thep,. Hence it can be said that the series of constants c/ / will be best for the quantal response problem in an 
asymptotic sense since locally linearity will be the case. In Ref. 7 Wetherill refers to the Robbins-Monro 
process as "Routine 1" and the up and down strategy of Dixon and Mood as "Routine 2". 

Wetherill (Ref. 7) points out that the asymptotic variance of A:„+I is given by 

Var(x„.,)= l/[/3'p(l-p)«] (9-10) 

for the logistic model of Eq. 9-5. Therefore, the variance of the estimated stimulus to obtain a probability level 
of p depends on p in the denominator, its complement from unity, the size of the slope in Eq. 9-5, and the 
number of iterations made in the process. 

As a result of some theoretical investigations and many Monte Carlo simulations, Wetherill (Ref. 7) 
indicates that the Robbins-Monro stochastic approximation procedure is very efficient for the estimation of 
the stimulus level for the median, or p = 0.50, both as a method of placing observations properly and as a 
technique of estimation itself. The Robbins-Monro stochastic approximation procedure is very "robust" to 
errors in starting values of the sequence and also to the value of the constant c. (See Ref. 7 for a discussion of 
the optimum values of the constant c.) Moreover, actual small sample variances closely follow the asymptotic 
values such as those given in Eq. 9-10. However, Wetherill does conclude that the Robbins-Monro strategy is 
really unsuitable for estimating even moderately extreme values of the stimulus level that result inp = 0.25, for 
example. This would mean that estimation of the stimulus level forp - 0.05,0.01, or 0.99 would be expected to 
give all kinds of trouble, so we see the great difficulty in the sensitivity problem. In fact, it would appear that 
unless one is willing to conduct an enormous number of trials, he must often be content with imprecise 
estimates of the location and scale parameters. 

Finally, for the Robbins-Monro technique Wetherill indicates in Ref. 7 that the procedure is "asymptoti- 
cally fully efficient for estimation of any p, in the sense that it has an asymptotic variance equal to the 
minimum attainable variance . . . However, this conclusion only holds if the optimum value of [the constant] 
(■ is used, which depends on the slope of the response curve at p. Since c must be chosen in advance, and 
Routine 1 provides almost no information about slope, then loss of efficiency will result.". Thus, although the 
Robbins-Monro procedure may not be very sensitive to the value of r for estimation of the stimulus givingp = 
0.5, there will be percentage points for which the efficiency of the technique may depend markedly on the 
constant c. 

Although we are concerned primarily with the Robbins-Monro stochastic technique in this paragraph, 
Wetherill goes into a rather extensive evaluation of the Dixon-Mood up and down procedure forp = 0.5 since 
it would be a natural competitor of the Robbins-Monro method. In this connection, Wetherill (Ref. 7) states 
for the up and down method that "If a spacing of between 1.5a and 2.5a units is used, the asymptotic efficiency 
of Routine 2 is about 20/27 = 74%. This efficiency drops off sharply for values of the ratio of spacing interval 
to slope constant ^ [for the logistic model] outside this range. In most practical situations the slope is not 
known, so that the asymptotic efficiency of Routine 2 depends critically on one of the unknown parameters.". 
In fact, the asymptotic efficiency of the up and down method depends rather more heavily on the choice of the 
spacing interval than the Robbins-Monro technique depends on the choice of the constant c. On an overall 
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basis Wetherill concludes that the up and down strategy may be very highly efficient (about 80% or better) for 
estimating the median stimulus or dosage, provided there is a good choice of the spacing steps, but that 
considerably improved efficiency could be effected with a division of the spacing at suitable points. Moreover, 
one must assure a good starting level for the up and down strategy; if not, there would be some adverse effects. 

The reader will very likely note that this discussion of efficiency is restricted to the up and down and the 
Robbins-Monro procedure comparisons and that a study of the relative efficiency of the Langlie strategy with 
these two has not been given. Thus it can be said that much needed research remains to be done, and a 
computer likely would be required to conduct many of the necessary comparisons through Monte Carlo-type 
experiments. Also for anyone interested in conducting further research on the sensitivity analysis problem, 
Wetherill's paper should be considered mandatory reading since it includes stopping rules. 

Finally, as a remark or two concerning the estimation of low or high levels ofp, Wetherill (Ref. 7) expressed 
some surprise that sequential strategies to estimate/? whenp¥= 0.5 have not attracted more attention. Perhaps, 
however, this lack of emphasis merely indicates the difficulty of the problem! In all, Wetherill investigated 
some 15 strategies for all levels ofp studied but found that for estimation of the stimulus level forp = 0.95, 
some of the most favored strategies gave large expected squared errors, large biases, and very frequent 
samples producing extrapolated estimates. He even recommended that the estimation of extreme percentage 
points should be "avoided at present". Nevertheless, Wetherill's investigations have had a very decided impact 
on the transformed response strategies, which were advanced by Einbinder (Ref. 3) and which, in fact, 
combine the Langlie strategy with the better of the Wetherill routines or strategies studied as we will see next. 
Therefore, we will go into a discussion of some proposed strategies for the high and low percentage points. 

9-3.5    THE ONE-SHOT TRANSFORMED RESPONSE TEST STRATEGY (OSTR) 

The percentage points in the tails of distributions have very important practical implications and are 
required in the design of products. For example, in the design of armor for a tank, the design engineer may 
have a good idea concerning the highest striking velocity of enemy antitank projectiles. Thus if he knew the 
velocity level at the 0.1% point for the lower end of the percent penetrations vs striking velocity curve, the 
armor thickness could be determined so that practically no enemy projectiles would defeat the tank. If we are 
interested in estimating stimulus levels for the lower tail area of a distribution, it would appear that the test 
strategy should be such that rather rapid convergence to the required probability level is assured. This would 
mean that the stress levels should be taken in a manner that would make it easier to decrease the stress than to 
increase it. Of course, for the estimation of the high percentage points, the reverse should be effected. 
Einbinder (Ref. 3), based on the work of Wetherill (Ref. 7), has suggested a response transformation to bring 
about such results. In the course of his key study, Wetherill (Ref. 7) noted that occasionally some very peculiar 
sequences of outcomes would occur, such as a series of ones or zeros, which, when continued, would provide 
very little or no information about the response distribution. Accordingly, Wetherill suggested using a change 
of response stopping rule rather than a fixed sample size to minimize the loss of information. In fact, among 
the many strategies or routines studied by Wetherill, one in particular took cognizance of this (Wetherill's 
Routine 15) and was based on a form of inverse sampling. We quote from Wetherill's paper (Ref. 7): 

"Routine 15 (Inverse Sampling): Use a fixed series of equally spaced levels and after each trial, estimate the 
proportion/?' of positive responses at the level used for the current trial and consecutive with it, that is, back to 
the last change of level. If p'>p and p' is estimated on n^ trials or more, decrease the level one step. Up'<p, 
increase the level one step. If p' = p, make no change in level. . . . Routine 15 is to work as follows: for p = 
0.75 (for example) estimation choose /i,, = 4 and make no change of level for positive responses until four 
consecutive positive responses have occurred, then move the level one step down; increase the level one step if 
successive results after a change in level are 0, or 1-0, or 1-1-0; for 1-1-1-0 make no change in level but move 
according to the next response.". 

Hence for Wetherill's Routine 15, we see that when we are trying to estimate an upper percentage point, the 
level may be increased as soon as a nonresponse occurs in four consecutive trials thereby forcing the testing up 
near the desired percentage point p = 0.75. Wetherill (Ref. 7) thus proposed a stopping rule based upon a 
specified number of changes of the response type instead of a fixed number of trials total. 
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Einbinder (Ref. 3) suggests a strategy that combines such a feature of Wetherill with the LangHe test 
strategy and calls the quantile around which the test levels tend to concentrate for a given «o the "transformed 
median percentage (TMP)". The overall test strategy is labeled the "One-Shot Transformed Response 
(OSTR)" procedure by Einbinder (Ref. 3). Perhaps the OSTR is illustrated best by an example of Einbinder 
given in Table 9-1. He considers a case for which the lower and upper Langlie-type boundaries are taken to be 
zero and 70, respectively, and a sequence of trials to estimate the stimulus level for a probability equal to 
(0.50)'^'' = 0.7937, which is the transformed median response (TMR) based on a Wetherill «o = 3. Note in this 
connection that the F{x) based on the assumption of a normal distribution in Eq. 9-1, or the Weibull in Eq. 
9-4, or the logistic in Eq. 9-5 each gives the chance of a positive response. Thus for HQ = 3 the chance of a 
downward change in direction under Wetherill's inverse sampling scheme is 

P= Pr = [F{x)f" = (0.7937)' = 0.5 (9-11) 

and such a probability becomes greater for the higher percentage points, such as 0.90 or 0.95 unless the «o is 
changed. Thus the procedure may be adjusted to conform to almost any high percentage point or to the lower 
percentage points as well. In effect, therefore, due to the particular sequences required before a change in the 
level of stimulus, one can—by proper choice of the ^o along with the percentage point p desired—conduct a 
sensitivity test and analysis so that he is more or less "aiming for a median value". 

We now proceed to a discussion of the Einbinder OSTR test strategy (refer to Table 9-1). Recall that we 
want to carry out a strategy to estimate the stimulus or stress x that gives the 79.37% point of the cumulative 
distribution. The first "shot" is then taken at the stress level of 0.7937(70) = 56 for an upper Langlie boundary 
of 70, and the response is a "success", i.e., " 1". (Einbinder, Ref. 3, uses either a " 1" or an "X" for a positive 
response.) Now since n,, = 3, under the Wetherill rule we continue with the same stress x = 56 for the next 
"shot", which is also a positive response, i.e., 1. Again we take the next test at x = 56 since we got a 1, and the 
result is a third positive response. This third positive response indicates that we must go down in stress level, 
however. Therefore, we must now take the lower Langlie boundary of zero and average it with the 56 to obtain 
the next stress level of JC = 28 for which a positive response is still obtained. Since we have only a single positive 
response at the stimulus level of 28, we should take the next "shot" at that same level, and we obtain a 
nonresponse, i.e., 0. This means, therefore, that we must increase the stress level, and we also note and record 
that this "up" brings about the first change number. Moreover, the average of the two levels of 28 and 56 gives 
Wetherill's first w = 42 as the first estimate of the 79.37% point. The next stress level, i.e., for the 6th shot, is 
42.0, and a nonresponse is observed, which means the stress level must be increased. At this stage we have two 
U's and one D, or unbalanced responses, so that by using the upper boundary of 70 with the last level 42, trials 
are continued at x = 56.0. The experiment continues as indicated on Table 9-1, and the fourth change of 
response occurs at the 16th trial. A change of response type is said to occur whenever an alternation of the 
response is obtained. Wetherill's stopping rule (Ref. 7) is based upon a specified number of changes in 
response type rather than any fixed total for the number of trials. The number of observations or trials in an 
experiment of this type results in a random variable for Wetherill's stopping rule, and the expected sample size 
for a particular number of changes or responses will increase with the parameter «o or the farther out in the 
tails of the distribution we desire testing to take place. Moreover, for each sequence of trials on the 
transformed scale that represents a change of response, a reasonable estimate of the 50% point or 50th 
percentile is the midpoint of the stress interval in which the change took place. We denote these estimates by w, 
due to Wetherill who proposed such a rule for the Dixon-Mood up and down method to close in on the 
fineness of the interval instead of sticking to equal spacing. Also the application of the Wetherill inverse 
sampling strategy to the Langlie technique clearly would seem to be very efficient and accurate. As pointed out 
by Einbinder (Ref. 3), each change of response for the proposed strategy results in a separate estimate of the 
transformed 50% point, and the overall average H' of Wetherill is taken as the expected transformed median. 

For the example of Table 9-1, the average value H' = 50.09 after the fourth change number or 16th trial is'the 
estimate of the 79.37 percentile of the underlying distribution. The reader should observe that Wetherill's w is 
a simple estimate to calculate, especially compared to ML estimates. Moreover, such simple estimates could 
well be used for starting values in the ML estimation of par. 9-4, for example. 
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TABLE 9-1 

OSTR TEST FOR «„ = 3, TMP = 0.7937 (Ref. 3) 

Lower Langlie Boundary, ^ = 0. Upper Langlie Boundary, B = 70. 
For the first trial, / = 1, take the stress = 0.7937(70) = 56. 

Response 
Trial Stress Response Type Change Wetherill's 

/ X: 6 = 0,1 Dor U Number H' 

1 56:o 1 
2 56.0 1 
3 56.0 1 D 
4 28.0 1 
5 28.0 0 U 1 42.0 
6 42.0 0 u 
7 56.0 1 
8 56.0 1 
9 56.0 1 D 2 49.0 

10 49.0 1 
11 49.0 0 U 3 52.5 
12 52.5 1 
13 52.5 0 u 
14 61.25 1 
15 61.25 1 
m 61.25 1 D 4 56.875 

200.375 
D = = Down: 111 w = 200.375/4 
u -- = Up: 0, 10, 110 = 50.09 

9-3.6    TRANSFORMED RESPONSE STRATEGIES FOR GENERAL «„ 

In connection with transformed response strategies for any value of no, Einbinder (Ref. 3) has developed a 
table of characteristics of some of these typical strategies. That table is included as Table 9-2. The upper and 
lower tail areas that are estimated and around which the Wetherill-Langlie strategy or one-shot test levels tend 
to concentrate also are given in the last two columns of Table 9-2. The table may be extended to any «o and / or 
transformation desired by the experimenter. In Table 9-2 we use Einbinder's X to denote a positive response 
and a 0 to denote a negative response; these apply as noted for probabilities or percentilesp>0.5. For the lower 
tail areas of distributions of interest, we must redefine the responses so that 0 represents a positive response 
and 1 or X a negative response.* Moreover, the up U and down D designations are interchanged. The TMP 
for a given «o is based on Eq. 9-11 as before. 

The reader will note that the OSTR strategy is actually the Langlie routine applied to a transformed 
response curve. Moreover, the usual or "standard" Langlie procedure, which may be described by taking 
Wetherill's /7o = 1, may be used to estimate the median or 50% point of the transformed response curve. The 
solution of Eq. 9-11 in terms of F{x) for the value of P = 0.50 gives the probability value of the original 
response function corresponding to the 50% point of the transformed response, and this is the TM P. Note by 
observing Table 9-2 that for «o = 3, for example, the value referred to is 0.7937 in the upper tail and 0.2063 in 
the lower tail. 

Finally, a point of some interest concerning the design of an optimum strategy is that the test procedure 
must close to finer and finer intervals about the desired percentage point, or desired quantile or percentile. 
However, a fixed interval of testing, such as the up and down strategy, does not do this. Also if at all possible, it 
certainly would pay to design the testing strategy so that the analysis of results is made as easy as possible. 

*For the lower percentage points, the transformation is (I - ^"") instead of p"". 
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TABLE 9-2 

CHARACTERISTICS OF SOME TRANSFORMED RESPONSE STRATEGIES (Ref. 3) 

Response Type* 

Transformation, 

Percentage 
Estimat 

Point 

Difp>0.5, U ifp>0.5, ed 

«0 Uifp<0.5 Difp<0.5 P = /7<0.5 p>0.5 

2 XX XO, 0 p^** 0.2929 0.7071 
3 XXX XXO, XO, X P' 0.2063 0.7937 
3 XXX, xxox XXOO, XO, 0 p\2-p) 0.2664 0.7336 
4 xxxx XXXO, XXO, XO, 0 P' 0.1591 0.8409 
4 xxxx, xxxox XXXOO, XXO, XO, 0 p\2-p) 0.1959 0.8041 

5 xxxxx XXXXO,- XXXO, XXO 
XO, 0 

P' 0.12945 0.87055 

5 xxxxx, xxxxox XXXXOO, XXXXO 
XXO, XO, 0 

p\2-p) 0.1540 0.8460 

6 xxxxxx XXXXXO, etc. P' 0.1092 0.8908 
7 xxxxxxx XXXXXXO, etc. P' 0.0944 0.9056 
8 xxxxxxxx XXXXXXXO, etc. p' 0.0829 0.9171 

9 xxxxxxxxx XXXXXXXXO, etc. p' 0.0740 0.9260 
10 xxxxxxxxxx XXXXXXXXXO, etc. P" 0.0670 0.9330 

14 xxxxxxxxxxxxxx XXXXXXXXXXXXXO, 
etc. 

P" 0.0484 0.9516 

*Forp>0.5, X = response and 0 = nonresponse. 
Forp<0.5, X = nonresponse and 0 = response. 

**For the lower percentage points, use   I — q"" = I (I-P)"" 

Thus, for example, a fairly complex strategy, when used along with a rather simple analysis, probably would, 
on an overall basis, prove to be very acceptable in practice. 

We have placed considerable interest in our discussion on strategies involving one "shot" per level of test. 
The case of several shots per level is considered in the next paragraph on estimation. 

9-4    ESTIMATION OF PARAMETERS 

Unfortunately, the reader may have noticed from the discussion of test strategies in par. 9-3 that parameter 
estimation for sensitivity analyses or models is not a straightforward process. In view of its efficiency, the 
Fisher method of ML is ordinarily used although least squares procedures or other methods of estimation, 
such as minimum chi-square (MCS) techniques, may also be employed. We will cover ML estimation first for 
the normal distribution before any discussion of other estimation techniques. 

We should remark, however, that graphical procedures may be used, and this is perhaps especially desirable 
for the case in which one has sensitivity data from a complete rundown test or results from an experiment 
giving the proportions of positive responses at each level of stimulus. Here, for example, one may use normal 
probability paper and plot the cumulative fraction of positive responses vs the stimulus level or independent 
variable to estimate the mean and standard deviation. Another reason for using graphical estimates, at least 
initially, is that the ML procedures require good starting values and a number of iterations, so that such 
estimates may prove valuable indeed. Also any past information on rough values of the mean and standard 
deviation would be quite helpful in the iteration process. 

As already indicated, our approach to the estimation problem will be primarily for the nonuniform 
intervals of testing where only a single response is obtained at each level of stimulus, and usually the 
experimenter has aimed to secure the minimum number of tests that give some positive and negative responses 
in the zone of mixed results in which testing has been more or less assured by the strategy. 
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9-4.1    MAXIMUM LIKELIHOOD ESTIMATION FOR THE NORMAL MODEL 

In 1956, with some key Army applications in mind, Golub and Grubbs (Ref. 4), performed a study of ML 
estimation for the normal model, which was then widely assumed in connection with penetration of armor 
investigations and the acceptance of lots of armor plate from manufacturers. In their particular approach, the 
probability of a penetration p, was taken as the integral of Eq. 9-1 up to the point of the striking velocity xt, 
such as indicated numerically in Eq. 9-3. The likehhood of the sample results using the random variable S, = 1, 
0—which depends on whether a penetration or nonpenetration occurred—was as given in Eq. 9-8. To simplify 
the algebra a bit further, the logarithm of the sample likelihood of occurrence may be taken to give 

lnP=X[8ilnpi + (\ - 8,)lnqi] (9-12) 

where 

gi^i-Pi (9-13) 

and thep, and 9, both involve normal integrals that contain the unknown mean n and standard deviation o. 
Then the differentiation of Eq. 9-12 with respect to both n and o gives two equations with these unknowns that 
may be iterated upon by using some technique, such as the Newton-Raphson method, to determine the fi and 
o. 

In view of a very elegant study by DiDonatoand Jarnagin (Ref. 9) relative to convergence properties and 
estimation procedures for ML estimation for the normal model, we will follow their analysis. The method of 
DiDonato and Jarnagin (Ref. 9) is to identify the total sample size for the test results as A^(instead ofn) and to 
divide the observations into n penetrations and m nonpenetrations, so that 

n + m = N. (9-14) 

This means that the logarithm of the likelihood function L of sample results is 

n m 

L= lnP= Sln/?,+21n^,. (9-15) 

The Xi for which there are positive responses or penetrations are labeled as a,, oi, . . . , an, those Xj for which 
there are nonresponses or nonpenetrations are labeled huhi, . . . , b^. 

DiDonato and Jarnagin (Ref. 9) then deal with transformed parameters (to effect linearization), which are 
determined from 

OL^\i\a (9-16) 

)8=l/a>0. (9-17) 

Finally, instead of using the original standardized normal variates 

Z, = Z(X,) = (X,-/X)/CT (9-18) 

new variates defined by 5, and ij are taken as 

Si = ai^-a (9-19) 

tj = bjp-a. (9-20) 
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Actually, the /?, and qi are transformed to be represented as 

p,=/7(5,)and(7; = ^(r;). 

Next, in accordance with DiDonato and Jarnigan (Ref. 9), we define and determine the following partial 
derivatives of the logarithm of the likelihood L in Eq. 9-15: 

L„ = dLlda = Xvjiqj - Xw/pi (9-21) 
j=\ 1=1 

Lo = dLI dp=X aiiuilpi) - X bjivj/qj) (9-22) 
1=1 7=1 

L„„ = -X(vjlqj)ivjlqj - tj) - X{wlpd{w/pi + sd (9-23) 
;=1 1=1 

L„^ = Xbj{vj/qj)ivjlqj - tj) + Xa^Ui/pdiw/p^ + s,) (9-24) 
■        ; j=l 1=1 

and finally 

m n 

Lpp =-Xb]{Vjlqj){Vjlqj - tj) - Xa]iu./pi){u,/p, + st) (9-25) 
j=\ 1-1 

where 
Wi = Wi(5i) = (l/\/2^)exp(-v?/2) (9-26) 

v, = v,(/,) = (l/V27r)exp(-/;/2). (9-27) 

The five partial derivatives given in Eqs. 9-21 through 9-25 are used in the iteration process to estimate the 
values of the transformed parameters a and )3, which in turn are finally transformed to the values n and o by 
applying Eqs. 9-16 and 9-17. 

DiDonato and Jarnagin (Ref. 9) give a very comprehensive analysis of the existence and convergence 
properties of the estimates of the unknown parameters pointing out in particular the conditions on the a, and 
bj for which the logarithm of the likelihood function L has a unique maximum. Hence these authors give the 
necessary and sufficient conditions for L to have a maximum at the final iterated values or point (a,/3). 

The paper of DiDonato and Jarnagin (Ref. 9) is a somewhat condensed version of a more extensive study, 
and the full mathematical details of their investigations and analyses are covered in Ref. 10. In fact, DiDonato 
and Jarnagin (Ref. 10) prove that the logarithm of the likelihood function £ in Eq. 9-15 attains a unique global 
maximum for the estimated parameters a and )3 attained, and they show that their algorithm, which is a 
modified form of the Newton-Raphson iterative procedure, does guarantee global convergence. The two 
iterative equations used in the estimation procedure are given by 

L„„Aa + L,^Ay3 = L„ (9-28) 

L,pAa + LppAP = Lp (9-29) 
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where the quantities Aa and Ay3 are the changes in the old values of a and /3, respectively, calculated at each 
stage of the iteration. Thus one may start with initial estimates ao and Po and—by substituting the data into 
the two first partial derivatives on the right-hand side (RHS) of Eqs. 9-28 and 9-29 and into the three second 
order partial derivatives on the left-hand side (LHS)—he may solve for the Aa and A/3. These differences lead 
to the next values of a and P to use in the partial derivatives, which are 

ai = ao + Aa (9-30) 

)8i = /8o + A)8. (9-31) 

The process continues in this manner to some stage n, for which there are very insignificant changes in the 
newest estimates of the parameters a and P, and finally, the estimated mean and standard deviation of the 
normal model are determined. 

DiDonato and Jarnagin (Ref. 9) indicate that their computer program always converges to the proper 
estimates no matter what the starting values or initial estimates are. They also indicate that the ordinary 
Newton-Raphson method will converge irrespective of initial estimates too, so it would seem that if one has at 
hand some suitable "mixed results" for responses and nonresponses, convergence should be of no concern 
whatever. 

A Naval Weapons Laboratory computer program is available in Ref. 10 for determining and plotting 95% 
and 50% confidence eUipses for the parameters a and /3; the details are presented in Ref. 10 also. 

To indicate an illustrative appHcation (Example 9-1), we will give some actual data on a penetration-of- 
armor plate test, which has been used in Ref. 4. 

Example 9-1: 
In a ballistic test of 90-mm AP projectiles against rolled homogeneous plate, only five striking velocities 

along with armor plate response were available for the determination of the median or Ko.so level of stimulus. 
They were 

Striking Velocity, ft/s Condition of Impact 

2415 Nonpenetration 
2415 Nonpenetration 
2423 Penetration 
2433 Nonpenetration 
2453 Penetration. 

With these data find the level of striking velocity for which 50% penetrations would occur and the standard 
deviation of the assumed normal distribution of penetrations and nonpenetrations. 

Observe that the original data have been rearranged in increasing order of striking velocity against the 
armor plate. We note, for example, that although there is bound to be some random scatter in the muzzle 
velocities of the AP projectiles fired from a gun, it happened that two striking velocities were the same, 2415 
ft/s, and neither of the two projectiles penetrated the plate. There was a penetration at 2423 ft/s, nevertheless, 
and the highest velocity of 2453 ft/s resulted in a penetration. However, the most significant feature of the data 
is that, although the projectile with 2423 ft/s gave a penetration, we have a higher striking velocity of 2433 ft/s, 
which resulted in no penetration. Thus we have a "contradiction" or an indication of being within the zone of 
"mixed" results, which is always desirable. Hence we should have proper data in this test, which would be 
analyzable in the sensitivity analysis sense. Moreover, we surely have a small sample and can get some idea as 
to how well the analysis will proceed. 

As indicated, we will assume a cumulative normal distribution describing the zone of mixed results going 
from zero penetrations at the lower velocities to 100% penetrations at some higher striking velocity and will 
attempt to estimate both the median and the standard deviation. To do this, however, we will need starting 
estimates of both. For a starting estimate of the K0.50, we may take the average of the highest velocity with no 
penetration and the lowest velocity occurring with a penetration. This means that we take the initial estimate 
of Ko.50 to be (2423 + 2433)/2 = 2428 ft/s. 
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For an initial estimate of the standard deviation of the zone of mixed results, some past data for the 
projectile-plate combination indicated that the point from no penetrations to 100% penetrations might be 
about 100 ft/sand surely would not be less than 80ft/s. Hence a standard deviation of 20 ft/scan be taken as 
the initial a. This means that for the parameters in the DiDonato-Jarnagin algorithm, we would have 

OL = ixja = 2428/20 = 121.4 and ^3 = 1/a == 1/20 = 0.05. 

With these m/7/a/estimates of the DiDonato-Jarnagin parameters, all of the derivatives in Eqs. 9-28 and 9-29 
are calculated, the values inserted, and the changes Aa and A/3 are computed. From these latter indicated 
changes, new values of a and ^ are calculated and the process continued to the desired degree of accuracy. It 
will be found through iterative computations that 

a =162.11 and )8 = 0.067 
or 

M = 2431.6 ft/s and a=15.0ft/s. 

The DiDonato-Jarnagin computer program for their algorithm is included with this chapter as Computer 
Program 9-1, Appendix 9A, for interested users. For those investigators who prefer to work directly in terms 
of the normal population mean ^ and a, the mathematical and statistical details are included in Ref. 4. A 
computer program for this case is available from the Director, US Army Ballistic Research Laboratory, 
Aberdeen Proving Ground, MD 21005, which also includes the estimate of the variance-covariance matrix. 
The variance-covariance matrix is determined to obtain estimates of the asymptotic standard errors of the 
estimated mean /u and standard deviation a of the assumed normal distribution of proportions or chances of 
penetrations. In this connection, we find from p. 265 of Ref. 4 that 

a^=10.7ft/s and a-=12.5ft/s. 

Thus these results show that the estimated standard error of 10.7 ft/s for the estimated population mean is 
quite satisfactory, but the estimated standard error of 12.5 ft/s for the estimated standard deviation is nearly 
as large as the population sigma itself. Perhaps this would indicate that the (up and down) strategy, which was 
used in this test, along with the rather small sample size, does not lead to a precise estimate of the population o. 
In fact, it would probably be found that the sample size for the test would have to be increased enormously to 
reduce the standard error a^ of the a to approximately 2 or 3 ft/s. 

9-4.2    MAXIMUM LIKELIHOOD ESTIMATION FOR THE LOGISTIC DISTRIBUTION 

The ML estimation of parameters for the logistic model of Eq. 9-5 proceeds along similar lines to that 
indicated for the normal distribution in par. 9-4.1. Moreover, as we stated earlier, Wetherill (Ref. 7) indicates 
that there is little difference to be found in the use of the normal model compared to the logistic model, with 
the advantage that the logistic model is somewhat easier to deal with analytically or as a computer program for 
simulation experiments. 

If we are dealing with the situation in which only single tests at each of several stimulus levels are available 
for analysis, the likelihood function for the observed sample may be taken as in Eq. 9-15 with the stipulation 
that for the logistic model we now use 

Pi = F{xd = {l+ exp[-(a + PxdW' (9-32) 

as in Eq. 9-5. Furthermore, one may proceed to obtain partial derivatives for the logistic model along lines 
similar to those indicated for the normal distribution in Eqs. 9-21 through 9-25 and finally use Eqs. 9-28 and 
9-29 for the iteration process from which to determine the parameters a and p. We will not record such similar 
details here but will leave them for any Army investigators who may find possible applications for the logistic 
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distribution. In addition, we suggest that some investigators will be interested in comparing normal fits to 
logistic fits of selected data. We will outline the ML estimation of the parameters for the logistic distribution 
for the case for which there are several items tested at each of a number of levels of stimulus. 

Suppose that there are «, items tested at level jc, and that r, items respond to that level of stimulation. Now / 
may be a general number of different levels, / = 1, 2, 3, etc., and the estimate of the proportion^ of responses at 
any level / is 

P^nlm. (9-33) 

The true proportion of positive responses is given by Eq. 9-32. We have not indicated a particular strategy of 
testing because that is immaterial. The ML estimators a of a and )8 of )3 for the logit (logistic) model are 
obtained from the simultaneous equations 

ln,p, = ^n (9-34) 

l.niXiPi — ^nxi (9-35) 

where 
Pi = {\+ exp[-(a + pxi)]}-'. (9-36) 

Thus with the values of n,, xt, and r, substituted into Eqs. 9-34 and 9-35, there are two equations and two 
unknowns, so that at least theoretically a solution for the parameters a and P is possible. Although the 
solution may not be so straightforward, it clearly does not involve integrals as does the normal model. 
Speaking generally, however, the ML estimation of the two parameters for the logistic model does require 
iterative methods for a solution. For this reason, we will look at another technique for determining a and ^. 

For the logistic model it is well-known that there is a straight-line transformation for this function, and it is 
easily found from what is widely referred to as the "logit". In this connection, observe either Eq. 9-32 or Eq. 
9-36, which includes estimates of the parameters, and note that the transformation or "logit" of p, involving 
the logarithm 

logit/?, = Inipilqd = a + pXi (9-37) 

is indeed linear. In view of this and the usual contention that iteration is an undesirable process for many 
investigators in laboratories who want quick, practical answers, Berkson (Ref. 11) developed a noniterative 
solution that is called the "minimum logit x^ estimate". This is defined by the minimization of the following 
quantity called the "logit x^", i-e., 

x'(logit) = Xlnim - r,)/«,]{ln[r,/(«, - r,)] -a- M'- (9-38) 

The latter two terms in the brace of Eq. 9-38 are the negative of the estimated value of the logit. Berkson (Ref. 
11) shows that the normal equations for his least squares fit of the logistic distribution, i.e., the minimum logit 
X^ estimates of a and )8, may be found from 

^[nini-rdln,]{ln[nl{ni-n)]-a-M = 0 (9-39) 

and 

S[x,r,(/7,-r,)/n,]{ln[r,/(n,-A-,)]-a-)8x,] = 0. (9-40) 
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Note that although the calculations of Eqs. 9-39 and 9-40 may still be considered to be a bit tedious, they can 
nevertheless be solved for the parameters without iteration. The quantity on the RHS of Eq. 9-38 is 
asymptotically distributed as Pearson's chi-square, and as pointed out by Berkson (Ref. 11), it has the same 
asymptotic properties as Fisher's ML method does in terms of the minimum logit x^ estimates of Eqs. 9-39 and 
9-40. In actual computations for the summing process of these two equations, one should take note that 
observed responses of r, = 0 or r, = n, are not to be included. Thus only those steps with observed proportions 
of responses between zero and unity need be included in calculations because the others do not add any 
relevant information, or at least very little weight to the overall analysis although there can be much 
disagreement on the matter. For example, Berkson (Ref. 11) includes an Appendix Note 3 in his paper on the 
cases of zero and 100% responses or "survivors" in his terminology. He suggests for the case of r, = 0 responses 
that the working value of p, = 1 / (2n,) should be used, and for the case of r, = m a corresponding observed p, = 1 
— l/(2n,) should be used. Berkson's arguments seem to be based on the realistic viewpoint that all of the data 
contain some information of value and, hence, should be used. Akhough we will not use Berkson's recom- 
mendations in our illustrative Example. 9-2, interested readers will want to study his paper (Ref. 11). 

Example 9-2: 
A new artillery primer was developed to be more sensitive than the standard artillery primer, which was 

considered too difficult to initiate and, in fact, previously had given too high a percentage of duds. In primer 
sensitivity drop tests using a 2-lb ball to drop on the firing pin, the average drop height for the standard primer 
distribution was found to be 15 in. Fifty ofthe new primers were tested at each drop height of Sin. to 18 in. at 
spacings of 2 in. in a complete rundown test; the data giving the numbers of responses or proper functions of 
the primers are listed in Table 9-3. 

Is there any evidence that the newly developed artillery primer is more sensitive to initiation than the old 
standard primer? We should assume in this connection that the flame properties for initiating the propellant 
are satisfactory. 

TABLE 9-3 

RESULTS OF PRIMER SENSITIVITY DROP TEST 

Height of Drop Number Tested Number Functions 
Xi, in. rii r, 

8 50 0 
10 50 11 
12 50 19 
14 50 32 
16 50 38 
18 50 50 

The reader may verify, by substituting into Eqs. 9-39 and 9-40 and summing as indicated, that one arrives at 
the following two equations for estimating a and j8: 

41.000a+ 534.36^3 = 0.5143 

534.360a + 7146.96^3 = 83.1970. 

As indicated earlier, we have not included the endpoint estimated fractions of responses of 0/50 at 8 in. and 
that of 50/50 at 18 in. in the calculations. Solution of these two numerical equations establishes that 

a = -5.449 
and 

i8 = 0.419. 
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The estimated mean of the distribution from Eq. 9-6 is 

£(jc) =-(-5.449)/0.419 = 13.00 in. 

Since the older standard primer exhibited a mean drop height for functioning equal to 15 in., we conclude that 
the newly developed primer is more sensitive and, hence, should produce fewer duds. 

It can be shown for the logistic distribution of Eq. 9-5 that the standard deviation of the variable x is 

so that for this example, we have 

a(x) = 7r/(V3"i3) 

6{x) = 4.33 in. 

(9-41) 

which seems to be a very reasonable value judging from the data that the distribution seems to be about 10 in. 
or 2.31 sigmas wide. 

The reader may like to fit a normal distribution to the data of Table 9-3 by either the ML estimation process 
or any other selected method and make a comparison with the logistic fit we have obtained by using Berkson's 
minimum logit chi-square technique. A comparison of the two fitted distributions may be made either by 
comparing their means and standard deviations or by judging agreement between cumulative distributions 
computed for several levels of stimulus, i.e., heights of drop. 

Perhaps it is of some interest to record that if one knows the standard deviation of x very accurately, i.e., the 
sigma on the original scale, which from Eq. 9-41 depends on one parameter j8, Berkson(Ref. 11) states that the 
parameter a of Eq. 9-5 may be found (by using an explicit expression of Dr. William Taylor) from 

a = 0.5\n{XpUxp{-lix,)l[XqUxp{pxd]}. (9-42) 

Moreover, if this last calculation were divided by the known 13 and the sign changed, it would give the mean or 
50% point. 

Following up on an earlier remark that there seems to be little choice between the use of the normal 
distribution and the logistic distribution in sensitivity analysis studies since the logistic is more tractable to 
handle analytically, it is now of some interest to comment on the use of the ML estimation compared to the 
minimum chi-square analysis procedure. In 1974 Little (Ref. 12) made a mean square error comparison 
associated with median response estimation for the normal and logistic distributions, and he included both the 
ML and MCS techniques. Thus in his simulation analysis Little (Ref. 12) really had four estimates for 
comparisons in terms of their mean square errors. He found "in broad perspective" that there is little 
difference among the mean square errors for these four estimators regardless of sample size or stimulus level 
spacing. Little assumed for the median estimate study that the standard deviations of both distributions were 
unity, so that the most general type of study was not made. However, in his study he found for "wide" spacing 
of the stimulus level, i.e., the ratio of spacing to the standard deviation is about 1.5, the mean square errors for 
ML and MCS were identical for all practical purposes. But for either the "recommended" spacing of about la 
or for "narrow" spacing of about 0.667CT, the mean square error of the MCS estimation procedure was smaller 
than that for the M L technique when the stimulus level was within about 1. 5a of the true mean. Otherwise, the 
ML estimation provides a smaller mean square error than does MCS, and it is more uniform or stable. 

Little (Ref. 12) also was able to compare the normal and logistic distributions somewhat. He found that for 
the initial stimulus level within approximately 2.5a from the true mean, the logistic distribution would provide 
a smaller mean square error than would the normal distribution. The normal distribution would provide 
smaller mean square errors only for the very small sample sizes and the narrower spacings when the initial 
stimulus level has deviated substantially from the true mean or median of the population. 
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9-4.3    MAXIMUM LIKELIHOOD ESTIMATION FOR THE WEIBULL MODEL 

Although historically the normal and the logistic models have been applied very widely to the analysis of 
bioassay-type data, and also to many Army investigations, there could always be the criticism that they are not 
general enough or sufficiently "robust" to describe accurately many important applications. Thus a criticism 
of the normal model is that it is a two-parameter symmetric distribution and, hence, should not be used to 
represent skew data. On the other hand, the Weibull model can be used to represent almost any shape. (See, 
for example, the curves of Fig. 4 of Ref. 3 or those of Fig. 21-7 of the Army Weapon Systems Analysis 
Handbook, Ref. 13.) This statement applies to either the two-parameter or the three-parameter Weibull 
distribution, i.e., whether 7 = 0 or not in Eq. 9-43. 

Generally speaking, the ML estimation of the parameters for the Weibull distribution in sensitivity analysis 
proceeds as for the normal and logistic models. Thus if, as in Eq. 9-12, we take the logarithm of the general 
likelihood probability of the sample, which is the L of Eq. 9-15, and find partial derivatives with respect to 
each of the parameters, which are equated to zero, we have a set of as many equations as there are unknown 
parameters. These may be solved, especially by computers, for the estimates of the unknown parameters. 
Again, the 6, are taken as either unity or zero, depending on whether there is a response or not, although now 
thep, is the Weibull form 

p, = Fixi) = 1 - exp{-[(x, - y)ief} (9-43) 

where 
e = o"' (9-44) 

which is the form used by Einbinder (Ref. 3) except that he also uses the shape parameter a instead of our /?. In 
statistical analyses it is the location parameter 7 that is troublesome because it is the absolute start of nonzero 
frequencies. However, some of the difficulty may be avoided by taking different values of the location 
parameter 7 and subtracting the assumed parameter values from the stimulus levels while simultaneously 
trying to determine the best fit to the observed data by the proper choice of 7. 

In view of the likelihood of more and more applications of the Weibull model in future investigations, we 
will outline the mathematical and statistical details for establishing the iterative equations only for the 
two-parameter Weibull distribution and otherwise recommend Einbinder's computer program as indicated in 
Ref. 3, which is included here as Computer Program 9-2, Appendix 9B. To sketch the types of analytical 
functions and techniques of iteration for the two-parameter Weibull model, with the ML estimation approach 
similar to that of the normal and logistic models, we will define 

yi = x,- y (9-45) 

and hence use the form 

p> = F{y,) = 1 - exp(-//a) (9-46) 

along with 

qi=l-pi. (9-47) 

Then with this notation we may, by reference to Eq. 9-15, see that 

n m 

Lp=Xqiyf(\ny,)/iopd - Xy^ilny,)la (9-48) 
(= 1 j= 1 

L„ = - 2 qiy^Ko'p,) + Xyflo' (9-49) 
->■■■■ i=i  . /=i 
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Lop = X{q,yfi\ny^\\ -yflo)l{api) - q}yF{\nyi)'l^a'p})] - S.vf(lnj,)'/a (9-50) 

L,, = X[2q,ytKo'p.) - q]yfl{a'pi) - qiyf^Ko'pd] + 2 X yf Io' (9-51) 
1=1 j-y 

n m 

V = S {q,yf - aq,y^ - qfyF){\nydlio'ph - S .Ff(ln>',)/a^ (9-52) 

Recall that we are seeking estimates of the shape parameter P and the scale parameter a, and theoretically at 
least we could equate Eqs. 9-48 and 9-49 to zero and solve for these parameters. However, both p, and qi 
involve the unknown parameters so that iterative equations very similar to Eqs. 9-28 and 9-29 for the normal 
model ordinarily would be used in the solution. Thus we would use 

LppAli + Lp,Ao = Li, (9-53) 

and 

LpAP + L^o^o = L„. (9-54) 

In Ref. 3 Einbinder indicates that starting values of the two parameters for the iterative solution may be 
found by matching two percentage points for a fixed value of the location parameter y. The Wetherill 
estimator vv of par. 9-3.5 may be useful for determining such percentage points. According to Einbinder (Ref. 
3), "Convergence problems were encountered in solving the nonlinear equations. A transformation of the data 
into exponential form based upon the initial estimate of the Weibull parameters was found to stabilize and 
speed convergence to a solution.". Thus as of this time, convergence properties for the Weibull model have not 
been fully investigated as DiDonato and Jarnagin (Ref. 9) did for the normal model. 

Note that the partial derivatives with respect to the parameters for the Weibull model are really quite 
involved, and surely a computer is required. However, it should be pointed out that the application of the 
Weibull model results in much, much more generality since, for a wide variety of shapes of quantal response 
data, the Weibull model could be fitted much better than either the normal or the logistic model. 

As indicated in Refs. 3 and 14, Einbinder has developed a computer program (FORTRAN IV) for the 
Weibull three-parameter and two-parameter models in connection with the estimation of appropriate 
parameters for quantal response type data. Einbinder's computer program is included here as Computer 
Program 9-2, Appendix 9B. (Card decks are available from the Systems Effectiveness/Systems Analysis 
Branch, US Army Armament Research and Development Command, Large Caliber Weapon System 
Laboratory, Dover, NJ 07801.) Readers will want to use these computer aids for the analysis of Army quantal 
response data as needed. 

Einbinder also established expressions for the asymptotic variances and covariances of the estimated 
parameters, and these are included in his computer programs (Refs. 3 and 14). We will illustrate in Example 
9-3 his example of Ref. 14 for the fitting of a Weibull model to quantal response data that were taken to 
develop information on safety distances concerning the detonation probabilities of one high explosive 
projectile from another in case of an accident setting off one of the projectiles. 

Example 9-3: 
To study the sensitivity of high explosive projectiles to detonation if a nearby projectile were accidentally 

initiated, it was desired to conduct a sensitivity analysis type of evaluation. Also since there seemed to be little 
available information and no theory for the new type of high explosive used, one could not be very positive 
about the shape and width of the quantal response distribution. In view of this, it appeared desirable not to use 
the cumulative normal distribution of the fraction of responses to describe the results, but rather to use the 
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Weibull model for such new data. A schematic sketch of the test situation is shown on Table 9-4 along with the 
strategy for determining the next stimulus level, and the resuhs from testing. In this connection, a donor round 
is initiated high order, and the effect on the receptor round insofar as whether or not a detonation occurs is 
observed. A type 1 or positive response is defined as nondetonation of the receptor by the donor round since 
an increase in the separation distance results in an increase in the probability of a nondetonation. On the other 
hand, a detonation would be denoted by a negative or type 0 response. 

The specific purpose of the test procedure in this application was to seek out an upper tail area of the 
safe-separation distance for the two projectiles. It was decided to use «o = 4 for a Wetherill upper tail-type 
strategy for testing, and hence the TMP for this particular strategy is 84% (see Table 9-2). Thus from the 
strategy of testing it would be expected that stimulus levels chosen with corresponding results would lie in this 
region of the true unknown response distribution. Moreover, a type D or down response requires a decrease in 
the separation distance only if four consecutive responses occur in nondetonations at a level, and this would be 
described by the result or series 1111 in four consecutive trials. The occurrence of a detonation, i.e., a zero 
response, for any round prior to the fourth 1 or nondetonation would result in a type U or up outcome. The 
lower limit at which detonation would occur would be taken as no separation distance, i.e., A =0, and the 
separation distance for which no detonations would ever be expected to occur was estimated to be fi = 64 ft. 
Thus, according to the Langlie test strategy, the first trial was started for a stimulus level equal to the midpoint 
or 32 ft. The results are indicated on Table 9-4, and it is the aim of the analysis of results to estimate the 84% 
point of the response distribution and also the shape and scale parameters of the fitted Weibull distribution. 

At a 32-ft separation distance the first three test results were nondetonations, but the fourth outcome was a 
detonation, which indicates that the separation distance must be increased for the fifth shot. Hence, according 
to the Langlie strategy, one must take the average of the current stimulus level, 32 ft, and the upper boundary 
fi = 64 to obtain a separation distance of 48 ft for the next series of tests. At 48 ft the four shots all resulted in 
nondetonations; therefore, a type D response occurred at the 8th trial—and this brings about the first change 
number—so that the separation distance must be decreased somewhat now. For the 9th shot we average the 
last test level of 48 ft with the previous type U response level of 32 and get a 40-ft separation distance for the 9th 
shot. At trial 12 the signal for another down, or D response, occurred, so that one should include the lower 
limit A with the 12th separation distance to average for the 13th shot since an equal number of D's and U's 
could not be found in going from stimulus level 12 to stimulus level 1. For trial number 17 the separation 
distance is taken as the average of the 16th and the 8th trials since there are two U's and two D's in going from 
the 16th back to the 8th trial. Finally, using six changes of response type as a stopping rule, all testing was 
terminated after the 31st trial. Moreover, the criteria for a good zone of mixed results were also satisfied since 
xminl is less in distance than xmaxO, and xminO is less than xmaxl. 

Since we used the Wetherill «o = 4 and have met the stopping criteria satisfactorily, in summary the 
Wetherill w is approximately 32 ft, which we would take as the 84% point of the safe-separation distance for 
nondetonations. That is, we would estimate that at approximately 32 ft the chance of an initiation would be 
about 16%. One notes finally that our choices of the boundaries of zero and 64 ft also seem reasonable. 

In the strategy to estimate the 84% point of the cumulative distribution, we did not really assume a 
particular distribution; therefore, we should concentrate now on fitting, for example, a Weibull model. This 
will be done for the two-parameter Weibull form by making computations for several assumptions of the 
location parameter, as indicated in Eq. 9-45 while employing Einbinder's computer program (Ref. 14), which 
is included as Appendix 9B. 

Appendix 9B is for both the fitting of the two-parameter and the three-parameter Weibull models; however, 
the fitting of the three-parameter Weibull distribution is not so straightforward. In fact, for the iteration 
processes some further study of the use of initial estimates of the parameters and the convergence properties of 
the iterations probably is required. At the present time, the use of the normal distribution, as thoroughly 
investigated by DiDonato and Jarnagin (Ref. 9) and the logistic model, investigated by Wetherill (Ref. 7), may 
be on more solid ground. Einbinder (Refs. 3 and 14) indicates that for the Weibull model the likelihood 
function appears flat in the direction of the location parameter, but no real convergence problems have been 
encountered. 
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TABLE 9-4 

SENSITIVITY ANALYSIS OF PROJECTILE INITIATION 

/ xi 
Trial Response Change 

Outcome Type Number Remarks 

1 32 xi^iA + B)l2 
2 32 Repeat 1 
3 32 Repeat 1 
4 32 0 U Go up 
5 48 x5 = (x4 + fi)/2 
e 48 Repeat 5 
7 48 Repeat 5 
8 48 D 1 Go down 
9 40 x9 = (;c8 + x4)/2 

10 40 Repeat 9 
11 40 Repeat 9 
12 40 D Go down 
13 w 0 U 2 xl3 = {xl2 + A)l2 
14 30 X14 = (X13+A:12)/2 
15 SO Repeat 14 
16 30 0 u  ■ Go up 
17 39 xn = {x\6 + xS)l2 
18 39 Repeat 17 
19 39 Repeat 17 
20 39 D 3 Go down 
21 34.50 x2\ =(X20 + A:16)/2 
22 34.50 -    . Repeat 21 
23 34.50 Repeat 21 
24 34.50 D Go down 
25 27.25 0 U 4 X25 = (X24 + A:13)/2 
26 30.88 A:26 = (X25 + A:24)/2 
27 30.88 Repeat 26 
28 30.88 Repeat 26 
29 30.88 D ■ 5 Go down 
30 29.06 x30 = (x29 + x25)/2 
31 29.06 0 U 6 Test stopped 

NOTES: 
1. D = 1111, i.e., no initiations on 4 consecutive trials at same distance. U occurs if initiation (0) occurs before 111! result. 
2. Number of changes of response type equals 6 on trial 31. 
3. Min distance with type I response is 29.06 on trial 30—xmini. 
4. Max distance with type 0 response is 32 on trial 4—xmaxO. •       '        . 
5. Test pattern is satisfactory since xminl is less than jcmaxO. 
6. Criteria for stopping the test are satisfied at trial 31. •- 

A = lower limit = 0 
B = upper limit = 64 ft - 
Xi = xi = separation distance for rth trial; ; = trial number 

1 = no detonation 
0 = detonation 

> 
Donor XI 

> 
Receptor 
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For the data of Example 9-3 Einbinder (Ref. 14) fitted four two-parameter Weibull distributions by 
assuming that the location parameter y took on any one of four values 7 = 0, 10, 20, or 25 ft. For each of these 
four assumed sizes of the location parameter and initial estimates of the shape and scale parameters, the 
computer program. Appendix 9B, was used to determine the iterated values of the final shape and scale 
parameters along with the natural logarithm of the likelihood, i.e., a quantity similar to Eq. 9-12 or Eq. 9-15, 
and the generalized variance. As is well-known, the generalized variance is the determinant of the asymptotic 
variance-covariance matrix and is quite useful in judging how well the information in the sample is being used 
to estimate the parameters of the distribution being fitted. This does not, however, guarantee maximization of 
the likelihood. 

The asymptotic variance-covariance matrix for the two-parameter Weibull distribution is found with the 
aid of the final estimated values of the partial derivatives in Eqs. 9-50 through 9-52. In fact, the asymptotic 
variance-covariance matrix is given by the following indicated inverse of expected values: 

(9-55) 

Hence the generalized variance is the determinant of the inverse matrix given by Eq. 9-55. The matrix of the 
quantities in Eq. 9-55—without taking the inverse—is known as Fisher's "information matrix" 

For Example 9-3 the final quantities computed by Einbinder (Ref. 14) for the four assumed values of the 
location parameter, the estimates of the shape and scale parameters, the estimates of the logarithm of the 
likelihood, and the generalized variance are brought together in Table 9-5. 

TABLE 9-5 

WEIBULL PARAMETER ESTIMATES 

Location Shape Scale Logarithm 
Parameter Parameter Parameter Likelihood Generalized 

y J8 a InZ, Variance 

0 12.01 29.^1 -4.3997 37.44 
10 8.09 19.86 -4.3944 16.56 
20 4.19 9.83 -4.3776 3.99 
25 2.22 >    .      4.77 -4.3424 0.86 

We note from Table 9-5 that there exists a drastic change in the parameter estimates with an increase in the 
value of the assumed location parameter y. Also the generalized variance decreases sharply and is smallest at 
the assumed value of 7 = 25. Thus we should certainly conclude that we are no doubt dealing with a 
three-parameter instead of a two-parameter Weibull model for the best fit. For a Weibull shape parameter of 
about 2.22 (last line of Table 9-5), this particular fitted distribution is subnormal or somewhat flatter than the 
normal distribution, and a bit skewed to the right. Hence we would not expect that either the normal or the 
logistic models would fit as well as the Weibull although the interested reader may try to obtain proper normal 
or logistic fits to the same data and to examine the resulting generalized variances for comparative purposes. 

In Ref. 14 Einbinder gives estimates of certain percentiles or percentage points (10%, 50%, 84%, 90%, 95%, 
and 99%) for the safe-separation distances using the fitted Weibull model and each of the values assumed for 
7. He also gives the estimated standard deviations of each of these percentiles. These quantities are given in 
Table 9-6, and the standard errors are listed in parentheses just below each estimated percentile. Reference to 
Table 9-6 indicates very clearly that the minimum variances for the estimated percentiles occur at the TMP 
points for the test strategy used, which was 84%. Moreover, the farther away percentile estimates are made 
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TABLE 9-6 

WEIBULL SAFE-SEPARATION DISTANCE PERCENTILES (Nondetonation)* 

Percentile, % 7 = 0 ft 7 = 10 ft 7 = 20 ft 7 = 25 ft 

10 c ','  '      24.77 
(3.30) 

25.03 
(3.00) 

25.74 
(2.23) 

26.73     .    .,■• 
(1.25) 

50 28.97 
(1.35) 

28.98 
(1.33) 

29.00 
(1.25) 

29.04 
(1.07) 

84 31.42 
(0.97) 

31.40 
(0.97) 

31.36 
(0.97) 

31.26 
(0.98)      ■         ' 

90 32.02 
(1.17) 

32.01 
(1.18) 

31.99 
(1.21) 

31.95 
(1.25) 

95 32.73 
(1.50) 

32.74 
(1.53) 

32.77 
(1.61) 

32.86 
(1.75) 

99 33.92 
(2.16) 

33.98 
(2.26) 

34.15 
(2.51)    ■ 

34.50     ■ 
(2.99) 

*The upper figures are the estimated safe-separation distance percentiles, and the lower ones in parentheses are the standard 
deviations of the estimates. 

from the TMP point, the greater the standard deviations or variances of the estimators. Of some particular 
interest is the fact that the estimated percentage points seem to be rather insensitive to the values assumed for 
possible location parameters. The percentiles or percentage points refer to the areas under the distribution 
curve fitted, and as might be guessed, the upper percentiles would show less variation with the location 
parameter than the lower percentiles. 

With the estimates of the parameters available, the fitted Weibull model may be used to calculate the 
probability of initiation of an adjacent projectile as a function of the separation distance. In fact, this has-been 
done by Einbinder (Ref. 14) in his Table 4, which we give here as Table 9-7, for the three separation distances 
of 30, 34, and 38 ft. Again, the figures in parentheses below each entry are the estimated (asymptotic) standard 
deviations. For a 30-ft separation distance the detonation probabilities are about equal and do not depend 
markedly on the choice of the location parameter of the Weibull model although for the larger separation 
distances of 34 ft and 38 ft, the detonation probabilities vary rather widely with choice of y. The striking 
conclusion from Table 9-7 is that the standard errors are very large, relatively. In fact, the coefficients of 
variation, or ratio of sigma to mean level, are very much larger for Table 9-7 detonation probabilities than for 
the percentage points of Table 9-6. Also one notes a rather sharp change in detonation chances around 30 ft. 
For example, from Table 9-6 one notes that the detonation probability is about 16% (i.e., the 84% point) for a 
separation distance of slightly over 31 ft; however, from Table 9-7 the detonation probability is about double 
or 34% for 30 ft with only a change of separation distance equal to a bit over 1 ft! In this connection, we also see 
from Table 9-7 that the standard error of detonation probabilities at 30 ft is half the detonation probabilities 
themselves! Thus it would be interesting to see whether another model would give smaller sigmas. 

A joint confidence region for the Weibull parameters may be estimated by making use of the asymptotic 
normality of the ML estimators, as is well-known (see Ref. 3). 

The percentage points of the Weibull sensitivity model are obtained by solving the following equation for 
the quantity Lp once a given probability level p is specified: 

P=l-cxp{-[{Lp-y)/df} (9-56) 
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TABLE 9-7 

ESTIMATED DETONATION PROBABILITIES* 

Separation 
Distance, ft 7 = Oft 7 = 10 ft 7 = 20 ft 7 = 25 ft 

30 0.349 
(0.145) 

0.346 
(0.146) 

0.341 
(0.146) 

0.329 
(0.145) 

34 0.009 
(0.032) 

0.010 
(0.034) 

0.012 
(0.039) 

0.017 
(0.044) 

38 0.015 X 10"" 
(0.41 X 10"") 

O.IOOX 10"" 
(2.4 X 10"") 

3.350 X 10"" 
(55.1 X 10") 

96.80 X 10"" 
(954.0 X 10"") 

* Upper figures are the estimated probabilities of initiation, and the lower ones in parentheses are the asymptotic sigmas. 

and if we put ' ^      , 

q=\-p . - (9-57) 

we have 

Lp^di-lnqY'f'+y. ■ (9-58) 

Asymptotic variances of the estimates of Lp are given in Ref. 3. Thus probabilities for given Lp, or percentage 
points Lp for given probabilities/7, may be determined by using Eq. 9-56 or Eq. 9-58, and asymptotic variances 
may be found by using well-known statistical approaches. 

Einbinder's program. Appendix 9B, is used to calculate parameters and statistical estimates for the reflected 
Weibull distribution. The cumulative reflected Weibull model is defined as 

F(x) = exp{-[(7^-jc)/(9f},        X<7R (9-59) 
= 1, otherwise 

where 
7« = starting frequency point for the reflected Weibull model. 

The fitting of a reflected Weibull model to a set of observed data is accomplished by reflecting the stress 
levels and the outcomes about an arbitrary point A. Thus the data for such a case may be transformed to the 
standard Weibull form by the equations: 

Xs = lA- X, (9-60) 

ys=\ -y{xs) (9-61) 

where 
Xj = transformed stress ' 
ys = transformed response. 

(The shape and scale parameters are invariant under this transformation.) 
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9-5    SOME REMARKS ON ALLIED WORK 

As we have stated earlier, our primary purpose in this chapter is to report on sensitivity analysis work that 
will likely have Army applications. Moreover, it is for this very reason that we have concentrated on the case 
for which there is only a single observation for each level of stimulus, no matter whether a uniform spacing of 
the stimulus levels exists or values were finally arrived at by using nonuniform spacing in the sensitivity 
experiment. By 1982 the Army has had some 28 design of experiments conferences and some 21 operations 
research symposia at which a variety of subjects have been presented and discussed, including the topic of 
sensitivity analysis or quantal response type evaluations. In fact, there has been a wide variety of applications 
to a number of Army problems—e.g., ballistic limit of armor plate, explosive sensitivity, primer sensitivity, 
safety distances for storage of ammunition, bioassay in medical or related fields, and rocket motor rupture 
problems. Thus we will make reference to a few applications and some studies of possible interest to Army 
investigators. 

In connection with sensitivity testing for launch vehicle applications, Gayle (Ref. 15) reported on a 
computer simulation study of the Bruceton or up and down technique and the probit method, which has been 
used historically in much of the bioassay analyses. The probit method, or more accurately, the probit 
transformation, has been widely used to linearize the data when it is assumed that the sensitivity test results 
follow a cumulative normal distribution. This is done by dealing with standard units of the original data and 
adding a (large) constant, usually taken as 5 to the number of standard units. Thus in terms of the original data 
expressed as x units of stimulus, we first have the standardized normal deviates z, i.e., 

z = (x-M)/a. (9-62) 

Then if we put 

y^z + 5 (9-63) 

we have a new variable y, which is a transformation, but one related to the original cumulative normal 
probabilities. For example, suppose that the cumulative normal probability is p = 0.16, then one may 
calculate that the equivalent y = +4.0. 

The quantity y is called the probit of the probability p. We note that >■ is a Hnear form of a standardized 
normal variate and in fact, 

y = probit p = a + ^x (9-64) 

where we identify that 

a^S-fi/o   ■ (9-65) 

p=l/o. (9-66) 

In summary, therefore, if we plot the probit y against the original stimulus levels jc, for normally distributed 
data we would expect to get a straight line. Eq. 9-66 gives the slope of the probit line, and Eq. 9-65 gives the 
intercept. Moreover, the estimate of y3 is a good measure of the heterogeneity of the sensitivity data under 
investigation: the smaller the value yS, the more heterogeneous the data (which means a large sigma), and the 
larger the quantity p, the smaller the variability or sigma. An advantage of the probit method is that the 
probability levels may be preselected, but to equate observed probabilities with the theoretical ones of Eq. 
9-64, several observations per level must be used, and the larger this number, the better. (Since there are two 
parameters, at least two levels must be chosen, and for three or more parameters, least squares should be 
used.) 

The computer simulation carried out by Gayle (Ref. 15) was to compare the up and down and the probit 
techniques insofar as estimation of the true mean was concerned, but Gayle also was quite interested in the 
effects of nonnormality, which may have been the case for his problem and estimation of the more extreme 
percentage points of the distribution—thus, this is the reason for sampling known normal distributions rather 
extensively and comparing results of analysis. Moreover, Gayle gave particular attention to the probable 
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nonnormal types of distributions he would encounter and included some bimodal distributions, which are 
likely to be sampled in practice. Although the up and down and the probit methods would not be strictly 
comparable, the sampling experiment was carried out so that some valid comparisons could be made. In fact, 
for each sensitivity experiment Gayle generally obtained about 20 responses at each of some five different 
levels of stimulus, and each sensitivity test was repeated about 50 times; accordingly, the sampling was 
somewhat extensive. A selected point of strong interest was that the up and down technique would concen- 
trate testing about the mean, whereas any testing levels could be used for the probit test. 

As a result of his sampling experiments and analyses, Gayle (Ref. 15) concluded that the "Probit method for 
the bimodal distribution was extremely sensitive to the particular levels selected for testing with agreement 
ranging from poor, in some instances, to ridiculous in others.". For the normal distribution both methods 
gave good estimates of the true mean level, but when one sampled the distributions departing from normality, 
the estimates "provided only rough indications of the population parameters", and in the case of bimodal 
populations the estimates were quite unreliable. For the more extreme percentage points the estimates were 
found to be very unreliable. We see, therefore, that Gayle's conclusions are similar to Wetherill's (Ref. 7) 
ahhough the probit method, which has been widely used, was brought into consideration by Gayle (Ref. 15) 
because he wanted to study the effect of the selection of the stimulus level, especially when there could be the 
concentration of more than a single test at each stimulus level, if desired, instead of the up and down type of 
testing technique. 

No matter what the underlying, unknown distribution is in an application for a sensitivity analysis type of 
test, the desire to preselect the particular levels of stimulus should be tied in with an optimum or very useful 
type of testing strategy. Consequently, much effort has been devoted in recent years to the design of improved 
testing strategies. Some of these investigations have been reported in the Proceedings of the Army Design of 
Experiments Conferences by, for example, Rothman and Zimmerman (Ref. 16), Alexander and Rothman 
(Ref. 17), and Little (Ref. 18). 

Rothman and Zimmerman (Ref. 16) attempt to extend the work of Gayle (Ref. 15) to more complex-type 
sensitivity experiments and also to bring into consideration the matter of costs. They consider a sensitivity 
experiment for which there are n stimulus variables and one for which the cost of each test is at least 
approximately known as a function of any combination of these variables. They also assume that the cost is no 
different whether the test response is positive or negative (null). The goal of their study was for a given 
probability a to estimate a specified portion of that (n — 1) dimensional surface on which the chance of a 
positive response equals a. Their analysis is based on the use of a loss function L, which would be made up 
conceptually of two terms: (1) the cost of tolerating a specified variance in the estimate of the surface sought 
and (2) the cost of testing. The overall problem was stated as the desire to find the experimental design of the 
testing strategy that would minimize the average value of the loss over the portions of the surface of prime 
interest. Apparently, there have been no subsequent attempts to extend this type of sensitivity analysis 
procedure. 

In Ref. 17 Alexander and Rothman report on a study to extend knowledge on the testing strategies and 
analyses for the inverse response problem in sensitivity analyses. The inverse problem is the determination of a 
stimulus or stress level for which the probability of a positive or null type of response is desired, and usually 
this might well be an extreme percentage point of some hypothesized distribution. Thus if the stated 
probability level is a, the aim of Alexander and Rothman in Ref. 17 is to find the stress level x = x„ such that 
the cumulative probability F{x^) = a. Their work assumes, however, a very general type of response function 
in that F{x) is assumed to be only monotonic nondecreasing; therefore, the design is otherwise distribution 
free. Their work draws on the attainments of Dixon and Mood (Ref. 1), the Robbins and Monro test strategy 
(Ref. 6), and the study of Wetherill (Ref. 7) and results in their (Alexander and Rothman) developing two 
rather complex designs or test strategies for the purpose of using all the previous information in the sensitivity 
test to determine the next stress level instead of using only the immediately past test results. (The Langlie 
procedure of Ref. 5 does this in a way.) Alexander and Rothman (Ref. 17) indicate that their recommended 
designs "give good results with limited sample sizes"for probability levels of 0.05 or 0.95 and "are still useful in 
many applications" for even probability levels of either 0.02 or 0.98. One design is appropriate when 
continued testing on a set of discrete test levels is desired until a specified precision in the estimate of x„ is 
attained. The other design or strategy is appropriate when the sample size is fixed in advance and there are no 
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restrictions on the test levels. These two designs have been evaluated by Alexander and Rothman with a 
Monte Carlo or simulation procedure, and as they say, "It is shown that they compare favorably with existing 
procedures and with a conjectured asymptotic criterion for the distribution-free inverse response problems.". 
For details readers should study Alexander and Rothman's paper (Ref. 17). Apparently, there has been no 
follow-up on this work, and it has not yet appeared in the open literature for any extensive application trials. 

Little (Ref. 18) has investigated a "two-point" strategy in planning quantal response experiments for 
ordnance devices. Little recommends a small sample strategy, which hopefully "should prove to be useful in 
predicting high reliability [or high safety] for ordnance devices". Little's two-point strategy, stated briefly, 
uses the Bruceton, or up and down, strategy in the first state of testing to generate two nonzero, nonunity 
probability points along the assumed response distribution curve. Then in the second stage the Little strategy 
allocates the remaining specimens to two corresponding stimulus levels such that the variance of the point 
estimate pertaining to the reliability (safety) of interest is minimized. Apparently, it could be said that the first 
stage is to "feel out" the zone of mixed results for the purpose of "anchoring" the two ends of a line segment as 
precisely as possible. Or as Little says (Ref. 18), "In essence, the issue is to find the specimen allocations which 
minimize the variance associated with extrapolation along the fitted response distribution to a point more 
remote to the median. Optimally, this minimization requires testing certain specific proportions of the 
available specimens at carefully selected specific stimulus levels." This particular strategy was developed, 
according to Little for analogous use in estimating fatigue reliability (Ref. 19). We recall that reliability means 
the integral of the distribution curve, preferably from a lower percentage point or probability level to infinity, 
so that a high value—e.g., 95% or 99%—may be achieved as the chance that the item performs reliably or 
safely. 

If we reflect momentarily on the probit method covered earlier in this paragraph, there was an attempt at 
linearization that was very analogous to the strategy proposed by Little (Ref. 18) for his two-point technique, 
and it is well-known that if one is fitting a straight line and knows that the correct curve to fit is a straight line, 
he may as well divide the total available number of observations equally between two points or segment ends 
as remote as possible. Expressed analytically, the Little strategy proceeds as follows in determining the two 
points of testing to minimize the variance of reliability prediction. If we use * to denote estimate of, the fitted 
linear response model in terms of a probability level p will be given by 

Y=F-'{p) = a + fix (9-67) 

where x refers to the stress level or stimulus and the probability level p = F( F) is the distribution of interest, 
i.e., a normal model, logistic, Weibull, etc. As before, the fitted linear response is indicated on the RHS of Eq. 
9-67. Thus we see that for any selected stress level x, there will be an estimated value of Fthat is convertible to a 
probability level p through the model or distribution fitted. Moreover, this means that the variance of the 
fitted or estimated Y may be obtained from the expression 

a\Y) = {dy/dp)'{pq/n) (9-68) 

where 
q = I — p = true probability of response 
n = number of specimens tested at the stimulus level x. 

Hence it is the quantity or variance (Eq. 9-68) that Little minimizes. 
Now if we were to select two stress levels—a low one xi and a high one xi—at which r, test specimens of «i 

respond at xi and rzof AJZ respond at X2, we have estimates of they^i and p2 that are related to thej', and >'2 
through/? = F(y). Furthermore, if we are interested in a particular stress level xo for which we desire to know 
or assure the proper value of reliability, the minimum variance of the corresponding linear response value yo 
may,   as shown by Little (Ref. 18),   be determined by the appropriate choice of >-! and >'2 in the expression 

(Jpo = {[iy2-yo)/{^nlop^)] ± [(j, -yo)/i\/n2(jp0/[ini + n2){y2-yif].*        (9-69) 

•The plus sign is taken for extrapolation when yo is outside the interval (yuyi), and the minus sign, for interpolation. 
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It is an interesting fact that if one takes the derivatives of Eq. 9-69 with respect to yi and yi and equates the 
results to zero, it can be shown that the optimum values of yi and yj are independent of the value yo 
corresponding to the xo in which we are interested! However, the optimum values of vi and >^2 along with the ni 
and /72 (usually equal) have to be computed numerically from the model of interest. This has been done by 
Little for the normal, logistic, and Gumbel's extreme value distributions (for the smallest observation) and 
displayed as a table in Ref. 18. We give the results for the normal and logistic distributions in Table 9-8. From 
Table 9-8 we see, for the assumption of a normal distribution for the quantal response problem, that half of the 
specimens should be tested at about the 6% probability level, and the other half at the 94% probability level. 
For the assumption of a logistic distribution. Table 9-8 indicates that half the available items should be tested 
at the 8% probability level, and the other half at the 92 percentile. 

TABLE 9-8 

OPTIMUM;^ AND/? VALUES FOR MINIMUM VARIANCE ESTIMATION OF yo 

Distribution Optimum j's Optimum p's 

.v'l                      yi Pi                               PI 

Normal 
Logistic 

-1.575                     +1.575 
-2.399                      +2.399 

0.058                       0.942 
0.083                        0.917 

The reader will understand that tests should be carried out at stimulus levels in the zone of mixed results, 
and not at extreme or very low or high probability levels, because a delicate balance should be attained 
between all the parameters. Thus Eq. 9-69 would indicate, by observing the denominator, that the two test 
points should be as far apart as possible, but the variances of the two proportions at the two points of test 
depend on Eq. 9-68 while the choice of the percentile of particular interest yo and the division of the total 
sample come into play. Hence the need exists for a careful examination of Eq. 9-69. In fact, calculations using 
Eq. 9-69 show that the standard errors in the denominator of Eq. 9-69 will approach zero for very high or very 
low percentiles, so that the variance of prediction for the point of interest yo does indeed get very large. Thus 
there are unique values of the stress levels xi and xi, which must not be too far apart or too close together, to 
minimize Eq. 9-69. 

Finally, one may want to select a value or level of precision by using Eq. 9-69, and it becomes very clear that 
the size of the total sample may be quite important especially for an extreme percentile of interest. (For the 
assumption of the extreme value distribution of Gumbel, Little indicates in Ref. 18 that the two stress levels 
should be at the 12% and the 92% probability points, indicating the need for testing well into the upper tail of a 
very skew distribution.) 

In spite of all this enlightenment, we cannot escape the hard fact that for practically all problems of 
application we do not have any very precise ideas as to what the stress levels should be to give, for example, for 
any normal population about 6% and 94% responses in a proposed test. In fact, even these two percentages are 
too close to zero and unity to have much direct application to many Army problems. Thus the real difficulty 
lies in selecting the two stress levels so that we do not obtain all no responses or all responses because this 
results in a loss of information (large variance of prediction) or in useless testing. Hence for the optimal linear 
regression we need to have very accurate initial estimates of the intercept a and the slope j8, but even this 
requirement turns out to be impractical. This is the reason that Little (Ref. 18) has suggested his modified 
procedure called the overall two-point strategy, and for this he recommends some testing using the up and 
down strategy in the initial stages of the sensitivity test. Actually, Little (Ref. 18) recommends two versions of 
the two-point strategy, one for "small" samples of "50 specimens or less", and the other for "large" samples of 
"100 or more" specimens. 
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For the small-sample procedure, Little suggests: "(1) Conduct the beginning portion of the test program 
using an up and down strategy, and (2) change over to testing at only two stimulus levels x\ and Xi as soon as 
two finite values of ji and yi are established by the up and down portion of the test program." At this point, 
however. Little (Ref. 18) suggests a third possibility: (3a) allocating the ratio of the number «, tested at the 
lower, level to the number m for the higher level directly as the calculated standard error for the level and 
inversely as the deviation of the point of prediction ya from the level y„ or otherwise (3b) proceeding to treat 
the test specimens equally at the optimum two probability levels of Table 9-8 if sufficient information is 
available. These two levels should be updated as the test progresses, and the iterative procedure may be quite 
worthwhile when the x\ and xi are closely spaced. Little recommends that the up and down portions of the test 
program should be at equally spaced intervals, i.e., uniform spacing of approximately one sigma each. An 
example is given by Little in Ref. 18. It would appear that this treatment of the sensitivity analysis by Little 
may need further study, especially on getting into the second stages of the test strategy, although there could 
be some Army applications to which the procedure would apply quite well. The real problem appears to be 
attempting to test near the desired low and high probability levels, and that knowledge in itself would be quite 
a lot. 

For his "large-sample" procedure Little (Ref. 18) depends on the results of testing the small sample to 
determine more accurately the two levels of test or stimulus for the remainder of the available large sample. 

It is hoped that those Army investigators interested in research will extend this direction of sensitivity 
analysis. 

Ross (Ref. 20) discusses the M L estimation of the " 12D dose" for the radiation sterilization of canned food, 
using data from inoculated pack experiments. Thus Ross' problem of Ref. 20 is to assess the effectiveness of 
ionizing radiation as a means of food preservation. The so-called " 12D dose" is obtained and defined in terms 
of the probability that an individual organism will be killed; obviously, it is desired that this be very high. 
Therefore, if the cumulative probability of the chance of death at stimulus level x for an individual organism is 
F{x), the probability that the organism survives is 1 - F{x). It is desired to determine the stimulus level Xc such 
that 

I-F(x.)=lX10-'' (9-70) 

i.e., that the chance of survival is only one in a trillion—indeed a very low risk! For the case of a can containing 
n organisms, the chance that all n organisms are killed is 

[F(x)r«exp{-«[1-F(x)]} (9-71) 

if Aj is large and the survival chance 1 — F(x) is small. 
For this particular problem Ross (Ref. 20) has developed computer programs for certain one- and 

two-parameter distributions to find the critical value of the stimulus level x, for the " 12D dose" by using the 
inoculated pack experimental data. The distributions for which Ross had computer programs are the 
one-parameter and two-parameter exponential distributions, the normal, the lognormal, and the Weibull 
models. He gives an example in Ref. 20 for parameter estimation of all these models for an inoculated pack 
radiated at —30° C using C. botulinum spores in canned pork. 

In a recent paper Hamihon (Ref. 21) reports on a rather extensive Monte Carlo investigation of robust 
procedures to estimate the median dosage level in binary-response bioassay-type investigations. Generally, his 
work is for the situation in which several or many items are tested at various dosage levels. Hamilton takes into 
account the mean square errors of the estimators for a variety of symmetric tolerance distributions, the 
sensitivity of the estimator to an anomalous response and the possibility that the estimators are incalculable. 
He includes a discussion of trimmed estimators. 

For a fairly comprehensive introductory account of bioassay-type procedures up to about 1975, the reader 
might be interested in Hubert's lecture notes (Ref. 22). They contain a very readable account of sensitivity 
analysis procedures, and Hubert includes an extensive bibliography of 133 publications. 
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9-6    SUMMARY 

A large number of important Army applications involve quantal response (all or nothing) type data, and the 
basic underlying probability distributions that generate such data may take on a wide variety of shapes. In 
fact, a zone of mixed results exists such that the proportions of responses may vary from zero to 100%. The 
analyst thus has the job of hypothesizing a reasonably practical distribution and of trying to estimate the 
parameters of it as precisely as possible. Also there is naturally some rather intense interest in either low or 
high percentage points, so that efficient strategies of testing are involved. In this chapter we have covered some 
of the key methodologies that have been developed over the years and that should prove valuable to analysts 
in their daily work. The normal distribution, the logistic distribution, and the WeibuU models have been 
presented with the more efficient methods of estimation. In addition, we have indicated some of the better 
strategies of testing in case the experiments can be designed and conducted. Our procedures discussed here are 
more or less aimed toward the more usual Army application for which there is only one test per level of 
stimulus. Therefore, unequally spaced data come within the scope of the analyses covered. 

Several illustrative problems or applications have been presented to indicate the probable types of uses of 
sensitivity analysis models. 
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APPENDIX 9A 

COMPUTER PROGRAM 9-1 

; •     (DiDonato and Jarnagin Maximum Likelihood Estimation 
of Normal Distribution Parameters) 

SUBROUTINE EPPA 

PURPOSE. This routine gives maximum likelihood estimates for the mean n and standard deviation a of a 
normal distribution which governs variations in data from experiments in which the response is quantal in 
every case. Dosage mortality studies and armor penetration analyses are often based on experiments with 
quantal responses. These responses are associated with the n input values a, if they are successes and with the m 
input values bj if they are failures. (See reference cited below.) At the user's option plots of the confidence 
ellipses at the 50% and 95% can be obtained as part of the output. 

RESTRICTIONS: 

1. minimum a, < maximum Z); 

m n 

2. l/mXbj<l/nXai Ref 1 

RESTRICTION. The total number, n + m, of different values for a, and bj that can be run is limited only by 
the amount of memory available to user. 

ACCURACY. The accuracy of the estimates for n and a can be deduced from the print of the iterations. The 
program is presently set to terminate when the A:th iteration satisfies 

\A{iJLklok)\<ei\{nklok)\ 

A(l/ok)<e2il/ok) 

where 
(1/2)62 = 61 = 2.5X10"'. 

REFERENCES: 

1. A. R. DiDonato and M. P. Jarnagin, Jr., Use of the Maximum Likelihood Method Under Quantal 
Responses for Estimating the Parameters of a Normal Distribution and Its Application to an Armor 
Penetration Problem, Technical Report TR-2846, US Naval Weapons Laboratory, Dahlgren, VA, 
November 1972. 

2. Users Guide for the CDC 6700 Computing System, NSWC/DL Technical Report TR-3228, US Naval 
Surface Weapons Center/Dahlgren Laboratory, Dahlgren, VA, December 1974. 

CALLING SEQUENCE: 

CALL EPPA (IDENT, k, 1, I0P, ALPHO, BETO, FNA, A, FNB, B, Z5) where 

IDENT    is an array dimensioned at 8 locations. The Hollerwrith character contents of IDENT will be 
printed on the top line of the OUTPUT. Up to 80 characters are allowed per job. 

k    is twice n where n is the number of numerically different a, values. n>2. 
(cont'd on next page) 
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APPENDIX 9A (cont'd) 

1    is twice m where m is the number of numerically different bj values. m<2. 

I0P    If I0P = 0 then user will receive plots of 50% and 90% confidence ellipses with his output. If I0P 9^ 0 
no plots will be made.* 

ALPHO    Are user supplied starting values ao, fio to the routine. The user can have the routine compute 
BETO    starting values ao = MO/OO and ^o = 1/ao by setting BETO < 0. 

FNA, A    are A: = 2-n dimensioned arrays. FNA(/) specifies the number of A(/) values to be used, / = 
1,2, . . . ,n. 
A(n + 1), A(« + 2), . . . , A(2«) and FNA(« + 1), FNA.(« + 2), . . . , FNA(2rt) is used by EPPA as 
work space. 

FNB, B    are 1 = 2m dimensional arrays. FNB(/) specifies the number of B(0 values to be used, /' = 
1,2, . . . ,m. 
B(m + 1), B(w + 2), . . . ,B(2m) and FNB(m + 1), FNB(m + 2), . . . , FNB(2m) is used by EPPA 
as work space. 

Z5    is an array dimensioned at 201. It is used by the package of plotting subroutines. See Example 
below. 

*Remark—If the user is using the plotting option, i.e., I0P = 0, then 3 of the 4060-IGS subroutines must be 
called. They are MpDESG, CRTID, and EXITG. (See 2, p. G-13.) 

EXAMPLE: 

Program Sample (output, tape 51 = output, tape 10, etc.) 

Dimension FNA(lOl), FNB(lOl), A(lOl), B(lOl) 
Dimension Ident (8), Z5 (201) 

Data 

call MODESG (Z5,0) 
call CRTID (Z5, 20HN35A111GDKLABXXXXXXX) 
I0P = O 
call eppa (Ident, NM, MM, I0P, ALPHO, BETO, FNA, A, FNB, B, Z5) 

call EXZTG(Z5) 
call Exit 
End. 

(cont'd on next page) 
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APPENDIX 9A (cont'd) 

SUBROUTINE   LCOH{SUMl,SUM2,N»A,FN,CONST,TONES,TTWOS,TTHRES»TFOUR, 
1TFIVE,ZX\,P0Z» 

COMMON/DANOE/   EP1,EP2,LIMIT,NC 
C0MM0N/ZZZ/9ETA,BETAD,ALPHA,QQ 
COHMON/CPNOF/ENDF 
DIMENSION   RATI0N(5) 
DIMENSION   A{N),FN(N),ZXY(N1,P0Z(N) 
DATA   (RATI0N{K),K=3,5)/.5,.66666666666667,.75/ 
DATA   SQPI/.3939i»2280i»Dll»3/ 

ENQF=D. 
SUM1=0.0 
SUM2=0.0 
TONES=0.0 
TTWOS=0.0 
TTHRES=0.0 
TFOUR=0.0 
TFI\/E=Q.O 
DO   13   1=1,N 
SI=A(I)»8£TA0-ALPHA 

ZSI=-SI*SI/2.0 
9Q   FORMAT   (   IHO,   6E22.1^   ) 

IF   {    ZSI.LT.-675.82   )      GO   TO   131 ' 
ZXWI) = SQPI»EXPIZSI) 

151   CONTINUE 
IF<A3S{SI) .GT.8.D)G0   TO   8 
IG0=1 
IF   (CONST.GE.O.)    GO   TO   500 
CHECK   =   PNDF(-SI,0) • > 
GO   TO   5fll 

500 CHECK   =   PNDF{SI,0) 
501 QQ=QQ»CHECK**FN(I) 

6   TONE=ZXY{I)/CHECK 
PDZ{I)=TONE 
TONE=FN(I)*TONE 

60 T£NP=AlI)*TONE 
61 SUH1=SUM1+TEMP 

TTKO=TONE*SI 
TTHREE=TONE»POZfII 
GO   10(121,12   ),IGO 

121   5UH2=A(I)*A(I)*(TTW0*C0NST»TTHREE)+SUM2 
GO   TO   12 

3   CONSTS=CONST*SI 
IF(CONSTS.G£.0.0)GO   TO   133 ' 
QQ=0.0 

89   FORMAT   (   IHO,    110   ) 
TONE   =   PNDF(SI,IFIX(C0NST-1.)) 
PDZ(I)=TONE 
TONE=FN(I)*TONE 
SUH2=SUM2-EN0F*A(I)»A{I)*C0NST*FN(I) 
IGO=   2 
GO   TO   60 

12   TQN£S=TONES+TONE 
TTHRES-TTHRES+TTHREE 
TTH0S=TTW0S+TTW0 

TF0UR=TF0UR+T£MP*SI (cont'd on next page) 
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'■i. 

APPENDIX 9A (cont'd) 
TFI\/E = TFIVE+TTHREE*A(I) 
GO   TO   13 

131 CONTINUE 

ZXY(I)=0. 
€0   TO   151 

133   POZ{I)=0.0 
13   CONTINUE 

RETURN 
END 

(cont'd on next page) 
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APPENDIX 9A (cont'd) 
FUNCTION   PNDF{X,IQ) 
COMMON/CPNQF/ENDF 
LOGICAL   Ll,L2 
DIMENSION   A(5),B{5),AA{9»,E3(9),AAA{6> »BBB(6) 
DATA   (Ad),1=1,5)   /.1857777061€«f60E-0, .31611237i»38706E+l, 

2. 11386i«15'» 151 0 5E + 3,.377l»85 2376 85 30E + 3,. 320 937758 91385E*-«»/ 
DATA    {3(1),1=1,5)   /.I £+i»,236012909523i»t»E*-2, 

2.2i»'t02i.63793*»«f^E + 3,. 128261 6526077^E*i», .28't4236833if3g2E+^/ 
DATA   (AACI),I=1,9)   / . 215311535i|7it'*3E-7, . 56i»188^9698867E+0 , 

2.8 8a31i»979i»388'fE+l,.661l9l90637iit2E«-2,.2986351-38197ifOE*3, 
3. 8 61952221 24.177E + 3,. 171204761263 41E + 4,. 2 05l076377826lE+«f, 
'♦.123033935i»7930E+«»/ 

DATA   (38(1),1 = 1,9)   /.I E+1, .157if<»92611071DE+2, 
2. 117693950 891 3 1E4-3,. 537181101862 01E*3,,16213e957«t5667E*-if, 
3. 3 29079923 5733 5E + «»,. 1*362619090 lif32£-Hf,.3W936767i»lif37E ♦If, 
4,1230 33935 480 3 7E+i|/ 

DATA   (AAA( I),I=1,6)    /-. 163153871 37302E-1 ,-.30532663<»96123E-0 , 
2-. 3603<« if 89 gg'fgSOE-C,-. 1257 8172611123E-0,-. 160837 851if87i»2E-l, 
3-,6587i»9l6 152 98ifE-3/ 

DATA   (3B8(I),I=1,6)   /.I E*l,.25685201922898E*1, 
2.1d729528'f99235E + l,,52790510295143E+0,.605183<fl312<fiflE-l, 
3.23352 0'f9762687E-2/ 

DATA   CQ,G1,C2,C3   /O.,1.,2.,.5/ 
DATA   C<f,C5,C6   /I. if 14213562 3731,. 5641895835'f776, 1.772if5385090 55/ 

XSA\/=X 
XA   =   ABSCX) 
Y -   X/C4 
YA   =   ABSCY) 
S   =   Y*Y 
PA   =   CO 
PB  =   CO 
IF    (YA.GT.C3)    GO   TO   20 
DO   10   1=1,5 
PA   =   PA*S+A{I) 

ID   PB   =   PB*S4-B(I) 
T   =    (PA/P3»»Y/C2 
IF   (IQ.NE.0)   GO   TO   15 
PNDF  =   T4-C3 
RETURN 

15   PNOF   =   C3-T 
RETURN 

2C   LI   =   X.GT.CO.AND.IQ.EQ.O.OR.X.LT.CO.AND.IQ.NE.O 
IF    {YA.GE.4.)    GO   TO   40 
DO   30   1=1,9 
PA   =   PA»YA4-AA(I) 

3G   PB   =   PB»YA+BB{I) 
T   =   PA/PB 
GO   TO   6D 

40   L2   =   XA.GT.8. 
IF    (L1.AND.L2)   GO   TO   70 
Y =   Cl/S 
DO   50   1=1,6 
PA   =   PA»Y+AAA(I) 

50   PB   =   PB*Y*a8BCI> 
X   =   PA/PB 

(cont'd on next page) 
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APPENDIX 9A (cont'd) 
T   =   X*^ 
IF   (L2)    GO   TO   ttfl 
T   =    (T+C5)/YA 

60   PNOF  =   £XP(-S)*T/C2 
IF   (LI)    PNOF   =   Cl-PNOF 

X-XSAV 
RETURN 

7 0   PNOF   =   Cl 
RETURN 

80   r   =   T*C6+C1 
PNOF   =   XA/Y 
ENDF   =   X*C6»C2/(Y»y) 

X = XSA./ 
RETURN 
END 

ii 

(cont'd on next page) 

9A-6 



DARCOM-P 706-103 

APPENDIX 9A (cont'd) 
SUBROUTINE  EPPA    (   IDENT,NMtHM,   lOP   ,ALPHAS,BETA3,FNA,A,FN3,B,Z5   ) 

-     EPPA   -   EXPLORATORY   PROGRAM   FOR   PROBIT   ANALYSIS 
COMMON/ZZZ/BETA,BETA0,ALPHA,QQ 
COMMON/DANDE/   EPl,EP2,LIMIT,NC 

DIMENSION   A(NM) ,FNA (NM) ,B(MM) ,FN8(HH) 
DIMENSION   IXClOOl) ,IY (1001) ,JX{502) ,JY{50E) 
DIMENSION I0ENT(8) 
DIMENSION G(IOO),FC100) 
DIMENSION 01(2) ,PLT(2),QQSAV(100) 
DIMENSION OLAB(10),CHM(5),CHS{5) 

1 ,ITX(5 0) ,ITy(5 0) ,XLAB1 (5D>,XLAB2(10),VLAB1(5 0) ,YLA32{10), 

2 IXL(IO),IYL(10) 
DIMENSION   Z5(200),T652(10) 
DIMENSION   T653(ll),T655(11) 
DIMENSION   T657(li»),T659(ll),T660(12) 
DIMENSION   T651(3)    ,T658(5> 
DIMENSION   Tease*),T6C<»(2) ,T606(3J 
DIMENSION   T599(10   ) 
DIMENSION   T662('f) ,T663('t) 
DIMENSION   TEMP(21) 

EQUIVALENCE (ALPHAO, ALPHA, A 1) ,(eETAO,Bl) 
EQUIVALENCE(R,AUU), (S,AUS) ,(T,ASS) 
REAL   MUO 
DATA   EP1,EP2,LIMIT,NC   /2.5E-1*, 5. £-<», 10 0 ,   h/ 

ALPHA0=ALPHA3 
BETA0=BETA3 

K=l 
: IF(NM)   9669,9668,9668 

IF   (   lOP.NE.O   )      GO   TO   9669 
9668 CONTINUE 

CALL SETSMG ( Z5,li»,2. > 
9669 CONTINUE 

ML=MM/2 
NL=NM/2 
NLP1=NL«-1 
MLP1=ML+1 

9999 SUMA=0.0 
SUMB=O.C 
MINR=MINO(ML, NL) 

3 3 C= Q . 0 
AMIN=A(1) 
BMAX=B(1) 
FNLP=0.0 
DO W   1=1,NL 
IF(FNA{I).LE.O.D)FNA{I)=l. 
FNLP=FNLP+FNA(I) 
SUMA=SUMA+A(I)*FNA (I) -. 
C=C+A{I)»A(I)»FNACI) 
IF(A(I).LT.AMIN)AMIN=A(I) 

h   CONTINUE 
FHLP^O.O 
DO   5   1=1,ML 
IF(FNB(I).LE.0.G)FNB(I) = 1. 
FMLP=FMLP*-FNB{I) 
C=C + 8(I)*B (I)*FNB(I) 

' (cont d on next page) 
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A   IS   GREATER   THAN  OR   EQUAL   TO   MAXIMUM   B. ) 

APPENDIX 9A (cont'd) 
SUM3=SUMB+B(I)*FNB(I) 
IF(8(I).GT.BMAX)BMAX=B(I) 

5   CONTINUE 
54 FORMAT    (   IHOi    Ftt.O   ) 

FNLML=FNLP+FMLP 
IF(AMIN.GE.eMAX)60   TO   222 
CC=(SUMA+SUMB)/FNLML 
SUMA=SUMA/FNLP 
SUMB=SUMB/FMLP 
IF(SUMA.GT.SUMB)Gb   TO   9998 
GO   TO   223 

222 PRINT   22i» 
224 FORMATCjgHOMINIMUM 

GO   TO   748 
223 PRINT   225 
225 FORMAT(41H0AVERAGE   A   IS   NOT   GREATER   THAN   AVERAGE   B.) 

GO   TO   748 
C999C   IF(INPUT.NE.D)GO   TO   909 

9998      IF   (    aETA3.GT.O.   )      GO   TO   909 
55 SIGMAO=G/FNLML-   CC»GC 

SIGMAQ = SQRT(SIGMAO) 
MU0=(SUHA*-SUM3)/2.0 
ALPHAD=MUO/SIGMAO 
B£TA0=1.0/SIGMA0 
GO   TO   910 
SIGMA0=1.0/BETAO ■ *^ 
NUO=ALPHAO*SIGMAO 
PRINT 231,I0ENT 
FORMAT  ( 1H2,10A8 ) 

FORMAT  ( 1H2,8A10 ) 

ALPH=ALPHAO 

BET=BETAO 
DO   77   K=l,LIMIT 
QQ=1.0 

301   C0NST=1. 
CALL   LC0M(SUMl,SUM2,NL,A,FNA»C0NST,T0NEX,TTW0X,THREEXtTF0URX, 

1 TFI\,'EX,A{NLP1)»FNA<NLP1>    ) 
C0NST=-1. 
CALL   LC0M(SUM3,SUM4,ML,B,rN8,CONST,TONEY,TTrl0"i ,THREEY , TFOuR'if » 

1 TFIVEY ,B(MLP1),FNB{MLP1)    ) 
FLB=SUM1-SUM3 
FLAB=TFI\/£>-TF0URY+TFIVEX4-TF0URX 
FL33=SUM4-SUM2 
FLA=TONEY-TONEX 
FLAA=TTHOY-THREEy-TTWOX-THREEX ' i 
OELTAO=FLAA*FLaB-FLAB*FLAB 
G(K)=(FLa*FLA3-FLA*FLBB)/DELTAD 
F(K)=CFLA*FLA3-FL3»FLAA)/DELTAD 
BETA0 = 3ETA0*-F(K) 
ALPHAO=ALPHAO+GCK) 
SUM3=1.0/BETA0 
SUM4=ALPHA0/BETA0 
QQSAV{K)=QQ 

65 CONTINUE 
IF (AaS(G{K)).GE.AaS(EPl*ALPHA0).OR.ABS (F (K ) i .GE. ABS (EP2*BET A C) )G0 

(cont'd on next page) 
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APPENDIX 9A (cont'd) 
ITO   77 

GO   TO   321 
77   CONTINUE 

PRINT   300,LIHIT 
30G   FORMAT(61H0THE   DESIRED  IHPROVEHENT   IN   ALPHA   AND   BETA   WAS   NOT    MADE 

iAFTERtItf,12H   ITERATIONS.) 
K=LI«IT 

821   R=0,0 
S=C.O 
T=0.0 
00   500   J=1,NL '^ 
L=NL*-J 
IF   C   FNA<L).EQ.D.    )      GO  TO   500 
IF   (   A(L)    .EQ.0.0   )      GO  TO      500 
C = FNA{J)*FNA(L)/(l./A,lL>-l./FNA CLI    J 

U=A(J)*Bl-Al 
V= U*C 
R=R+C 
s=s+v 
T=T4-U*J 

50C CONTINUE 
00 501 J=1,ML 
L=ML+J 
IF(FNB(L).EQ.0.0)GO TO 501 
IF ( 3(L) .EQ.0.0 )  GO TO 501 
C=FNB(J)*FN8(L)/(1./BCL)-1./FNB(L) 1 
U=B(J)*B1-A1 
v=u*c 
R=R+C 
S=S + v/ 
T=T + U*\/ 

501 CONTINUE 
C=Bl*Bl 
R=C»R 
S=C»S 
T=C*T 
U=AUU*ASS-AUS*AUS 
RDL= l./U 
AUUU= ASS ♦ RDL      ' .    , 
AUSS= AUU *   RDL 
AUUS= -AUS ♦ RDL 

22Ci  CONTINUE 
PRINT 69 

69 FORMAT(6H0 A( I) , l7X, ifHBC J) I 
KK=MINR 
PRINT   722, A(l) ,6(1),SUMif,SUMS 

722   F0RMATCi»X,3Hl)    , E11.5, 7X ,3 HI )    ,E 11. 5,7X, 3HHU=E20 . l^f, 3X ,6HSlGMA=E20 
l.Hi   ) 

DO   723   I=2,MINR 
IFtI.Eg.3) GO  TO   72*t 
IF{I.EQ.<f)GO   TO   725 
PRINT   72,    I,   A(I),1,6(1) 

72   FORMATCIH   ,lk,2H)    ,E11,5,itX, Ii»,2H)    ,£11-5) 
GO   TO   723 

72it   PRINT   726,      Ad)       ,B (I) , AUUU, AUUS 
(cont'd on next page) 
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APPENDIX 9A (cont'd) 
726   FORMATCfX.SHS)    , Ell. S, 7X ,3H3)    -Ell . 5<.7X, i7HC0w ARIANGE"   MflTRiy,2E22. 

ll^f) 
GO   TO   723 

725 PRINT   727,A{I) ,B(I),AUUS,At'SS 
72 7   FORMAT («*X, SH'f)    , Ell . 5, 7X,3 N't)    »E 11. 5 ,2i»X , 2E22 . li*) 
723   CONTINUE 

IF(NL-ML)4O02,ifOO0,ifO0 4 
'♦DO'4   MA = NL-ML 

00   ^001   I=1»MA 
KK=MlNR+I 
IF(KK.EQ.3)G0   TO   728 
IF (KK.EQ.i*)GO   TO   729 
PRINT   70,KK»A{KK» 

7u   FORMATdH   ,I*»,2H)    ,Eli.5) 
GO   TO   i»001 

726 PRINT   730,A(KK),AUUU,AUUS 
730 FORMAT ('tX,3H3)    , Ell. 5, 28X, l7HC0i/ARIANCE   MATRIX, 2E22. Ht» 

GO   TO   '♦001 
729   PRINT   731»A(K<)»AUUS,AUSS 
731 FORMAT (itX, 3Hif) , Ell. 5, ^iBX, 2E22 .14) 

1*00 1 CONTINUE 
GO TO 4000 

4002 MB = ML-NL 
DO 4003 1=1,MB 
KK=MINR+I 
IF(KK.EQ.3)G0 TO 732 
IF(KK.EQ.4)G0 TO 733 
PRINT 71,KK,B(KK) 

71 F0RMAT(22X,I4,2H) ,E11.5) 
GO TO 4003 

732 PRINT   734,B(KK),AUUU,AUUS 
734 F0RMAT(25X,3H3)    ,Ell.5,7X,17HC0WARIANCE   MATRIX,2E22.14) 

GO   TO   4003 
733 PRINT   735,B(KK).AUUS,AUSS 
735 F0RMAT(25X,3H4)    , E11.5,24X ,2E22. 14) 

4003 CONTINUE 
4000 IF{KK.GE.3)G0 TO 750 

PRINT 736,AUUU,AUUS 
736 FORMAT {46X,17HC0\/ARIANCE   MATRIX, 2E22.14) 
750   IF{KK.EQ.3)PRINT   737 , AUUS, AUSS 
737 F0RMATl63X,2E22.14) 

PRINT   bOO 
600   FORMAT(19H0NUMBER   OF   A   VAL UES, gX, 8HB  VALUES) * 

00   809     I = 1,MINR 
I4=FNA(I) 
I6=FN3{I) 
PRINT 601,1,14,1,16 

809 CONTINUE 
801 FORMATdH   ,14,2H)    ,15      ,10X,I4,2H) , 15        ) 

IF{NL-ML)802,149,805 
802 00   803   1=1,MB 

KK=MINR<-I 
I4=FN3(KK) 

803 PRINT   804,KK,    14 
804 FORMATCIH   ,2lX,l4»2H)    ,      15   ) 

GO   TO   149 (cont'd on next page) 
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APPENDIX 9A (cont'd) 
805 DO   806   1=1,MA 

KK=MIN«+I 
14=   FNA(KK) 

806 PRINT   807,KK,    I^f 
807 FORMATdH   ,IkjZH)    ,   15   ) 
1<*9   CONTINUE 

Ii»=FNLP 
I6=FMLP 

PRINT   308,IJ*,I6 
306   FURMAT(1HO,5HTOTAL      ,    I6,15X,I6   I 

CP IF    (INPUT. F.Q.O)    GO   TO   99 
IF   (   3ETA3.LE.C.   )      GO   TO   99 

PRINT   151,ALPH,3ET,MU0,SIGMA0 
151   FORMAT   (ISHOALPHAO (INPUT)=,c21.i<t,i5H     8ETA0{INPUT) = ,E21.1«f,6H     MU 

ia=,E21.i4,9H     SIGMA0 = ,E21. 1<»I 
GO   TO   100 

99   PRINT   150, ALPH,B£T,MUO,S.IGMAO 
15o   FCRMAT{8HCALPHAfl=E21.ii»,8H      BETA D=,E21. l*t, 8H «U 0= ,E21. i«», 9H      SI 

lGMA0=,E2i.li») 
100   PRINT   98 

9:.   FORMAT(5HOSTEP,10X,11HDELTA   ALPHA, IIX, IDHDELTA   BET A , I'tX, IHL ) 
00   749   1=1,K 

749   PRINT   97,I,G{I),F{I) ,QQSA\/(I) 
97   FORMATdH   , 13, 2X , 3E21. 14) 

PRINT   335,QQ,aELTAD,ALPHA0,BETAfl 
335   FORMAT(9HOMAXIMUM=E20.14,8H     DELTA=,E20-14,8H      ALPHA=,E20.14,7H     3 

1£TA=,E20.14) 
DATA   (   OLAB(I),1=1,8   )      /lOHDISTANCE   8   ,10HETWEEN   MU   ,10H  TICK   MA 

IRK      ,10HS ,10HETWEEN   SIG   ,10H(E8.1»    ) ,iOH 
2 ,10H(A10) / 

DATA   Dl(l)/1.39/,Dl(2)/5.99/,DRST/500./,IRSS/   501/,IRST/1001/, 
1 PLT(1)/2H33/,PLT{2)/2H54/»ARA/3HSIG/,ARB/2HMU/, 
2 FAC/.95/,PT/lH./,ST/lH*/   ,ALM/1.00000 DO 0001/      , 
3 Xl3/625./,ET8/575./,EM/5.0/ 

DATA   (   T652(I) ,1=1,10)      /lOH , lOH , lOH 
1 ,10H ,10H MU=   ,10H ,10H 
2 ,   lOH   SI6MA= ,iOH ,10H / 

DATA   {   T653(I),I=1,11)    /lOH                              ,iOH ,10H 
1 ,10H ,10H C0\/   ,10HARIANCE   MA      ,10HTRIX 
2 ,10H ,iOH ,10H ,10H / 

DATA   {   T655(I),I=1,11)      /   lOH                             ,10H                              ,10H 
1 ,10H ,10H ,10H ,10H 
2 ,10H ,10H ,10H ,10H / 

DATA    (   T657(I),I = 1,14   )   /lOH                           ,10H                           , lOH 
1 ,10H ,10   H ALP      ,10HPHA»= ,10H 

2 ,    lOH B£TA»=        ,10H ,10H MU»= 
3 ,10H ,10H        SIGMA»=   ,10H ,10H / 

DATA    {   T659(I),I=1,11)      /lOH                           ,10H                           ,10H 
1 ,10H ,10H STE,10HP ,10H DELT 
2 ,10HA   ALPHA ,10H DELT      ,10HA   BETA ,iOH L   / 

DATA   (   T660(I),I=1,12   )      /lOH                           ,10H                           ,10H 
1 ,i0H ,1DH ,10H ,10H ,10H 
2H ,10H ,iOH ,10H ,10H 
3 / 

DATA   (   T6611I),I=1,3   )   /lOHNO. A   ,10H NO.   ,lOH B 
(cont'd on next page) 
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APPENDIX 9A (cont'd) 
1       / 

DATA   (   T658(I),I=l,if   )   /   lOH »10H ,10H 
1 .lOH / 

DATA   (   T6a6(I),1=1,3   )    /lOHTOO   MANY   A   ,10H   AND   8   TO      ,10H   PRINT 
1 / 

DATA    (   T662(I),1=1,4   )     /lOHORIGIN   MU=   ,10H ,10H 
1 ,10H / 

DATA    (   T663(I),I = 1,'»   )      /lOH SIG=   ,10H 
1 ,10H ,10H / 

DATA   (   T599(I),I=ltlO   )   /lOH ,10H 
1 ,10H ,10H ,10H ,10H 
2 ,10H ,10H ,10H ,10H / 

DATA   (   T605{I), I=l,«»   )   /lOH                              ,10H                              ,10H 
1 ,13H / 

DATA   {   T604(I),I=1,2   )    /lOH ,10H / 
IFCNM)   7i»8,608,606 

IF   (   lOP.NE.O    )      GO   TO   7«f8 
608   RC=   1./   ASS 

AD1=   fiSS     ♦Did) EPP 
AD2=   ASS      ♦   01(2) EPP 
5AC1=   SQRT(AD1   »   ROD EPP 
SAD2=   SQRT{AD2   ♦   ROD EFP 
UAD1=   SQRT(AUU      ♦   Did)   ♦   ROL   ) EPP 
UAD2=   SQRTtAUU      ♦   01(2)   ♦   ROL   ) EPP 
XMX1=   SUMi»   ♦   SAOl EPP 
XMX2=   3UM4   ♦   SAD2 ' EPP 
XMN1=   SUMt»   -   SADl EPP 
XMN2=   SUMt*   -   SAD2 EPP 
SMX1=   SUM3   +   UADl EPP 
SMX2=   SUM3   ♦   UA02 EPP 
SMN1=   SUM3   -   UADl EPPi 
SMN2=   SUM3   -   UAD2 Eppi 
DS«  =   2.0   ♦   AHAXl    (SAD1,SAD2) 
OSS  =   2.0   "■   AMAXl    (UA0l,UA02) 
TMP  =   ALOGIO   (DSM) 
TNP  =   AINT    (TMP) 
IF    (THP   .LT.   0.0)    TNP  =   TNP   -   1. D 
Al   =   ID.   ♦*(TMP   -   TNP   -   1.0) 
IF{A1   .LT.    0.1)    Al   =   10.0   *   Al 
Cl   =   TNP   +1.0 
IF(A1   ,LT.    0.1)    Cl   =   Cl   -   1.0 
THP  =   ALOGIO   (DSS) 
TNP   i   AINT    (THP) 
IF    (T«P   .LT.   0.0)    TNP   =   TNP   -   1.0 
A2   =   10.   ♦*(TMP   -   TNP   -   1.0) 
IF{A2   .LT.    0.1)    A2   =   10.0   ♦   A2 
02   =   TNP   +1.0 
IF(A2   .LT.    0.1)    C2   =   C2   -   1.0 
CON   =   10.♦♦   Cl 
DX   =   .02   *   CON 
IF    (Al   .LT.   0.2) 
IF    (Al   .GE.   0.5) 
CON  =   10.♦♦   C2 
OY    =   .0 2*   CON 
IF    (A2   .LT.   0.2) 
IF    (A2   .GE.   0.5)    OY   =   .05   ♦   CON (cont'd on next page) 
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APPENDIX 9A (cont'd) 
DX5=   5.   *   DX/   ALH 
DY5=   5.   ♦   OY   /   ALM 
TMF   =   AINT(AMIN1(XMN1,XMN2)/DX) 
IF   (IMP   .LT.   0.0)    TMP   =   TMP  -   1.0 
XHN   =   TMP   ♦   DX 
THP  =   AINT (AMIN1(SMN1,SMN2)/DY) 
IF   (TMP   .LT.   0.0)    TMP   =   TMP  -   1.0 
SMN   =    TMP   *   DY ^ 
XMX   =   AMAX1(XHX1,XMX2) 
TMP   =   XMX/DX •' 
TMPI   =   AINT{TMP) 
IF   (TMPI   .LT.    0.0)   TMPI   =   TMPI   -1.0 
IF(TMPI   .NE.   TMP)    XMX   =    (THPI   ♦   1.0)   ♦   DX 
SMX   =   AMAX1(SMX1,SMX2) 
TMP   =   SMX/OY 
TMPI   =   AINTCTMP) 
IF   (TMPI   .LT.    CO)   TMPI   =   TMPI   -   1,0 
IF(TMPI   .NE.   TMP)    SMX   =    (THPI   ♦   1.0)   •   DY 
DGX=   XMX   -   XMN 
OGY=   SMX   -   SMN 
CIl   =   lfl2«t.   /   8.9% 
CI2   =   102if.   /   7.1»2 
CI3  =   CI2   /   CIl 
Rl   =   DSM   /    (EM   *   CIl) 
R2   =   DSS   /    (EM   ♦   CI2) 
RIl  =   1.0   /  Rl 
RI2   =   1.0   /   R2 
XICON=   XIB   -   RIl   •   SUHk 
ETCON=   ETB   ♦   RI2   ♦   SUM3 
ITA   =   1 
IF(DSM   .LT.   1.0)   ITA   =   ASS ((Cl-2 .0) ♦ ALM) 
ITO  =   1 
IF(DSS   .LT.   l.C)   ITO   =   ABS (( C2-2 .0 ) ♦ALM) 

C XI   VALUE   FOR  TICK   MARKS 
NTICX   =   ALM  ♦   DGX/DX   +   2. 
00   kU5   1=1,    NTICX 
Zl=   I   -   1 
XLABKI)   =    (XMN   +   Zl*   DX) 
IF(I.6T.5)    GO   TO  i»03 
IF(ABS(AM0D(XLAB1(I),0X5)).LT..5*0X)    J1=I 

^♦03   ITX(I)   =   XICON   4-   RIl   *   XLABICI) 
<»C5   CONTINUE 

C A   FORMAT   FOR   VALUE   OF   X   AXIS 
IF(Jl.£Q.l)   Jl   =   6 
J=   Jl 
NTX   = (NTICX  -Jl)/5*r 
DO   i»07   1=1,NTX 

15=2 
IXL(I)=7 

\ IF   (   ITA.GT.if   )      ITA=<» 
CALL   FMTSG   (Z5,15,IXL(I),IT A,XLA91(J),XLAB2(I)    ) 

J=   J   +   5 
'♦07   CONTINUE 

C ETA   VALUE   FOR   TICK   MARKS 
NTICY   =   ALM  »   DGY   /   OY   ♦   2. 
DO   i»10   1 = 1,   NTICY (cont'd on next page) 
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APPENDIX 9A (cont'd) 
Zl=   I   -   1 
YLflBKI)   =    (SMN   +   Zl*   DY) 
IF(I.6T.5)    GO   TO   kQ6 
IF{ABS(AM00(YLAB1(I),0Y5)) .LT..5*DY)   J2=I 

ifOB   ITWI)   =   EICON   -   RI2   ♦   YLABl(I) 
iflj   CONTINUE 

A   FORMAT   FOR   ./ALUE   OF   Y   AXIS 
IF(J2.EQ.l)   J2   =   6 
J=   J2 
NT'    =(NTICY   -J2)/5+l 
00   i»12   1=1,NTY 
15=2 
IYL(I)=7 
IF   {   iTO.GT.if   )      ITO=^ 
CALL   FMTSG   (    Z5 j 15, IVL (I) ,ITO ,YLA31 (J) , YL AB2 (I)    ) 

J=   J   +   5 
ifl2   CONTINUE 

AKl   =   £M»»2   ♦   U   /    Ct.O   ♦   AUU   ♦   ASSI 
AK2   =   AKl   ♦   01(1)   /   01(2) 
AC   =   AUU  ♦   ASS 
BSAC  =   CI3*AUS   /   SORT   «AC) 
yAC2   =   U   /(AC   ♦   CIl   ♦   CIl) 
XI   *•   ETA   FOR     .95 
XIMIN   =   XICON   ♦   RIl   ♦   XMN2 
XIN=   RIl   ♦    (XHX2-XMN2)/DRST 
XINOW   =   XIMIN 
00   <*2D   I=1,IRST,   2 
XIOIF   =   XINOW   -   XIB 
IX (I)   =   XINOW 
IXd + l)   =   XINOW 
PARTL   =   ETB   ♦   BSAC   ♦   XIOIF 
RDC=   AKl   -   UAC2   *   XIDIF   **Z 
IF(RDC.GE.O.)   GO   TO   hl6 
PARTR=   0. 
GO   TO   ^19 

klB   PARTR   =   CI2   ♦   SORT   (ROC) 
'♦19   ltd)    =   PARTL   +   PARTR 

IY(I+1»   =   PARTL   -   PARTR 
XINOW   =   XINOW   ♦•   XIN 

^2 0   CONTINUE 
XI   ♦   ETA   FOR      .50 

'♦21   XJMIN  =   XICON   +   RIl   ♦   XMNl 
XJN=   2.   ♦   RIl   ♦    (XMXl-XMND/ORST 
XJNOW   =   XJMIN 
DO   ti25   I = 1,IRSS,2 
XJDIF   =   XJNOW   -   XIB 
JX(I)   =   XJNOW 
JX(I + 1)   =   XJNOW 
PARTL   =   ETB  +   BSAC   ♦   XJDIF 
RDD=   AK2   -   UAC2   ♦   XJDIF   •» 2 
IF(RDD.GE.0.)    GO   TO   423 
PARTR=   0. 
GO   TO   kZk 

<»23   PARTR   =   CI2   ♦   SORT   (ROD) 

(cont'd on next page) 
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APPENDIX 9A (cont'd) 
i*Zi*   JY(I)   =   PARTL   ♦   PARTR 

JY (I+l)   =   PARTL  -   PARTR 
XJNOW   =   XJNOW   +   XJN 

itZS   CONTINUE 
tt2 6   IRSV   =   IRSS  +   1 

JX(IRSV)   =   XIB 
JY(IRS^)   =   ETB 

CALL   PAGEG   (   Z5,0,1,1   > 
17 = 0 
IS=3071 
CALL   LEGNDG   (   Z5,17,19,1,2H        ) 
XPI=31. 
YPI=5i». 
CALL   SETSMG(Z5,l«f,l.   ) 
XP=XPI 
YP=3071.-1.5*YPI 
CALL   FMTSG   (   Z5,3, 12, 6, SUMi», T652(6J   » 
CALL   FMTSG   (   Z5,3,12,6,SUM3,T652 (9   )    I 
CALL   LEGNDG   (   Z5,XP,YP,g2,T652(1)    ) 
YP=YP-2.*YPI 
CALL   FHTS6   (   Z5,3,18,6,AUUU,T653(8)   ) 
CALL   FMTSG   (   Z5,3,18,6,AUUS,T653CIO)    ) 
CALL   LEGNDG   (   Z5,XP,YP,110,T653(1)    ) 
YP=YP-2.*YPI 

CALL   FHTSG   {   Z5,3,18,6,   AUUS,T655<8I    ) 
CALL   FMTSG   (   Z5,3,16,6,   AUSS,T655f101   ) . 

CALL   LEGNDG   {   Z5,XP,YP, 11 0, T6 55 (1)    ) 
YP=YP-2.»YPI 

86   FORMAT   (   A2,R8   ) 
CALL   FMTSG   (   Z5,3,12,6,   ALPH      ,TEMP(1)    ) 
T657(     7)=   TEMPCl) 
ENCODE { 10,36,T657( 8) > TEMP C 2), T657( 8 J 
CALL FMTSG ( Z5,3,12,6, BET   ,TEMP{1) ) 
T657{  9)= TEMPCl) 
ENCODE ( 10,86,T657(10) } TEMFC 2) , T657( 101 
CALL FMTSG ( Z5,3,12,6, MUO   ,TE«P(1) » 
T657( 11)= TEMP(l) 
ENCODE ( 10,86,T657(12) ) TEMP(2),T657( 121 
CALL FMTSG ( Z5,3,12,6, SIGMA 0,TEMP(1) ) 
T657( 13)= TEMP(l) 
ENCODE { 10,86,T657(li|) ) TEMP( 21 , T657{ Ik) 
XP=.5*XPI 
CALL LEGNDG ( Z5,XP,YP,132,T657(1) ) 
XP=XPI 
YP=YP-2.»YPI 

IF{NL.LT.3.AN0.ML.LT.3I   GO   TO   65 0 EPP 
IF(NL.GT.50.OR.ML.GT.50)   GO   TO   bkS 
MNN=   MIN0(NL,ML) EPP 

CALL   LEGNDG   (   Z5,XP,YP,110,T659(1)    ) 
YP=YP-2.*YPI 
DO   63it     1 = 1,K 
CALL FMTSG ( Z5, 1, 10 , 0, I, T66D (5 ) ) 
CALL FMTSG ( Z5,3,18,6,GCI),T660C7) ) 
CALL FMTSG ( Z5,3,18,6,F(I),T660(9) ) 
CALL   FMTSG   (    Z5,3,18,6,QQSAV(I),T560(11)    ) 

,, (cont'd on next page) 
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APPENDIX 9A (cont'd) 
CALL   LEGNDG   (   Z5, XP,V P, 120t T660 Cl I    > 
YP=YP-2.*YPI 

634   CONTINUE • 
t*Z7   CONTINUE .* 

.CALL   SETSMGC   Z5,l«t,2.   ) 
17=0 
19=3071 
CALL   LEGNDG   {   Z5, 17 , 19, 1, IH        ) 
CALL   SETSMG   (   Z5,1<»,1.   } 
YP=I9 
YP=YP-1.5*YPI 
CALL   LEGNDG   (   Z5,XP,YP,   80,IOENT(1)    ) 
YP=YP-2.*YPI 
CALL LEGNDG ( Z5,XP,YP,30,T661(1) ) 
YP=^P-2.*^PI 
DO 5350 1 = 1,MNN 

I1 = FNA(I) 
CALL FMTSG { Z5,1,3,0,11    ,T658{1) I 
CALL FMTSG ( Z5 » 3, 12, 5, A( I) ,TEMP{ 1) ) 
ENCODE ( 10,80,T658(1I ) T658 (1) , TEMP U) 

6J FORMAT ( A3,A7) 
ENCODE (  5,81,T658(2I ) TEMP (1), TEMP (2) 

31 FORMAT   (   R3,A2   ) 
I1=FN3(I) 
CALL   FHTSG   (   Z5,l,<t,0,Il ,TEMP{3)    ) 
ENCODE <  9,82,T658{2) ) T658 (2) ,TEMP 13) 

32 FORMAT ( A5,Ai» ) 
CALL   FMTSG   (    Z5 ,3, 12, 5, 8{ I) , T65e ( 3   I    ) 
CALL   LEGNDG   (   Z5,XP, Y P, i*0 , T658 Cl»    ) 
YP=   YP-1.5*YPI «■ - ■    ) 

6350 CONTINUE 
MNN= MNN +1 :< •      EPP 
IF(NL- ML) 635,650,6'»0 EPP 

635  CONTINUE 
DO 6351  I=MNN,ML 
I1=FN3(I) 

CALL   FMTSG   (   Z5,1,4,0,11 ,TEMP{1)    ) 
ENCODE   (10,83,T605(2)    )   T605(2),TEMPC1) 

63   FORMAT    (   A5,A5   ) 
CALL   FMTSG   <   Z5,3,12,5,B(I),T605{3)   ) 
CALL   LEGNDG   (   Z5,XP,YP,40,T605I1)    I 
YF=   YP-1.5*YPI 

6351 CONTINUE r 
GO   TO   650 

64D   CONTINUE 
DC   6405      I=MNN,NL 
I1=FNA(I) 
CALL   FMTSG   {   Z5,1,3,0,11 ,TEMPC1)    ) 
CALL   FMTSG   (    Z5,3 , 12, 5, A( I) , TEMPC 3)   ) 
ENCODE   (    10,64,T604(1)    )   TEMP (1), TEMP (3) 

84 FORMAT    (   A3,A7   ) 
ENCODE   (   5,65,1604(2)    )    TEMP(3),TEMPC4) 

85 FORMAT   (   R3,A2   ) 
CALL   LEGNDG   (   Z5,XP,YP,20,T604{1)    ) 
YP=   YP-1.5»YPI 

(cont'd on next page) 
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APPENDIX 9A (cont'd) 
6<t05   CONTINUE 

GO   TO   65G EPP 
645   CONTINUE 

CALL   LEGND6   (   Z5, XP, YP, 30 ,T606( 1)    I 
YP=YP-YPI 

650   CONTINUE 
CALL   SETSMG   I   Z5,li»,2.   ) 

; PLOT   AXIS 
I7=(FLOAT(ITX{l))*i»0 95.)/lD23. 
ig=(1023.-FLOAT(ITY(1))>♦3071./1023. 
111=    (   FLOAT{ITX(NTICX))»4095.)/1023. 
CALL   SEGHT6   {   25,1,17,19,111,19   ) 
113=   {1023.-FLOAT(IT'- (NTICY)) )»3071./lfl23. 
CALL   SEGMTG   (   25,1,17,113,17,19   ) 

: TICK   MARKS   ON   X   AXIS . , 
KB   =   ITYd)   -   3 
KC   =   ITYd)   +   3 

19=    {(1023.-FLOAT(KB))♦   3071.)/1023. 
113=    ((1023.-FLOAT(KC))*3071.)/1023. 

DO   <»30   I   =    1,NTICX 
KA   =   ITXCI) 
17=   (FLOAT(KA)*t»095.)/1023. 
CALL   SEGMTG   (   25,1,17,19,17,113   I 

t*ZU   CONTINUE 
: TICK   MARKS   ON   Y   AXIS 

KA   =   ITX(l)   -   3 
KC   =   ITX(l)   +3 

17=   (FLOAT(KA)*'»095.)/1023. 
111=    (FLOAT(KC)»'t095.)/1023. 

DO   i»35   I   =   1,NTICY 
KB   =   ITY (I) 

19=    {(1023.-FLOAT(KB))*3071.)/1023. 
CALL   SEGMTG   (   25,1,17,19,111,19   1 

'435   CONTINUE 
DO   <*37   1 = 1, i. 
CHM(I)=   DLAB(I) 

kZJ   CHS(I)=   DLABd) 
CHS{2)=   DLAB(5) 
ICT=      10 '    .   , 

INP=10 
ENCODE    (   ICT,DLAB{6),CHH(5)    )    OX 
DECODE   (   INP,0LAB(8),CHM(5))   CHM(5> 
ENCODE   (   ICT,DLAB(6),CHS(5)    )    DY 
DECODE    {    INP,0LAB(8),CHS{5)    )   CHS{5) 

C LABEL   X   AXIS , 
NY=ITY(1)*10 
J=   Jl •'■ ■     ■ 
DO   ttkO   1 = 1, NTX 
NX   =   ITX(J)   -   k   ♦   IXL(I)   ♦   <♦ ; 
J=   J*-5 

17=    (   FLOAT(    NX   )    ♦'♦095.)/1023.   4-2.♦XPI 
I9={(   1023.-FLOAT(NY))*3071.)/1023. 
CALL   LEGNDG   (   25, 17 ,19, IX L{ I) ,XLA32 (I)   ) 

hi*Q   CONTINUE 
NY =   NY    +   20 
JTX=   NTlCX/3 (cont'd on next page) 
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APPENDIX 9A (cont'd) 
17=    (FLOAT(ITX( JTX))*i»095.)/1023. 
19=   ((1023.-FLOAT(NY))♦3071.)/I 023. 
CALL   LEGNDG   (   Z5,I7,I9,   50 ,CHM(1)   ) 

LABEL   Y   AXIS 
J=   J2 
DO   kkS   I   =   l,NTy 
NX   =   ITX(l)   -   8   *    (lYLd)    ♦   1) 
NY   =   ITY(J) 
J=   J*-5 

17=   (FLOAT(NX)»lf095.)/1023. 
I9=( (1023.-FLOAT(NY))»3071.)/1023. 
CALL LEGNDG ( 25, 17 , 19, lY L( II ,Y LA82 (I) ) 

i*k5   CONTINUE 
17= (FLOAT(5)»if095.)/lb23. 
19= ((102 3.-FLOAT (8 50 I) ♦3 071.)/1023. 
CALL LEGNDG ( Z5 ,17 , 19, i*0 ,CHS (1 )) 
17= (FLOAT(85)*tt095.)/1023. 
I 9=((1023.-FLOAT(365))•SO 71.)/I 023. 
CALL   LEGNDG   (   Z5, 17 ,1 9, 10 ,CHS (5 )    ) 
CALL   FMTSG   (   Z5 , 3, 12, 5, XMN, T662 (3 »    ) 
CALL   FHTSG   (   Z5,3,12,5,SMN,T663 (3)    ) 
CALL   SETSMG   {Z5,llt,l.    ) 
YP=I9 
YP=YP-1.5*YPI 
CALL   LEGNDG   (   Z5, XP,YP, <»0, T662( 1)    ) 
YP=YP-1.5*YPI 
CALL   LEGNDG   (   Z5,XP, Y P, <»0 ,T66311)    ) 
YP=YP-1.5*YPI 
CALL SETSHG {Z5,li»,2. ) 

PLOT FOR  .95 
DO 450 1=1, IRST 
17= (FLOAT{IX(I)>*i»095.)/1023. 
I9=( (10 23.-FLOAT (IY(I)) )* 30 71 .)/lO 23. 
CALL LEGNDG ( 25,17,19,1, PT I 

45G CONTINUE 
PLOT FOR  .50 
DO i»60 1=1, IRSS 
17= (FLOAT(JX(I)I*<»095.)/1023. 
I 9=((1023.-FLOAT(JY(111 1*3071.)/10 23. 
CALL LEGNDG ( 25,17,19,1,PT > 

t»60 CONTINUE 
17= (FLOAT(JX(IRSVI)»<»Q95.)/1023. 
I9=((1C23.-FL0AT(JY(IRSV) ) r*3071.)/1023. 
CALL LEGNDG ( 25,17,19,1,ST ) 

NXX = ITX(1) - 10 
NYY = ITY(NTICY) -15 
17= (FLOAT(NXX)»«t095.)/ia23. 
I9=((10 23.-FLOAT(NYY))*3071.)/I 023. 
CALL   LEGNDG   (   25,17,19,3,ARA   ) 

NXX   =   ITX(NTICX)   +15 
NYY   =   ITY(l) 

17=   (FLOAT(NXX)»if095.)/1023. 
I9=((1023.-FLOAT(NYY))*30 71.)/1023. 
CALL LEGNDG ( Z5,17,1 9,2,ARB ) 
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7kd     CONTINUE 

1001     CONTINUE 
RETURN 

END 
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APPENDIX 9B 

COMPUTER PROGRAM 9-2 

(Einbinder's Maximum Likelihood Estimation of Weibull Parameters) 

INPUT GUIDE (8/79) 

FOR WEIBULL SENSITIVITY PROGRAM 

CARD 
SET SYMBOL 

ISTART 

IREFL 

NCL 

NCR 

NPL 

NGAM 

CARD 
COLUMNS FORMAT DESCRIPTION 

1 IDENT 1-80 8A10 

2 N 1-3 13 

3 S(I) 1-10, 11-20, etc. 7F10.0 

4 U(I) 1-80 SOIL 

5 EPILSON 1-10 FIO.O 

ICOUNT 11-15 15 

6 IGAM 1 11 

(Omit card set 8 if IGAM = 3) 

4-5 

6-7 

8-9 

11 

II 

II 

12 

12 

12 

Title or identifying information. 

Sample Size (150 Max). 

Stress levels, 7 per card, I = 1, N. 

N Responses: 
Positive Response = 1 
Negative Response = 0. 

Convergence Accuracy desired (0.00001 
is usually sufficient). 
Max number of iterations. Default = 25. 

Option for GAMMA (See Note 1) 
= 1 Search from ASTART to max 

admissible value. 

= 2 Search from ASTART to LASTG. 

= 3 Use fixed GAMMA. Specify values 
in card set 9. 

Quantile procedure for estimating 
starting values for iterative solution. 
— 0 Built-in quantiles are used. Viz, PI = 

0.15, XPl =Xminl, P2 = 0.85, XP2 
= XmaxO. 

= 1, read quantiles on card set 11. 

Type of Weibull Distribution 
= 0, Standard Weibull 
= 1, Reflected Weibull. 

Number of confidence coefficients for 
interval estimates of reliability (one- 
sided) and/or quantiles (two-sided), up to 
5. 

Number of reliability boundary values 
(up to 20). 

Number of quantiles (percentage points) 
of response function (up to 30). 

Number of gamma values when IGAM = 
3. 

(cont'd on next page) 
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APPEN DIX 9B (cont 

FORMAT 

'd) 

CARD 
SET SYMBOL 

CARD 
COLUMNS DESCRIPTION 

8 ASTART 

ASTEP 

LASTG 

1-10 

11-20 

21-30 

FIO.O 

FIO.O 

FIO.O 

Minimum value of gamma search 
interval for standard WeibuU; maximum 
value for reflected WeibuU. 

GAMMA step size for search option. 

Maximum value of GAMMA >;earrh 

GAMMA 
(Required if 

IGAM = 3) 

1-70 7F10.0 

interval for standard WeibuU, minimum 
value for reflected; NOTE: not required if 
IGAM = 3. 

Values of Gamma. 

10 

II 

12 

COEF(I) I-10, 11-20, etc. 

(Omit Card Set 10 if NCL = 0) 

CR(I) 

5F10.0 Confidence coefficients, I = 1, NCL. 

(Omit Card Set 11 if NCR = 0) 

PL(I) 

1-10 
11-20 

1-10 

7F10.0 

7F10.0 

Reliability boundary values, 7 per card, I 
= 1, NCR. 

Response function probability levels 
corresponding to desired quantiles, Lp, 7 
per card, I = 1, NPL. 

13 

(Omit Card Set I2if NPL = = 0) 

PI 1-10 FIO.O 

XPI 11-20 FIO.O 

P2 21-30 FIO.O 

XP2 31-40 FIO.O 

Lower response probability for 
estimating starting values of parameters. 

Quantile (percentage point) correspond- 
ing to PI. 

Upper response probability. 

Corresponding quantile. 

NOTE 1: A three-parameter covariance matrix is computed if gamma is estimated by searching for max likelihood using 
option IGAM - I or 2. A two-parameter (theta, alpha) covariance matrix is computed if gamma is specified as 
known (IGAM = 3). 

(cont'd on next page) 
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APPENDIX 9B (cont'd) 

OUTPUT 
-■".v..'-    ' 

Sample Problem AORS 17 

I STIMULUS RESPONSE 

•'   '1 32.0000 
:,     ^, 

-. .■ 2 32.0000 
■.■3.,- 32.0000 1        , 

4 32.0000 0 
•  5'''- 48.0000 

6 48.0000 
7 48.0000 
8 48.0000 
9 40.0000 

10 40.0000 .' '.'. !'■'     ' 

11 40.0000 
12 40.0000 
13 20.0000 
14 30.0000 
15 30.0000 
16 30.0000 
17 39.0000 1 V 

18 39.0000 
19 39.0000 
20 39.0000 
21 34.5000 
22 34.5000 
23 34.5000 
24 34.5000 
25 27.2500 >     ■ 0 '' 
26 30.8800 1   ' 
27 30.8800 ■•'l, ■ 

28 30.8800 4 29 30.8800 
30 29.0600 

i::::ix:: '       31 29.0600        i 
.0000100025000 

001 3 6 1 c, 
25.0000 1 

.9500 
30.0000 34.0000 38.0000 

.1000 .5000 .8400 
XMINl =29.0600           XMA> (0 = 32.0000 

.9000 .9500 .9900 

(cont'd on next page) 
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APPENDIX 9B (cont'd) 
•UtCK»StMART 

PROGRAM StMART( INHUT♦OUTPUT»TAPEb=INHUT»TAPE6=0UTPUT) 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

«««««••»« YNPUT GLOSSARY ««»»«««»»••««»*• 

SYMBOL 

lOENT 
N 
S(I) 

U(T) 

tPlLSON 
ICOUNT 
I GAM 

' UESCRIPIION 

TpLL « 
SAMPLE SIZE 
STRESSES 
QUAMAL RESPONSES* l=PUSiTIVE RESPONSE 

0= NO RESPONSE 
CONVERGENCE FACTOR. NORMALLY = .00001 
MAX NUMBER OF ITERATIONS. DEFAULT = dS 
LOCAIJON PARAMETER OPTION, 

DOMAIN OF GAMMA IS hROM 

DOMAIN OF GAMMA IS ASTART 

IS KNOWN 

U 

bOO 

ISTART 

IREFL 

NCL 
NCR 
NPL 
NGAM 

ASTART 
AsTEP 
LASTG 

CotF(I) 
CR(I) 
PL<I) 
Pl.XPl 
P?.XP2 
INTEGER 
RE^L LAMBD 
REAL LAMBO 
REAL LASTG 
DIMENSION 
DIMENSION 
lAdbO) « B( 
DIMENSION 
DIMENSION 
COMMON/BLI 

COMMON/BLi; 
FORMAT ( I 
FORMAT ( ' 
FORMAT (8U 
FORMAT(FIO 
FORMAT(IHl 
lTloO,«LASI 
15X,♦ALPHA 
lTlnO,»DEL 
CONHNUE 

REA0(5.U) 

1= ESTIMATE 3 PAHAMEIERS. 
ASTART TO XMINl 

2= ESTIMATE 3 PARAMElEKS. 
TO LASTG 

3= ESTIMATE 2 PARAMEIERS ASSUMING GAMMA 
OPTION FOR MATCHING PERCENTAGE POINTS, 

0= DEFAULT OPTION, Pl=.15, XPl=XMlNl 
P2=.85,XP2 = XMAX0  *■ 

1= INPUT P1,XP1,P2,XP^. 
0= FIT STANDARD WEIBULL DISTRIBUTION 
1= FIT REFLECTED WEIBULL DISTRIBUTION 
NUMBtp OF CONFIDENCE COteFICIENTS 
NUMBLR OF RELIABILITY BOUNDARIES DESIRED 
NUMBER OF PERCENTAGE POINTS DESIRED 
NUMBER OF GAMMA VALUES  ASSUMED FOR 2 PARAMETER 

ESIIMATION (IGAM=3) 
MJN GAMMA FOR LOCATION PARAMETER INTERVAL 
GAMMA SlEP SIZE FOR  3 PARAMETER ESTIMATION 
MAX GAMMA OF SEARCH DOMAIN, DEFAULT = XHlNl FO 1GAM=1 
CONFinENCE COEFFICIENTS 
RELIABILITY BOUNDARY VALUES 
PERCENTILES 
100*P1 PERCENTAGE ASSOCIATED WITH XPl 
100*P^ PERCENTAGE ASSOCIATED V!lTH XP2 

A 
A2 

SI ( 
S(l 
1t>0 
PAR 
IDE 
/v, 
/NC 
3) 
Flo 
Tl) 
.b, 
,r3 
•,T 
STA 
ALO 

150) ,CR(20),CO£F(b),PL(JO),SS(150) 
bO),U(lb0),FB(lb0),H(lb0),PHA(150),PHl (150) ♦ 
), CdbO), D(lbO), E(lbO), F(lbO) 
AM(li>0,'») ,8F(3,6) ,C0V(3,J) ,V(150) ,SLN(lbO) ,P(ibO) 
NT(B),GAMMA(1^) 
Sl.N,P,S 
R,NCL,CR,COtF,IREFL,ASIAKT 

.4) 

IS) 
0,«ii(tIBULL   OUANTAL   RESPONSE   ESTIMATION*,/ 
llb,*LAST«,/lX,»P<X,LE.XMINl)«,3X,»H<X.GT.XMAX0)», 
RT*»bX»*LAMBDA   START*,4X,^GAMMA* ,7X,»ITERATIONS*, 
HA*,Illb,*DEL   LAMBDA*) 

IDENT 

(cont'd on next page) 
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APPENDIX 9B (cont'd) 
11 F0«MAT(8A10) 

IF(EOF(5).Mt.O) tiU TO 111 
WWlTE(6.1<i) IDFN1 

12 FORMAT <lHl,8AlO/> 
READ ( 5»i) N 
KEAO (5»2) (.S(I)»1 = 1»N) 
READ (b,3) (U(I)»1=1«N) 
WRITE(6»100'*) 

100* FORMAT(lH0,T6.»I«»Tlb,«STIMULUS*»T30»*RESPONSE»/) 
DO 20 1 = 1»N 
lfi/RlTE(6»1002> I.S(I)»U(I) 

1002 FORMAT(3X»l3,<»XtF10.'nl3X»Il) 
U(T)=-FLOAT(U(I)) ♦l.OOOl 

20 CONTINUE 
READ (5.4) EPiLSON.ICOUNT 
IF(ICOUNT.FQ.O) IC0UNT=25 
WRITE (6.1003) EHILSON. ICOUNT 

1003 FORMAT ( IH . F10.8. 15) 
READ (5.1111) IGAM 

1111 

1044 

6b7 

76/ 

63 

59 

61 

62 

640 

66 
64 

15 

65 

IHEFL. NCL. NCR. NPL. NGAM 
WRITE (6.1044) IGAM 
READ (5.1111) ISrART. 
IF (IGAM.NE.3) NGAM=1 
FORMAT(311,312,1011) 
liiRllE(6,104t) IS1ART.IREFL.NCL.NCR.NPL.NGAM 
FORMATdH ,JIl,3U.10Il) 
IFdGAM.EU.J) GO 10 667 
READ(5.2) A5TAPT.ASTEP.LASTG 
WRllE(6.63) ASTAKI.ASTEP.LASIG 
GO TO 767 
FORMATdH ,/(F10.4,2X) ) 
READ (5,2) (&AMMA(I). 1=1. NGAM) 
WRiTE(6,6J)(GAMMA(I). 1=1.NGAM) 
CONTINUE 
IF(NCL.EQ.O) GO TO 59 
READ(5.2) ((:0£Fd).I = l.NCL) 
WRITE(6.63) (CntF(I).I=1.NCL) 
IF(NCR.EQ.n) GO TU 61 
READ(5.2) (CKd) .1 = 1.NCR) 
WRITE(6,6J)(CK(I).I=1.NCR) 
IF (NPL.E(J.n) GO 10 62 
READ(5.2)(PL(I).i=l.NPL) 
WRTTE(6.6J)(PL(I).I=1,NPL) 
CONIINUE 
IF(IRtFL.tO.O) GO TO 15 
IF (IGAM.NF.l) GO TO 64 
ASTART= GAMMA(1) 
DO 640 1=1, NGAM 
GAMMA (I) =*; . »ASTAK I-GAMMA (I) 
CONTINUE 
WHITE(6.66) ASTARI 
FORMATdH ,*REFLECT10N C00RDINATE=*.F 10.4) 
CONTINUE 
CALL   RFLtCT    (5,U.N.ASTART.IGAM.ASTARI»LASTG) 
CONTINUE 
IF    lISTARr.trO.O)   GO   TO   65 
READ(5.2)   P1,XP1.P2.XP2 

WRITE    (6,10'»5)   P1.XP1.P2,XP2 
CONTINUE 
ASTOP   =   999999 
00    J'09   I   =   i,N 
IF ( U(I) .to. 1 ) GO TO 709 
IF ( ASTOH - S(I))  /09,/09.707 

707 ASlOP = S(T) 
709 CONTINUE 

ALAST = 0 (cont'd on next page) 
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APPENDIX 9B (cont'd) 
00   777   I   =   itN 
IF    (   U(I)    .EQ.   0   >   GO   TO   777 
IF(   S(I)   -   ALAST   )    777»777»776 

776 ALAST = Sd) 
777 CONTINUE 

WRITE(6.10^3)ASTOH,ALAST 
10<»J  FOPMATdH ,*XMINl=»»F10,^t5X»«XMAXO=*»F10.4) 

IF(IGAM.Nt.l) WKIIE<6»6) 
00 10 I=1«N 
ST(I)=S(I) 

10 CONTINUE 
NGM=0 
GO TO (5i>t56.57) »1GAM 

bS BSTOP=ASrOP 
GO TO ba 

;J6 8ST0P=LASIr, . 
IF (BSTOP.GT. ASTUP) BSTOP=AbTOP 
GO 10 58 

57    CONTINUE 
IF(NGM.EQ.NGAM) GO TO 109 
W=GAMMA(NGM+1)♦.0000001 
BSTOP=ASTOP 

58 CONTINUE 
IF(NGM.NE.O) GO TO 499 ' !   ' 
IF (ISTAHT.EO.O) 00 TO b'* 
IF(IREFL.tO.O) GO TO 53 
X1=^.«ASTART-XP2 

X2 = «?.«ASTARI-XP1 
XP1=X1 
XP?=X2 
PPl=l.-Pl 
PP2=1.-P2 
P1=PP2 
P2=PP1 
GO 10 53 .     - 

54 CONTINUE 
Pl=.15 
XP1=AST0P 
P2=.85 
XP?=ALAST 

53 CONTINUE 
1045 FORMAT (IH »*)(F10.4»3X) ) 

IF(ASTOP.LT.ALAST) GO TO 499 
WRllE<6»1046) 

1046 FORMAT(lH0,10X,»OtGENERATE CASE. NO ZONE OF MIXEO RESULTS. 
1XMIN1.GT.AMAX0») 
GO TO 500 

499 CONTINUE 
K=0 
IF(IGAM.EU.3) GO 10 503 
W = ASTAKI-AtjTFP 

501 W = W + AbTtP ♦ .0000001 
503 CONTINUE 

IF(W.GI.BbTUP) GO TO 60 
SP1 = XP1-I(K 
SP2=XP2-W 
K = K*1 
00 306  I=ltN 
S(T) = ST(T) - W 
SS(I) = S ( T ) 

306 CONTINUE 
LA = 1 

155 CONTINUE 
ALPHA=AL0G(AL0G(i.-Pl)/AL0G(l.-P2))/ALOG(SP1/SP2) 
AL=ALOG(-ALOG(1.-P1) )-ALPHA*ALOG (SPl > (cont'd on next page) 
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APPENDIX 9B (cont'd) 
IF    (   LA   .to.   0   )    Cio   TO   146 
LA   =   0 
AA = AL . » , 
BB   =   ALPHA ■ '   * 
DO   144   I   =   1,N ' ••   ^ 
U    (ST (I)    .Lf;.V«)    00   TO   144 
SLG=AA*a8»AL0G(S(l)) 
S(l>=EXP(bLG) 

144   CONTINUE .     U : ■ 
SPl=AA*Bd«ALOG(SPl) 
SP1=EAP(SP1) 
SP? = AA*BB«ALOG(SPt;) 
SP2=EXP(SP?) .    . 
60   TO   15b - 

I'^e COMTINUE 
ALPHA2   =   A| PHAoBB 

ALAM=ALPHA«AA*AL 
LAMUDA2=EAP(ALAM) 

LAMBOA=EXH(AL) 
ITEK=O ' 

25   DO   JO   1   =   l»N ■! 
IF(ST(I)    .Lfc.w)    GO   TO   30 
FB(I)   =   0. 
IF(   S(I)»«ALPHA«LAM80A   .GT.    100   )   GO   10   27 
FB(I)    =   EXP(-b(I)*»ALPHA«   LAMBDA   ) 

27 COMTINUE 
IF(U(I).LU.l)    GO   10   28 
H(T)    =    <«    l-U(I))    »   FBd) )/(l-FB(I) )    -     U(I) 
PHA(I)    =    <(   U(I)-1)»LAMBDA   *S(I)««ALPhA   •AL0G(S(1))    •   FBd)) 

1        /    (l-FB(I))    «*tL 
PHLd)    =    U   U(l)    -   1)    •   S(I)«»ALPHA   ♦   FB(I))/(    l-FB(I))    ••   2 
GO   10   591 / ■ 

28 CONTINUE 
H(I)=-1 
PH4(I)=0 
PHL(I)=0 

5^1   CONTINUE 
B(I)=S(I)*»ALPHA«H<I) 
Ad)    =   B(I)    »ALOG{S(I) ) 

Cd) =   SH)«»ALPHA»AL0G(5(I) )«(Hd)»ALOG(S(I) ) ♦PHA(I)    ) 
Dd) =   S(1)»«ALPMA«ALGG(S(1) )«PHL(I) 
Ed) =   S(l)    »*ALPHA»(H(I)    •ALOG(S(I))    ♦   PHA (I) ) 
Fd) =   S(I)    »«   ALPHA   •   PHL(I) 

JO   CONTINUE 
AT   =   0 
BT   =   0 
CT   =   0 
DT   =   0 
ET =   0 
FI =   0 
DO 40   I   =   1«N 
IF (ST(I)    .LE.   W>   GO   TO   40 
AT   =   AT   ♦   Ad) 
BT   =   BT*   Hd) -' 
CT = CT ♦ Cd) 
DT = OT ♦ nd) 
ET = ET ♦ Fd) 
FT = FT ♦ Fd) 

40   CONTINUE 
DET   =   CT«fT-DT«ET 
DELTAH   =    (   -FT«A1+DT«BT)/   DET 
DELTAK   =    (-CT   «Br    ♦   ET»AT)    /   DET 
ITEN=ITEW ♦  1 
IF   ( ABS(UFLTAH) .LE.EPILSON.AND.ABS(OTLTAK).LE.EPILSON)  GO IO50 

IF   (   ABS(UFLTAH/ALPHA)    .GT.   .1   )   GO   TO  6111 (cont'd on next page) 
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dJ33 
tt44S 

bO 

^^3 

b02 

615 

bO 
^010 

^009 

3U0 

301 
305 

.1   •   ABS    (   ALPHA   )   •    (   OfcLTAH/ABS(DtLTAH)) 

APPENDIX 9B (cont'd) 
ALPHA = ALPHA ♦ UtLTAH 
GO TO d^^i* 
ALPHA = ALPHA 
CONTINUE 
IF ( ABS( DtLTAK/LAMBDA) .6T. .1 ) GO TO 8333 
LAMBDA = LAMBDA ♦ DELTAK 
GO TO S^'^b 
LAMBDA = LAMHOA ♦ . 1»ABS(LAMBDA)•(DLL IAK/ABS(OELTAK)) 

CONTINUE 
A2=ALPHA2 
82= LAMBDA? 
ALPHA2 = ALPHA»BB 
ALAM=ALPHA«AA+ALOG(LAMBDA) 
LAMB0A2=£Xp(ALAM) 
DELALF=A2-ALPHA2 
DELAMB=B2-LAM8nA2 
IFdTER.ECJ.lCOuNn   GO   TO   50 
GO   TO   25 
CON'INUE 
ALIKE=O. 
DO   y3   I=1»N 
1F(5T(I)    .Lt.W)   (iU   TO   93 
YL=ALAM*ALO6(SS(1))*ALPHA2 
IF(U(I) .EU.DGO   10   94 
IF <YL.GT.5.)G0   TO   93 
GO   TO   93 
ALTKE=ALIKF=ALIKt-EXP(YL) 
CONTINUE 
PARAM(K,l)=tXP(-ALAM/ALPHA2) 
PARAM(K,2)=ALPhA2 
PAPAM(K.3)=V» 
PApAM(K»4)=ALlKE 
DO   279   I = l,iM 
S(I)=ST(I) 
CONTINUE 
W   =   W-   .0000001 
YMlN=ALAM*ALPhA2*AL0G(AST0P-«l) 
XMlNP=l.-tXP(-FXHlYMlN)) 
YMAX=ALAM*ALPhA2*AL0G(ALAbT-»O 
XMftXP=EXP(-tXP(YHAx)) 
IF (IGAM.ECi.3)    WK1IE(6,6) 
WHirE(6,61t;) XMlNH,XMAXPtdB»AAtW»ITtHtDELALF,OELAMH 
FOPMAT (1H0,2(F 10.t),5X) t3Elb.6,5X.IJ»10X»2E15.6) 
IF(IGAM.tU.J) GO 10 60 
GO 10 501 
WHITE(6»201U) 
FOPMAT(lHO,T2b,»IHETA».T40t«ALPHA«»l5b.»GAMMA«»T/0»«LOG 
IF (IPEFL.NF.O) WK1TE(6.2009) 
FORMAT(IH ,T5b,»KtFLECTE0«) 
WHlTE(6»200H) 
FORMAT(IH ,) 
DO 300 1 = 1,^ 
WRlIE(6,201 1) I»(PAHAM(IiJ)»J=lt4) 
FORMAT(IH ,10X,lJ»5X»3E15.b»E15,6) 
L=] 
IF(K.EQ.l) GO TO 305 
00 301 J=2,K 
JJ=J-1 
IF (PAHAM(J.4).LI.PAKAM(JJ»4)) GO TO 301 

L = J 
CONTINUE 
CONTINUE 
THFTA=PARAM(L»1) 
ALPHA = PAHAM(L »2> 
GAM=PARAM(L»3) 

L*) 

(cont'd on next page) 
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APPENDIX 9B (cont'd) 
ALftMB=£XP(-ALPHA«AL0(3(THErA) ) 
IF(IREFL.tQ.O) GO TO 302 _-. 
GAMH = 2,«AbTARl - GAM ■  ,  •    ■    , . '"' 
WRT'E(6.JU1) ' ,,:■ ■ 

303 FORMAT(lHU,T10,»KtFLtCTED WtlBULL DISIRIBUTION«) 
lii(RTrE(6.2012) ALAMH»ALPhAtGAMR,THETA»HARAM(L»^) 
60 ro 304 

302 CONTINUE 
WRITE(6»2112) 

2112 FORMAT(1HO,T10,*SIANOARO WEIBULL DISTRIBUTION*) 
VKRlTEt6.20l2) ALAMB » ALPHA t GAM, ThETA tPARAM (L »4 ) _ 

2012 FOPMAT(1HO,T10,»MAX LIKELIHOOD ESTIMAlES ARE»//T10,♦LAM8DA=*» 
CElS.6»10X.«flLPHA=»,El5.6/T10»»6AMMA=«»EIS,6,10X»«THETA=«»Eli>.6/ 
CT10»«MAX LOG L=*»tl5.6) 

304 CONTINUE 
AX50 = ALOG(THf:TA)-.3665129/ALPHA 
EX=EXP(AXbn) ,     - 
XbO=GAM*EX 
IF (lREFL.tr).1) XbO = GAMR-EX ■ " 
WRITE(6,2013) XbO 

2013 FOPMAT (T10,«LbO = *^ 10.4) ,,    .   . 
GlrGMMd.*! ./ALPHA) 
G2=GMM(1.*?./ALPHA) 
UU=THETA*01 
U1=UU*GAM 
IF(IREFL.t0.1)Ul=GAMR-UU 
VARX=THETA«rHETA«(G2-Gl«Gl) 
SIriMA = SQR( (VARX) 
WRIrE(6«201^)Ul,blGMA 

2014 FORMAT (T10,<*MEAN=«,F10.4,10X»«STANDARU OEV I AT ION=» ,F 1 0 .4 ) 
bOO DO 601 1=1,N 

S(l)=i5T (1)-(,AM 
IF(b(I).LI.l.E-10) GO TO 601 
V(I)=(S(I)/rHETA)*«ALPHA 
SLNn)=ALUn(S(I) ) 
ARG=V(I) 

IF(ARG.LT.]00.) GO TO 602 
Q = n. 
GO 10 603 

O02 IF(ARG.LT.l.F-20) GO TO 601 
Q=F:XP(-ARG) 

603 P(i)=l.-Q ..... 
601 CONTINUE . ': ■   : ■-'■ 

NP = 3 
IF (IGAM.EU.J) NP = £: 

CALL COVAK{BF,COV»NP»N,THETA»ALPHA) 
IF(NCR.EQ.O) GO 10 110 . ;  , 
CALL i«iRELtTHEIA»ALpHA,GAM,COV,NP) 

110  IF   INPL.EU.U)  GO  10 109 ") 
CALL LPDHPTA,ALPHA,GAM,COV,NP,IREFL»ASTART»NPL«HL»NCL,COEF) 
NGM=NGM*I 

LArO 
GO ro b7 

lOy CONTINUE ■  '  . 
GO TO 500 - ■. t. .  . 

HI STOP " 
END 
SURROUIINt COVAR(bF»COV,NP,N,THETA,ALPHA) COVAR  2 

C      FISHER INFUPMATION MATRIX IS COMPulEU DIRECTLY AND  INVERTfcU     COVAR  3 
C      TO OBTAIN ASYMPTOTIC COVARIANCE MAIRlX. COVAR  4 

1 FORMAT (///, no,*HSHER INFORMATION MAIRIX FOR THtIA, ALPHA, GAMMA COVAR  5 
C»»/) COVAR  6 

2 FORMA!(6(lPtlb.b)) COVAR  7 
3 FORMAT(IHO,I 10,•ASYMPTOTIC COVARIANCE MATRIX FOR THETA, ALPHA, GAMCOVAR  8 
CMA«,/) COVAR 9 

(cont'd on next page) 
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COVAR 12 
COVAR 13 
COVAR 15 
COVAR 16 
COVAR 18 
COVAR 19 
COVAR 20 
COVAR 21 
COVAR 22 
COVAR 23 

APPENDIX 9B (cont'd) 
COMMON/BLl/V.SLN.P.S COVAR 10 

DlMtNSION VdbO) ♦isLNdSO) tP (150 ) »S ( ibO ) »b (3.6) »C0V(3»6) .BF(3.6) 
DIMENSION n(3»3) 
MC=2*NP 

A = ALPhA/ThFl A 
ALT=ALOG(iMtTA) 
DO yO I=1.N 
SLNH)=SLN(I)-ALJ 

90   CONTINUE 
00 100 1=1.NP 
Do 100 J=1.MC 

100    B(1.J)=0. 
DO 110 I=1.N 
IF(S(I).Ut.i.E-10) GO TO 110 
IF(P(I))110.110.201 

201 CONIINUE 
QnP=(l-P(I))/P(I) 
VSU=V(I)*V(I) 
B(1,1)=B(1,1)+QDP»VSQ 
B(1.2)=B(1.2)*UDP«VSQ«SLN(I) 
B(2.2)=B(?.2)*tlUH'»VSQ«SLN(I)«SLN(I) 
IF{NP.EQ.?)G0 TU 110 

AA=QDP*VSU»rHETA 
B(l.3)=B(i.3)♦AA/b(I) 
B(?.3)=B(£:,3)-AA«bLN(I)/S(I) 
e(3.3)=B(3.3)+AA«lHETA/(S(I)«S(I)) 

110    CONTINUE 
8(1.1)=A«A»«(1,1) 
8(1.2)=-A«q(1.2) 
B(2.1)=B(1.2) 
IF(NP.EU.?)G0 TO 120 

B(1.3)=A»A«H(1.3) 
B<3.1)=B(1.3) 

B(?.3>=*A«R(?»3) 
8(J.2)=B(?.3) 

B(3»3>= A«A*B(3.3) 
120    CONTINUE 

NN=NP*1 
Do 130 1=1.NP 
Do 130 J=MN.MC 

IF<J-NP.EU.I)B(I.J)=1. 
IJO    CONTINUE 

W«ITE(6»1) 
DO 1^0 1 = 1.NIP 
V«PITE (6.2) (H( T.J) ♦ J=1»NP> 

00 140 J=i,NP 
140 BF(l.J)=B(T»J) 

CALL JODIE(H.NP.MC) 
On IbO 1=1.NH 
Do IbO J=1.NP 
JJ=J*NP 

IbO    C0V(1.J)=«(I.JJ) 
WRlTE(6.J) 
Do 160 1=1.NP 

160    WR1TE(6.<;) (COV(l.J) .J=1.NP) 
DO 165 1=1,NP 
DO 165 J=i.NP 
D(I.J)=0. 
DO 165 K=1.NP 
Dd.J) = Ud.J) ♦bF(I.K)«COV(K.J) 

165 CONIINUE 
WRITE(6,5) 

5 FOf?MAT(1HO,T10.» PRODUCT OF INFO AND COVAHIANCE MATRICES*./) 
DO 166 1=1,NP 

COVAR 
COVAR 

25 
26 

COVAR 27 
COVAR 
COVAR 

28 
29 

COVAR 30 
COVAR 
COVAR 

31 
32 

COVAR 33 
COVAR 
COVAR 
COVAR 

34 
35 
36 

COVAR 
COVAR 

37 
38 

COVAR 39 
COVAR 
COVAR 

40 
41 

COVAR 42 
COVAR 
COVAR 

43 
44 

COVAR 45 
COVAR 
COVAR 

46 
47 

COVAR 48 
COVAR 
COVAR 

49 
50 

COVAR 51 
COVAR 
COVAR 

52 
53 

COVAR 56 
COVAR 57 
COVAR 
COVAR 

58 
59 

COVAR 60 
COVAR 
COVAR 

61 
62 

COVAR 63 

« 
(cont'd on next page) 
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APPENDIX 9B (cont'd) 
166 WRME (6.<i) (D(l.J) ,J=1,NP) 

IF(NP.fcQ.i) GO 10 170 

DET=C0V(1.1 )»C0V(«i,2)»C0V(3,J)*COV(l.i;)»C0V(2t3)*C0V(J,l)* 
^^^V !i'^> !^^V <-^'^'*COV (2, 1)-C0V(3»1>»C0V (2,2) *C0V( 1,3)-COV (3.^) • 
CCOV(2,3)»L0V(i,l)-C0V(3,3)»COV(l»2)*COV<2,l) 
GO 10 180 

1/0 DET=C0V(i,l)»C0V(2,2)-C0V<l,2)#C0V(2,i) 
1«0 WRirE(6,4) UFT 

4 FORMAT(lHO,10X,«GfcNERALIZED VARIANCfc=«,E15.5) 
KFTURN 
END 

SUBROUTINfc WRELdHETA,ALPHA,GAM,COV,NH) 
C      CoMPUTEb ASYMPTOIIC RELIABILITY ESTIMATES AND CONFIDENCE 
C      iNTERVALb 

3 FORMAT(/,l10,«ASYMPTOTIC RELIABILITY tSTIMATES*//T8,«C*,T20,'REL* 
C T3b,*VAR R«,T50,*SIG R»,T6!3,«C COEK », TRO ,»LCL») 

4 FORMAT(F12.4,3(2XiE13.6),2X,F8.3,2X»E13.6) 
DIMENSION COV(3,6),C(20),PR(3),COEF(b),2(5) 
DIMENSION rw(20) 
COMMON/BLd/NCR,NCL,C,COEF,lRfcFL,ASTARI 

G - 
IF(IREFL.EO.O) GO TO 131 
00 130 1=1,NCR 
CR(I>=C(I) 
C(T)=2.»ASTART - C(I) 

130 CONTINUE 
131 CONTINUE 

W9lTE(6,J) 
A=ALPHA/THF1A 
00 150 1=1,NCR 

IF(C(I)-GAM.GE..1E. 
R=1.0 
IF(IREFL.EO.O) GO 
R = 0. 
C(T)=CR(I) 

135 CONTINUE 
WRnE(6,6) C(I),H 

6 FORMAT (F !«;.'♦, 2X, El 3.6,1 OX,'VARIANCE 
GO TO 150 

100 CUNtlNUE 
B=(C(I)-GAM)/THEIA 

V=B««ALPHA 

IFCV.GT. jn.) GO 10 105 
R=FXP(-V) 
GO TO 106 

105 R=0. 
106 CONTINUE 

PR(l)=V»R«fi 

PR(2)=-V«R»AL0G(B) 
PR(3)=PR(1)/B 
VAR=0. 
Do 110 K=1,NP 
Do 110 J=1,NP 

110    VAR=VAR*H»(K)«PR{J)«C0V(K,J) 
IF(VAR) 1^:4,125,125 

124 IF(IREFL.NF.O) C(1)=CR(I) 
WRirE(6,5) C(I),H,VAR 

5 FORMAT(Fld.4,2(2X,E13.6),1 OX,«VARIANCt 
GO TO 150 

1^:5 CONTINUE 
SIG=S0RT(VAR) 

IF(iREFL.tO.O) GO TO 140 
R=l.-R 
C(I)=CR(1) 

•05)G0 TO 100 

TO 135 

AND LCL ARE NOT 

IS NEGATIVE*) 

COVAR 64 
COVAR 65 
COVAR 
COVAR 

66 
67 

COVAR 68 
COVAR 
COVAR 

69 
70 

COVAR 71 
COVAR 
COVAR 

72 
73 

WRfcL 2 
WRfcL 
WRfcL 

3 
4 

,WRfcL 7 
WREL 
WREL 

8 
9 

WRfcL 10 

WREL 11 

WREL 18 
WRfcL 19 
WRfcL 20 
WRfcL 21 
WRfcL 22 

DEFINED*) 
WREL 
WREL 

23 
24 

WRfcL 25 
WRfcL 
WRfcL 

26 
27 

WRfcL 28 
WRfcL 
WRfcL 

29 
30 

WRfcL 31 
WRfcL 
WRfcL 

3Z 
33 

WRfcL 34 
WRfcL 
WRfcL 

35 
36 

WREL 37 
WRfcL 
WRfcL 

38 
39 

>" 
WRfcL 40 

WREL     41 

(cont'd on next page) 
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140 

IbO 

c 
c 

90 

bO 

dO 

CONiriNUE 
Do 1^0 J= 
Z(J)=ZNUt 
CLL=H-Z<J 
IF(CLL.LT, 
WRI fE(6.4) 
CONTINUE 
HFIUHN 
EMO 
FUNCTION 
COMPUTES 
NFrtTON-KA 
Epb=.00b 
R=1/SQK1 

Z = 0. 
PHl=.b«(l 
DPHiz=e«fc 
DZ=-(PHI- 
Z=Z*DZ 
IF<ABS(UZ 
ZNJUFV = Z 
WFIUHN 
ENO 

FUNCTION t 
IF(Y) 3,4. 
CONTINUE 
X = 1.414^ 
AX = ABS(X 
T = 1.0/(1 
D = O.I97ti 
ERF = 1.0 

1 - 0. 
IF (X) ltd 
ERF = -ERF 
GO fO 2 

ERF = 0.0 
RETURN 
END 
SURROUTINt 
DIMENSION 
DIMENSION 
FORMAT(IHO 
DO bO 1=1. 
DO bO J=l. 
8BX(I»J)=A 
CALL INVEK 
00 do   1=1. 
DO ^0 J=l. 
JP=N+J 
A<T.JP)=C( 
RETURN 
END 
SUBROUTINE 
DIMENSION 
DIMENSION 
CALL OtCOM 
DO 1 J=1.N 
DO d   1 = 1.N 
B(T>=0.0 
IF(I.EU.J) 
CONTINUE 
CALL SOLVE 
CALL IMPRO 
DO J 1 = 1,N 

AINVd, 

APPENDIX 9B (cont'd) 
l.NCL 
V(COEF(J)) 
)»SIG 
a.)    CLL=0. 
C( I) .R.VAR,SIG,COEF"(J) ,CLL 

7NDEV(H) 
M(O.l) DEVIATE FOR PROBABILITY P. USING 
PHSON METHOD OF SOLVING INVERSE RELATION 

(2.'3.14159) 

♦ERF(Z«.7071)) 
XP(-7*Z/2.) 
P)/DPH1Z 

).GT.EHS)GO TO 90 

RF (Y) 
3 -. ' ■ ■-  .■■■" .;■■■■- 

) 
.0 ♦ .2J16419«AX) 
84Sb08»tXR(-X»X/2.0) 
- tj»T*« M (i.330274*T - l.tt21256)»T ♦ 1.781478)«T 
3b6bf.3a)«T ♦ 0.3193815) 
,2 

J00IE(A,N,M) 
HHX(3.3),C(3.3) 
A ( 3 . 6 ) 
,T20.*NO PIVOT SOLUTION*) 
N 
N 
(I.J) 
T(N.HBX.C) 
N 
N 

I»J) 

INVFRI(N.A,AINV) 
X(3) 
A(3.3)»UL(3,3),8(3),AINV(3,3) 
P(N,A.UL) 

H(I)=01.0 

(N,UL,B,X) 
V('s.'.A.UL,8,X. DIGIT) 

J)=X(I) 

WREL 42 
WREL 
WREL 

43 
44 

WREL 45 
WREL 
WREL 

46 
47 

WREL 48 
WREL 
ZNOEV 

49 
2 

ZNOEV 3 
ZNOEV 
ZNUEV 

4 
5 

ZNOEV 6 
ZNOEV 
ZNOEV 

7 
8 

ZNUEV 9 
ZNOEV 
ZNOEV 

10 
11 

ZNOEV 12 
ZNOEV 
ZNOEV 

13 
14 

ZNOEV 15 
ERF 
ERF 

2 
3 

ERF 4 
ERF 
ERF 

b 
fe 

ERF 7 
ERF 
ERF 

8 
9 

ERF 10 
ERF 
ERF 

11 
12 

ERF 13 
ERF 
ERF 

14 
15 

ERF 16 
JODIE 2 

JOOIE 

JODIE 33 
JOOIE 36 

(cont'd on next page) 
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c 
c 

c 
c 

10 

u 
id 

13 
14 

IS 

16 
17 

18 
19 

APPENDIX 9B (cont'd) 
CONTINUE 
CONTINUE 
RETURN 
ENn 
SURHOUriNt Of[COMH(NN»A»UL) 
DIMENSION ft(3»3)»UL(J.3).SCALES(3)tIHb(3) 
COMMON IPS 
N=MN 

INITIALTZF. IKS.UL.AND SCALES 
DO b I=1»N 
IPS(I)=I 

HOWNRM=0.0 
DO i? J = 1.N 
UL(I.J)=A(T»J) 
IF(HOI«NRM-AoS(UL(l,J) ) ) I,2«i; 
ROwNRM=ABS(UL(I»J)) 
CONTINUE 

IF(K0lf»NRM)3»4»3 
SCALES(I) = 1,0/KOwNHM 
GO TO b 
CALL SING(I) 
SCALES(I)=n.O 
CONTINUE 

GAUSS ELIMINATION «IITH PARTIAL PIVOIING 
NMl =N-1 
DO 17 K=1.NM1 

BI6=0.0 
DO 11 I=K,M 
IP=IPS(I) 
SlZE = ABSli)L(lP,K) )»SCALES(IP) 
iFtSIZE-ajG) 11.11.10 

blG=SIZE 
IDXPIV=I 
CONTINUE 
IF(BIG) U,12.13 
CALL SING(?) 
GO 10 17 
IF(IDXPW-K) 14.IS,14 
J=TPS<K) 

IPSlK)=IPb(IIUPIV) 
IPS(IDXPIV)=J 
KP=IPS(K) 

P1V0T=UL(KP.K) 
KP1=K+1 
DO 16 I=KP1.N 

1P=IPS(T) 
tM=-UL(IP,K)/PlVOT 
UL(IP.K)=-EM 
DO 16 J=KP1,N 

UL(IP,J)=UL(1P.J)*EM«UL(KP.J) 
CONTINUE 
CONTINUE 
KP=IPS(N) 
IF(UL(KP.N)) 19.1W,19 , 
CALL SING(?) 
RETURN 
END 
SURROUTINt SOLVE(NN.UL.B.X) 

DIMENSION IJL(3.J) .8(3).X(3).IPS(3) 
COMMON IPS 
N = NN 
NP1=N*1 

(cont'd on next page) 
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APPENDIX 9B (cont'd) 

lP=lPb(i) 
x(i)=b(ip) .    , • ,: 
DO   d   1=2.N V V-- 

ip=ips(i) ■ ■    ' "■   ■■'■■■':;; ''■' •< '■-[ "'■•.■■■-■.'       ■■' '"•-'■ 
IMi = l-l ■■■:■■■     ■ '■ \ ■-' 
SUM=0.0 

DO   1   J=l»T"'l 
1 SUM = bltM + UL (1^'.J)*X(J) .   ■; ' 
2 X(I)=B(IH)-5UM 

Ip=IPS(N) 
X(N)=X(N)/UL(IP»N) 

Do ^ IBACK = <>.N . . ' 
I=NPi-IttACK • ' ' 
1P=IPS(T)        .•   ' , 

IP1=I*1 
bUM=0.0 
00 3 J=TP1 »N - ..     ■ ■   '  ■ 

3 SUM=SUM*UL(1P.J)«X(J) 
4 x<I)=<X(I)-SUM)/UL(IP.I) • 

RETURN                                      ;  •  ..   . 
END ' -      ,     - ,    - 
SURKOUTINt IMPRUV(NN»A.UL»a»X.DIGITS) 
DiMtNSlON A(3.3) .UL(3.3).B(3),X(3).K(J).DX(3) 

N = NN 
EPS=1.0E-1S - 
ITMAX=30 

XNOt^M = 0.0 
DO 1 1=1»N 

1 XN0WM = AMAX1 (XiNORM»ABS(X(I) ) ) . ;' 
IF (XNOHM) 3.?0 ■ ' ' '    .   .     '■- 

d   DlGlTS = -ALO(ilO(EPb) 
GO TO 10 

3 DO y ITER = I.ITMAX 
00 b 1=1»N ■ 

SUM=0.0 : ,.   ,  / 
DO 4 ,1=1 .N 

/» SUM = SUM*A( I,J)«X (J) - 
SUM=8(i)-SUM 

b R(I) = SUM 
CALL SOLVE (N»UL»R.DX) i 

DXNORMtrO.O 
DO   6   T = l »N 

T = X (I ) : -• : 
X(I)=X(I)*OX(I) 
DXMUHM=AMAX1(DXNORM»ABS(X(I)-l)) 

6 CONTINUE -     ■ >    ■ 
IF <ITEK-1)    8W»8 

7 DIGIIS=-AIOGIOCAMAXI(DXNORM/XNURM,EPS)) 
8 IF(UXNOOM-EPb»XN0RM) 10.10.9 
H      CONTINUE 

CALL SIN0(3) 
10 RETURN 

END 
SUBROUl INF 5>ING( I WHY) 

11 FOpMAI(*0     MAIKIX WITH ZERO ROW IN DECOMPOSE*) 
12 FORMAT(1H0,«    SINGULAR MATRIX IN DECOMPOSE, ZERO DIVIDE IN SOLVE 

X») 
13 FORMAT(IHO,*   NO CONVERGENCE IN IMPRUV. MATRIX IS NEARLY SINGULAR 

X») 
N0iH=3 
GO   10   (l.i!.3) .IWhV 

1   WRITE    (6.11) 
GO   fO   10 (cont'd on next page) 
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APPENDIX 9B (cont'd) 
2 WRITE (6.1?) ^     ' 

GO TO 10 
3 WHI(E (6.13) 

10 RETURN • 
ENn 

SURHOUTiNt kFLECI (S.U.N.AlMAGE.IGAM.ASTArtT.ASTOP) 
iNTtGER U 
DiMtNSlON S(lSO)»U(lbO) 
DO JO 1=1»N 
S(I)=2.»AlMAGt-S(l) 
U(T)=-FLOAT(U(I))*1.001 

JO CONTINUE 
ASTART=2.'A IMAGE-ASTART 
IFdGAM.EO.d) ASlUP = 2.»AlMAGe.-AST0P 
RETURN 
ENn 
SUBROUTINE LP(THEIA.ALPHA»GAM,COV.NH.lREFL.AIMAGt.NPL»PL»NCL.COfcF) 

C 
C»««#»pEpCENTAGt POlNTb.LP. OF STANDARD WEIbULL ARE COMPUTED IF iHtFl=0 
C*«*»*ANn FOR REFLECTED WEIBULL USING REFLfcCTION POINT AIMAGE IF IKEFL 

c 
DIMENSION   rUVO.J) .PL(30).COfcF(5).XH(JO).PX(3).SlG(30).2(b) 
DIMENSION   \/AR(30) 
WRITE(6,1) 

1   FO&MAT(lHl,T10.»»iEI8ULL   QUANTILE   ES I IMATES«//T8.*P»f T20»«L (P) ♦. 
C   Tli>,»SIG   LP».TbO.»C   COEF*.T65.*LCL». I 80.*UCL»/) 

16   CONTINUE 
PX(3)=i. 
DO  10  I=I.NPL 

IF(PL(I).GT.O.)    GU   TO   20 
XP(I)=GAM 

IF(IREFL.tO.l)    XP(I)=-9.E*99 
GO   TO   2^ 

20   IF (PL(I).LT.l.)    6U   TO   25 
XP(I)=9.E*q'V 

IFdREFL.tO.D    XP(I)=2.«AIMA6F-GAM 
24   SIr,(I)=0. 

GO TO 10 
2b CONTINUE ' 

Q=] .-PL(I) 
IFdREFL.tO.D    U=HL(I) 
A = -AL06<{J) 
PX(1)=A»«(1./ALPHA) 
AA=1HETA«HX(1) 
XP(I)=GAM*AA 
IFdREFL.tO.D    XP(D=2.«AIMAGF-GAM-AA 
PX(2)=-AA«AL0G(A)/(ALPHA«ALPHA) 
VAR(I)=0. 
DO   30   Krl.NP 
DO   JO   J=1.NP 

JO VAR(I)=VAH(I)♦PX(K)»PX(J)*C0V(K.J) 
10 CONTINUE 

IF(NCL.EU.n) GO (U bO '; '^^ ■-.-■^ ■ :. 
DO '♦O I = 1.NCL 
ZP=l.-.5»{l.-C0tF(I) ) 
Z(T)=ZNDEV (^tP) 
DO 40 J=1.NPL 
IF(VAR(J)) bO.hl.til 

60WRlTE(6.3) HL(J)»xp(J),VAR(J) 
3 FOPMATdH ,F12.4.2X.E13.b.2X.«VAR=».E13,5) 

GO TO 40 
61   CONT INUE :   . 

SlG(J)=SUKT(VAR(J)) 
CLL = XP<J).SIG(J)»^<I) (conty on next page) 
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APPENDIX 9B (cont'd) 
UCL=XP(J)*SIG(J)*^(I) 
WHIFE(6»2) HL<J)'*P(J)»SIG(J).COEF(l)tCLLtUCL 

'♦0 CONTINUE 
2 FORMAT (Ih »F12.^.2(2XtE13.b),2X»F8.3.2(2X»ei3.5)) 

RETURN . '   . .    i' • 
bO DO bl J=l.NtPL 
bl WRirE(6»3) PLU) »^P(J) »VAH( j) 

RETURN 
ENn 
FUNCTION GMN'(X) 
ErA = X 
ETAF=AMODtx»l.n) 
IF (ETA) ^0»<?0,2<i - 

20   GMM=0.0 
GO TO 100 

22   IF (ETA-33.0) 2b»£:5.200 
2b   GF=( ( ( ( ( ( (.J58f,8J4 E-0 I'ET AF-Q. I93b27d ) *ETAF + 0.'»821994 )»ErAF- 

1 0.7b670^1 )»FlAe*0.9182069 )*ETAF-0.8970569 )«ETAF♦O.98820b9 )« 
2 FTAF-0.b7n91 7 )«ETAF*1.0 ; ■ 
IF (ETA-l.O) 30.3/i,3b 

30   GMM=GF/ETAF 
GO TO 100 

32   GMM=1.0 
GO 10 100 

3b   IF (ETA-2.0) 3ft.3«:,^b      ■. ■;   .      _....,; 
ja   GMM=GF 

GO 10 100 
4b   PROU=1.0 

TERM=ETAF+].0 
b2   PR0U=PR0D«TtRM 

IF (TtRM-fcTA+1.1) 5b»60,60 
bb   TERM=TERM*1 .0 

GO TO b2 
60   GMM = PROO«GF ■■-:'■■    ^ .     ) 
100  CONTINUE 

RETURN i ,  . 
200  ETAM=fcTA-l.U 

TwnPI=6.2tt3l8b 
GMML0G = AL0G(S0R1 (IWOPI)>♦(ETAM + 0.5)*ALOG(ETAM)-EI AM*1.0/<12.0*ETAM 

1) 
GMM=EXP(GMMLOG) , 
RETURN 
END 

000000000000000000000000 . 
ooooooooooooooooouoooow 
GOOOOOOOOOOOOOOOOOOOOO , 

i 
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CHAPTER 10 

THE ROLE OF THE STATISTICIAN IN SCIENTIFIC MODEL BUILDING: 
ILLUSTRATED FOR THE LIMIT VELOCITY PROBLEM 

The role of the statistician in the process of scientific model building is described in this chapter. Usually, the 
statistician serves either as a consultant who might be able to characterize the model in statistical terms as 
required, or he sometimes functions as a member of the team that has the overall responsibility for model 
development. To illustrate the probable role and contributions of the statistician, we select a rather compli- 
cated problem—the limit velocity problem—since attempts toward a complete solution may continue into 
future years, and we illustrate such a challenge to the statistician. 

Both the physical and the statistical characterizations of models developed to date are outlined, and the 
limitations of each are discussed. Possible future avenues of further progress are explored by some analyses of 
actual data relating to the determination of the limit velocity of target armor. 

10-0 LIST OF SYMBOLS 

a  = constant of proportionality or parameter of a distribution 
b  = constant, or scale, or shape parameter 
D  = diameter of penetrator, cm 
L = penetrator length, cm 

M = mass of penetrator, g 
MR = residual mass, g 
Ms = striking mass, g 
p  = exponent in Lambert model (See Eqs. 10-3 and 10-9.) 
T = target (armor plate) thickness, cm or in. 

VL = limit velocity, m/s or ft/s = value of Vs for which VR= 0 
VR = residual velocity of projectile after penetrating armor, m/s or ft/s 
Vs = striking velocity of projectile, m/s or ft/s 

Ko.oo  = striking velocity for which 0% of the projectiles penetrate the target 
Fo.io  = striking velocity for which 10% of the projectiles penetrate the target 

z  = 7sec°^'0/£) = parameter used by Lambert (See Eq. 10-6.) 
6  =   angle of obliquity at which penetrator strikes the target 
p =   target density, g/cm"* 

10-1 INTRODUCTION 

During his career, the Army analyst will face a variety of different problem applications of an involved 
physical nature, and he often will be called upon to help solve these problems or at least to contribute to an 
"immediate" interim solution. The point is that as a result of many years of data collection and research by 
several physical scientists, a satisfactory law or model may be available that can be used to interpolate or 
extrapolate to some specific or perhaps more general conditions. Moreover, the physical model will exhibit 
the key parameters of interest, usually in proper form, and the results can often be successfully "scaled". The 
statistician often may contribute to efforts of this type by attempting to deal with and "smooth out" any 
random variations or "noise", so to speak. Or alternatively, the statistician often may be able to make a quick 
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fit of the observed data and arrive at an interim solution or "stopgap" model, which could apply with some 
success for the time being. It is always the "team" effort that pays off better in the long run, of course. 

Although this is a handbook and hence a work that would ordinarily present final, useful, and well-tried 
results, it is believed, nevertheless, that some space should be devoted to the role of the statistician as a team 
member in an organization primarily engaged in research and development (R&D) in some of the physical, 
biological, or medical sciences. By devoting a chapter to this particular theme—which is quite important in its 
own right—it is believed that the role and contributions of the statistician will be enhanced. Moreover, there 
could be much additional payoff to the organization by joint participation. Thus we have selected a problem 
of long standing, which we will describe briefly as a physical problem and then will give a summary of it in the 
statistical sense. Finally, we will give the results of some analyses to date to learn just what the current status of 
accomplishments is, to point out the limitations, and to indicate just how the physicist-engineer-statistician 
team might be able to push forward the frontiers of knowledge. 

The problem we have chosen involves the penetration of armor, and it is also rather closely related to the 
problem of sensitivity analyses covered in Chapter 9; the difference is that here we are concerned with a 
mixture of continuous and discrete distributions while trying to estimate a point of zero percent "responses" 
or penetrations. In fact, there has been and continues to be the need to determine the residual velocity of a 
projectile once a piece of armor plate has been hit at any striking velocity and penetrates. In addition, it is 
highly desirable to estimate the striking velocity that results in a very low or even zero percent chance of 
penetration. This problem has not been completely solved but, nevertheless, is interesting from both the 
physical and statistical points of view. 

10-2 DESCRIPTION OF THE PHYSICAL AND STATISTICAL ASPECTS 
OF THE PROBLEM 

It is well-known that the more the statistician knows about the physical, engineering, biological, or medical 
aspects of a problem, the better able he is to make some worthwhile contribution toward a satisfactory 
solution. Indeed, in many areas of the possible application of statistics, there may already exist some physical 
laws or models that apply to the problem at hand. Therefore, it becomes mandatory for the statistical 
contribution to make as much physical sense as possible. In those fields of interest for which no physical 
models exist, the statistician can often contribute without reference to the physical details. Because it becomes 
quite important for the statistician to know the physical details of the problem illustrated here, we will present 
some of the more relevant physical details and parameters involved before proceeding to the statistical 
description. 

10-2.1 BRIEF ACCOUNT OF THE PHYSICAL AND ENGINEERING DETAILS 

Penetration of armor studies or the field of penetration mechanics has a very broad and long history, and 
many capable investigators have contributed in many ways to modeling or describing physically the best 
forms oflaws connecting the key parameters involved. For the case of an armor-piercing (AP) projectile fired 
at tank armor, one may easily see that the striking velocity Fjof the projectile, the mass M of the projectile, the 
thickness Fof the armor, and the diameter D of the penetrator are all important parameters to the defeat of 
the armor. In fact, as early as 1886, the Frenchman deMarre formulated a "dimensionally awkward" equation 
that involves the so-called "limit velocity" of the armor plate. The deMarre equation is 

MVllD' = aT''l&' (10-1) 

where 
VL = limit velocity 
a   = constant of proportionality. 

Grabarek (Ref. 1) and others have defined the limit velocity VL as the lowest striking velocity of a projectile 
required for a complete penetration of a target. "Complete penetration means that the penetrator exits the 
rear face of the (armor) target. VL is determined by test firings wherein the striking velocity, Vs, of the 
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penetrator and its residual velocity, VR, are measured." These measurements are usually made with the 
assistance of flash radiography. "Generally, VL is determined to within +5 m/s." The reader will note, 
however, that there are some very real problems with this definition, i.e., finding the lowest "striking" velocity 
of projectiles that "penetrate"thearmor plate seems to ignorethefact that many of the shots for low Vsdo not 
even "penetrate"!* (We will, therefore, use a somewhat different definition in the statistical treatment in par. 
10-2.2.') In any event, the deMarre equation does give a physical relationship between important parameters 
having a bearing on the "defeat" of the armor plate for normal (perpendicular) incidence attack. Note that the 
deMarre law is really expressed in terms of a measure of projectile energy, penetrator diameter, and plate 
thickness. 

Although the deMarre equation (Eq. 10-1) may be informative, it is best to refer also to a graph to see more 
clearly the actual physical situation. On Fig. 10-1 we have plotted the residual velocity of a long-rod 
penetrator emerging from a piece of tested armor plate versus the striking velocity of the projectile. Fig. 10-1 is 
the same as Fig. 6-1, and some discussion of this particular problem has also been given in par. 6-3.2, in which 
a straight line of the square of the residual velocity versus the square of the striking velocity has been fitted to 
the data as indicated by the equation of the graph. The graph of FR versus Ksis not linear, but rather it is very 
sharply curved for the lower striking velocities. The reader will note again that at the very high striking 
velocities the residual velocities are nearly equal to or approach the corresponding striking velocities, and the 
slope of the curve becomes unity (45 deg). On the other hand, as the striking velocity decreases, the residual 
velocity becomes much, much less than the striking velocity, the curve drops very sharply, and at about 2500 
ft/s striking speed some or many of the projectiles will not even penetrate the plate. Moreover, the slope of the 
curve becomes vertical (infinite). The terminal ballistician's definition of the critical or limit velocity is 
apparently the lowest striking velocity of the rounds that penetrate the plate and mention nothing of the 
nonpenetrating rounds! We will, however, take the nonpenetrating projectiles into consideration in par. 
10-2.2. 

The deMarre equation (Eq. 10-1) represents a relationship of some, but perhaps not all, of the key 
parameters, and the physical scientist does not know the exact or true law. Rather, he is looking for a 
physically meaningful model except for the random or residual scatter about the law, so to speak. On Fig. 10-1 
it is seen that the equation relating the squares of the residual and striking velocities fits the data fairly well, 
whereas the deMarre equation (Eq. 10-1) uses only the limit velocity VL that appears to be about 2500 ft/s. 
(The limit velocity is predicted from the equation on Fig. 10-1 to be the square root of 7,271,000, or 
approximately 2477 ft/s.) 

With reference to a search for the best physical law, the deMarre equation has been somewhat generalized, 
as indicated by Lambert (Ref. 2), to the form 

MV^ID' = a{TIDf (10-2) 

where a and b are constants that may be determined. Note that Eq. 10-2 may be linearized by taking 
logarithms of both sides, and indeed a Hnear least squares fit could be found for the data. 

On Figs. 2, 3, and 4 of his Ballistics ResearchLaboratory(BRL) Memo Report No. 2134, Grabarek (Ref. 1) 
indicates a fairly good linear relation between the left-hand side (LHS) of Eq. 10-2 and the quantity Tsecdj D, 
in which the angle 6 is the striking angle or the obliquity of the projectile against the armor. Fig. 10-2 
reproduces Fig. 4 of Ref. 1, which shows that a rather simple law and linear relationship have been found for 
the parameters involved although the residual velocity cannot be predicted from any striking velocity of a 
penetrator. This brings us to our objectives, which may be stated more clearly now, concerning the problem. 
We would like to estimate the critical or limit velocity, which is obviously of considerable interest in projectile 
and armor plate design, and we would also like to know just how good our estimate is. Perhaps the latter could 
be determined by being able to place confidence bounds about the true, but unknown, limit velocity. Also we 
would like to be able to estimate the residual velocity of a penetrator "precisely and accurately", given the 
striking velocity of the projectile. Hopefully, moreover, we should find a "physical" relationship that can be 

♦For this definition, it is seen that VR unfortunately will depend on the number of rounds fired (sample size)! 
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(This figure is a duplicate of Fig. 6-1.) 
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Figure 10-1. Plot of Typical Residual and Striking Velocities for a Penetrator Against Armor 

used more or less as a "general law" from which to make predictions. Clearly, these are very demanding 
objectives although we could add that we also want as simple a law as possible! We should add that it cannot 
be expected that a suitable law could be found that would include all of the key variables or parameters of 
interest and still be of unquestionable merit. 

To continue the discussion, it appears that some rather intense interest has developed in connection with a 
proposed law or fit by Lambert and Jonas (Ref. 3, 1976). Their model takes the form 

V^ = a(vP-vPfP (10-3) 

where a andp are determinable constants, and the equation is to be used only for striking velocities exceeding 
the limit velocity. In Ref. 2 Lambert extended the work of Ref. 3 to include equations for the determination of 
the constants a and p. We will discuss the equations after citing further pertinent references concerning the 
work of other key investigators. 

In an earlier report Bethe (Ref. 4) used elasticity theory to analyze the action of the armor plate in stopping 
penetrators. In fact, he determined that limit energy is proportional to the quantity TD^ and thus concluded 
that in Eq. 10-2 the exponent b = 1 should be the case. Zener and Holloman (Ref. 5) further studied the 
mechanism of armor penetration, and during World War II (1943) H. H. Robertson (Ref. 6) of the National 
Defense Research Council made several profound contributions to the penetration mechanics theory for 
attacking armor, taking into account the pioneering work of Poncelet (1840). Poncelet hypothesized that the 
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Figure 10-2. Linear Relationship Between Specific Impact Energy and Scaled Armor Thickness (Ref. 1) 

resistance encountered by a penetrator passing through a plate is a linear function of the square of the velocity 
of the penetrator. Taub and Curtis, in an addendum to one of Robertson's reports (Ref. 6), discuss the limit 
velocity formulations inspired by the Poncelet and Bethe theories and consider the Bethe theory to be valid 
while the penetrator is in the niain body of the plate, but the mechanism of failure changes to a petaling-type 
situation near the back of the plate. Thus Taub and Curtis (Ref. 6 addendum) derive the law 

MVl/D' = a{TID + b) (10-4) 

for which a and b are constants. The Taub and Curtis development of Eq. 10-4 supposes that the ratio of 
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backface thickness, where petaling prevails, to penetrator diameter is constant, and the constant b then is a 
quadratic function of that constant value. (For an extensive and interesting account of the early approaches to 
determination of limit velocity, the reader should refer to the work of Curtis, Ref. 7.) 

Based on a study of Refs. 1-7 and much data gathered for armor penetration investigations over the years, 
Lambert (Ref. 2) has advanced the following equations for estimating the limit or critical velocity VL and the 
residual velocity VR for a plate of rolled homogeneous armor 

VL = 4000(1//))° "[(z + e~' - \)D^I Af]"\ m/s (10-5) 

where 
z = (r/Z))sec°"0, dimensionless (10-6) 

and the residual velocity is 

V^ = a{l%-Vlf\mls      ■ (10-7) 

where 

where 

a = MI{M+ pTTDzl\2\g (10-8) 

/> = 2 + z/3, dimensionless (10-9) 

T = armor thickness, cm 
Vs — striking velocity of projectile, m/s 
L = penetrator length, cm 
D = diameter of penetrator, cm 
M = mass of penetrator, g 

6 = angle of obliquity at which penetrator strikes the 
target, rad or deg 

p = target density, g/cm'^ = 7.8 g/cm'^ for rolled 
homogeneous armor. 

Therefore, the Lambert equations (Ref. 2) predict both the limit velocity of the plate in terms of the projectile 
length, diameter, mass, plate thickness, angle of obliquity, and the residual velocity of a projectile penetrating 
the plate in terms of the parameters a and p of Eqs. 10-8 and 10-9 using Eq. 10-7. 

A very important consideration is that Eqs. 10-5 through 10-9 use the key physical parameters or constants 
of the projectile and armor plate and, hopefully, describe a rather general region of application for any 
prediction purposes. Even for predicting the residual velocity of the projectile emerging from the armor plate 
after penetration, the "law" (Eq. 10-7) gives a relationship among the striking velocity, the residual velocity, 
and the desired limit velocity in terms of the parameters a and p. We note that a and p are functions of the 
projectile mass, diameter, plate thickness and plate density, and the striking angle of obliquity. It must be 
added, however, that Eq. 10-7 should certainly be suspect! To begin with, the power or exponent/? will 
ordinarily be fractional, so could such a law represent a meaningful "physical" application? In fact, is not the 
value of p "dimensionally awkward"? 

Another and perhaps more pertinent comment on Eq. 10-7 is that it contains the limit velocity VL as 
somewhat of a "nuisance" parameter because VL is required to predict VR when Vs is given or known. On the 
other hand, for example, the equation on Fig. 10-1 gives VR as a function of Vs, and for VR = 0 the striking 
velocity Vs then becomes equal to the limit velocity VL without the need for VL as a parameter. Moreover, 
confidence bounds on VL using Eq. 10-7 are most difficult to obtain! 

In any event, we have more or less described the state of the art in physical terms for a very involved 
problem, but it does not appear that a completely satisfactory solution is near. Indeed, it would seem that a 
considerable amount of additional research needs to be done to obtain a continuing and quite general physical 
law. Perhaps the statistician could contribute here by "ironing" out the "noise", so to speak. However, it 
certainly seems true that the physical and engineering aspects of the problem are not completely in hand, so 
that we might logically ask, "What can the statistician contribute?" 
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10-2.2 THE STATISTICAL APPROACH 

One statistical approach is for the statistician to help the physical scientist to "filter or average out the noise" 
for the physically formulated law, especially if the law is otherwise completely satisfactory. In fact, exactly this 
is often done, and the job is so finished. On the other hand, this condition does not hold for the present 
endeavor or application because more investigation seems warranted and we can indeed formulate a most 
interesting statistical concept of population mixtures. 

Although it is not possible to fire projectiles at a target so that they will have the same striking velocity (due 
to the random muzzle velocities of the weapon), let us visualize that we could accomplish just this, beginning 
with some high level of striking velocity. Then the reader should understand that for a constant striking 
velocity there would be a (probability) distribution of residual velocities for the penetrating projectiles. At the 
high striking velocities, all, or practically all, of the projectiles would perforate the armor plate. As the striking 
velocity of the projectiles is reduced, we would approach the situation for which not all projectiles penetrate 
the plate. Moreover, as we decrease the striking velocity, we can see that we would go from the condition in 
which 99% of the projectiles penetrate on through the condition in which 95% penetrate, beginning 
somewhere up above the knee of the curve on Fig. 10-1, perhaps at about 3000 ft/s. For the 1% or 5% not 
penetrating, the residual velocities are all zero. Thus suddenly we have run into a mixture of continuous and 
discrete probability distributions. In fact, for each level of striking velocity below the "knee" of the curve of 
Fig. 10-1, there exists a binomial population with a parameter equal to the fraction of projectiles not 
penetrating the plate (or the complement of that fraction, if we prefer), and of the fraction of the projectiles 
perforating the plate, we have a distribution of residual velocities. 

As the striking velocity is decreased farther, we soon reach the median or 50% point for some striking 
velocity—which was discussed in Chapter 9, using only the discrete variable of either a penetration or a 
nonpenetration. (Note here, however, that the median or Fo.so striking velocity is not easy to estimate either 
from the graph of Fig. 10-1 or from the mixture of continuous- and binomial-type distributions. Indeed, one 
would have to fire many rounds to estimate the median striking velocity—see Chapter 9.) 

As the striking velocity is decreased, it is easily seen that the proportion or fraction of rounds not 
penetrating the armor will increase, ultimately to 100%, after we pass through the Fo.io, I^o.os, Fo.oi, etc., points 
for the striking velocity. We will then reach the "limit" velocity Vias defined in par. 10-2.1 by Grabarek(Ref. 
1), and finally it may be seen that the "limit" velocity for zero percent penetrations Fo.oo, as we may call it, will 
be attained. (We have indicated that the limit velocity as defined by the terminal ballistician in par. 10-2.1 may 
be different from the striking velocity for zero percent penetrations, perhaps due especially to the "physical" 
definition of limit velocity, which considers only the penetrating rounds. Note in this connection on Fig. 10-1 
that three rounds in that test did not penetrate at a bit above the limit velocity, and one round did not penetrate 
just below the limit velocity. In fact, just above the critical velocity there would be practically no perforations. 
This example should serve to be a very convincing case of illustrating the experimental need for a huge number 
of rounds or observations!) 

In summary, we have an interesting problem that is both physical and statistical. Moreover, it is also a case 
for which both the physical and statistical analyses are needed. For example, it does not seem very fruitful to 
attempt to estimate key parameters by treating the problem only as a statistical problem of some mixture of 
continuous- and binomial-type populations. In fact, it is very difficult to conduct the needed experiments that 
way, and the binomial populations change so fast around and below the knee of the curve that efficient 
sampling may not be possible. If it is desired to estimate the median or striking velocity for 50% perforations, 
the statistical analysis of Chapter 9 may be needed. However, to estimate the limit velocity by statistical 
methods may turn out to be very costly in sample size, whereas with some worthwhile physical theory 
available it could be easier to determine the limit velocity accurately enough for projectile and plate design 
parameters. It seems, as a matter of fact, that it may be appropriate to determine F0.50 by using the methods of 
Chapter 9 and to estimate the limit velocity or Fo.oo by a fitted curve as in Fig. 10-1. In any event, it appears that 
we are faced with a problem for which any completely accurate description of the statistical distributions may 
not be really needed. Rather, the terminal ballistician will be concerned primarily with predicting the limit 
velocity and the residual velocity for any striking conditions. 
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At this point, it seems highly desirable to reemphasize that the scope of any appropriate analysis should 
include not only estimation of limit velocity, but also should pay vital attention to the determination of just 
how good that estimate is. Thus it would be quite important to be able to place confidence bounds about the 
true unknown limit or critical velocity. Consequently, we will keep this point in mind, especially for the 
statistical analysis. 

How then can the statistician contribute? To begin with, this has already been done in par. 6-3.2, in which 
we found the linear regression of the residual velocity squared on the square of the striking velocity, as is 
plotted on Fig. 10-1. In this connection it was assumed that the residual velocity squared was Hnearly related 
to the striking velocity squared, and the equation established is, as shown on Fig. 10-1, 

F^ = (1.185F,'-7,271,000)'^', ft/s (10-10) 

which is a very simple relation between the residual and striking velocities of the long-rod penetrator data of 
par. 6-3.2. We should note for this linear fit that only the striking and residual velocities were used to 
determine Eq. 10-10 by the method of'least squares. Thus the mass of the projectile (27 g) and the thickness of 
the armor plate (0.5 in.) were not used, nor was the diameter of the long-rod penetrator or any metallurgical 
characteristics of the plate and projectile. The generality of application of Eq. 10-10 would therefore be 
questionable although it does apply to this particular projectile-armor combination. Eq. 10-10 does make 
some physical sense, nevertheless—it cannot only be used to predict the residual velocity for any striking 
velocity of the 27-g penetrator, but setting the residual velocity equal to zero, we obtain the critical velocity of 
2477 ft/s. Also we may easily determine confidence limits about the true unknown critical velocity. The 95% 
confidence limits about VL are found in Chapter 6 and Ref. 8 (p. 27) to be 2413-2539 ft /s or a width of 126 ft/ s 
if Eq. 10-10 is used. Therefore, we have the additional advantage of confidence bounds if the statistical fit is 
determined. 

Since the reader is likely thinking of it, we should remark that a direct least squares fit of VR on K^could have 
been determined although we desired to obtain an approximate linear fit so that confidence bounds could be 
placed easily about the true critical or limit velocity. (The fit so obtained would represent the branch of a 
hyperbola.) 

An appropriate question at this point would be whether a better least squares fit could not be obtained 
statistically so that we could improve on the width of the confidence bounds, or 126 ft/s. This can, in fact, be 
done by including the mass of the penetrator before and after perforation of the armor or, in particular, by 
determining the linear regression of the residual energy on the striking energy. In other words, given the 
"punching" energy of the projectile, which uses the full weight of the penetrator and its striking velocity, one 
can predict the residual energy from a linear relation. If this predicted residual energy is divided by one-half 
the remaining mass (and hence a random amount) of the projectile after penetration, one obtains the residual 
velocity squared, and the square root gives the desired residual velocity. Precisely this has been done in Ref. 8 
(the residual mass data is given in Table II), and the least squares equation is then found to be 

F^ = (1.457F^- 9,335,540)'^^ ft/s.* (IQ-H) 

By putting FR = 0inEq. 10-11, one finds that the strikingvelocity or the limit velocity becomes Fi = 2531ft/s 
versus the 2477 ft/s obtained by the use of Eq. 10-10. Moreover, the 95% confidence bounds on the true limit 
velocity now become (2497 — 2565) ft/s or only a width of 68 ft/s for the regression of residual energy on 
striking energy. This amounts to a decrease of 126 — 68 = 58 ft/ s in the width of the confidence bound. Hence 
we should conclude that a better fit is obtained by using the residual energy versus the striking energy since we 
can predict the limit velocity and the residual velocities with much greater precision. 

Eq. 10-11 accounts for both the projectile mass and its striking velocity although it is very difficuk to "get a 
handle" on the residual mass of the projectile after penetration because some random amount up to a third of 
the projectile weight will "wear away" in the perforation process. Nevertheless, in considering the residual 
energy versus the striking energy, we do clearly have a physical law relationship in Eq. 10-11, and the 

♦Note that Eq. 10-11 relating energies is somewhat different from Eq. 10-10. See par. 6-3.2 also. 
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prediction is precise—something that is neither directly nor easily obtainable with the use of the physical laws 
of Eqs. 10-5 through 10-9 developed in Ref. 2. The statistical regression of residual energy on striking energy 
does indeed make a very simple linear model from which to place confidence bounds about the true unknown 
limit or critical velocity—Eq. 10-11. In this connection, it might be worthwhile to investigate the use of 
residual versus striking energy for a variety of plate thicknesses and projectile diameters (and lengths) to see 
whether some scaling effect could be easily incorporated into such a law. At least, this approach may be at 
least as promising as trying to work a statistical fit into the physical laws of Eqs. 10-5 through 10-9. 

With reference to a quantitative comparison of Eqs. 10-5 through 10-9 and the regression of Eq. 10-11 at 
this point, in Ref. 2 Lambert states "This model for limit velocity adapts remarkably well to our 200-item limit 
velocity data base. The root-mean-square error associated with the fit of model to data is 65 m/ s; the average 
absolute error (difference between experimental value and model estimate) is 52 m/s and the average absolute 
percentage error is 4.4%.". Thus from a rather large data base and for a wide range of conditions, Eq. 10-5 of 
Lambert (Ref. 2) appears to predict the hmit velocity with a standard error of approximately 65(39.37/12) = 
213 ft/s, whereas the equivalent standard error for Eq. 10-11 is less than 30 ft/s for the single sample fit 
involving only the striking velocity and masses. Hence while it cannot be expected that a precise physical law 
can easily be found to fit such a wide variety of conditions, the statistical analysis would nevertheless indicate 
that since such a good fit can be obtained by using only two key parameters, perhaps much more needs to be 
investigated from the physics of the problem. Indeed, a team effort involving both the terminal baUistician and 
the statistician could well be in order because there may still be some missing but important parameters that 
should be considered. This brief analysis should provide rather convincing evidence that the terminal 
baUistician should not be completely satisfied with the ubiquity of application of Eqs. 10-5 through 10-9. 

As a result of this statistical characterization and analysis, it should become clear to the terminal baUistician 
that some very low level of probability of penetration should be used as protection and not a limit velocity 
dependent on the number of rounds fired. 

Although so far for the statistical analysis we have described the Hmit velocity problem as a mixture of 
continuous and binomial distributions, another way to examine the overall representation or characterization 
is to hypothesize that for some (low) striking velocity the chance of a penetration or perforation will start from 
zero and increase as the striking velocity increases. For some rather high striking velocity, the percent of 
armor penetrations will approach one hundred. Thus it could be hypothesized that a cumulative frequency 
distribution may be fitted to the data. Of course, there may be some failures to penetrate, which would result in 
the corresponding residual velocity being zero, but there would also be residual velocities matching the 
corresponding striking velocities at the higher levels. This characterization brings up the question of which 
distribution should be fitted. It could be exponential for simplicity, or normal, etc., but, for the variety of 
possible shapes that may be encountered, the WeibuU distribution seems quite valid indeed. This is precisely 
the assumption of Clark, Crow, and Sperrazza in their statistical treatment of the limit velocity problem as 
covered in Ref. 9. A special case of the Weibull fit is the exponential, which has been studied, for example, by 
Johnson, Collins, and Kindred (Ref. 10), who consider the exponential model 

VR=VS- VLexp[bi\ - VSIVL)] (10-12) 

where 
b — constant. 

(Actually, the adjustment has to be made so that b and VL are both determined in the fitting process.) 
For further (not altogether statistical) suggestions on fitting limit velocity type data, the reader is referred to 

the hyperbolic fit of Bruchey (Ref. 11), i.e., 

^R = a^s + b (10-13) 

and other studies on the subject by Kokinakis and Essig (Ref. 12) and by Morfogenis (Ref. 13). All of this 
background material will be of interest especially to those who desire to continue research on the subject. 
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The Weibull model suggested by Clark, Crow, and Sperrazza in Ref. 9 takes the form 

VR = Vsll - exp[- a{Vs- VL)'^} (10-14) 

where a and b are the scale and shape parameters, respectively, to be determined, as is also the start of 
frequency or absolute zero probability point VL the limit velocity. 

The Weibull model of Eq. 10-14 can always be linearized by dividing through by Vs, transposing the one, 
and taking logarithms twice. However, the limit velocity VL is still a very troublesome nuisance parameter, and 
the least squares adjustment is best made with the aid of a computer. Appendix A of Ref. 9 gives a nonlinear 
programming algorithm for fitting Eq. 10-14 by the method of least squares; this is for the three-parameter 
Weibull model. Also the computer program uses all of the striking velocities for which the residual velocities 
are zero, as is the case for the linear regression of residual energy on striking energy in Eq. 10-11. Note, that in 
making the least squares adjustment, the limit velocity VL is found along with the shape and scale parameters 
in the process. 

In Ref. 9 the Weibull model of Eq. 10-14 and the hyperbolic model of Eq. 10-13 are compared using eight 
sets of penetration data. In four of the eight cases, the Weibull model gave variances of residuals smaller than 
the hyperbolic model. A limitation of both fits, however, is that confidence bounds on the limit velocity are 
not readily obtainable, but they are for the simple Hnear regression of the residual energy on the striking 
energy. 

The computer algorithm of Ref. 9 for the Weibull model has been used for the data of Table 6-2, or Table II 
of Ref. 8, to estimate the critical velocity and the shape and scale parameters of the three-parameter Weibull 
fit. The established relation between the residual and striking velocities is 

VR= V4\ - exp[-0.02867(F5- 2512.5)°""]}, ft/s (10-15) 

so that the Weibull fit is subexponential with a shape parameter of 0.58, and the critical velocity is estimated as 
2512.5 ft/s, as compared, for example, to the value of 2531 ft/s estimated by using the hnear regression of 
residual on striking energy. There is another way to look at a comparison of the two fits, and that is by 
comparing the standard deviations of the residuals, i.e., the "root-mean-square of the observed minus the 
predicted values of residual velocities based on Eq. 10-15". For the Weibull model of Eq. 10-15 the standard 
deviation of residual minus fitted velocities is estimated to be about 124 ft/s. On the other hand, for the simple 
linear regression of residual on striking energy, the corresponding standard error of residuals is estimated to 
be only about 60 ft/s. We emphasize in this connection that for the physical fit of a linear relation of residual 
on striking energy, we used the observed masses of the penetrators after perforation of the armor. Of course, 
there would always be some difficuhy in the determination of these masses. Nevertheless, since the linear 
regression of residual versus striking energy gives a standard deviation of residuals about half that of the 
Weibull fit, this again raises the question concerning whether or not the physical fit is superior to any 
statistical model. Both points of view have provided a considerable amount of insight. 

Examination of Eq. 10-15 will reveal that we actually fitted the ratio VR/ VS, a quantity less than unity, to the 
cumulative frequency distribution assumed to be Weibull in form. Thus many readers may recall that in fitting 
life-length data with a Weibull model, we deal with only one set of ordered observed sample values. Therefore, 
in this connection one can see that the striking velocities could be ordered and only these could be used to fit 
the assumed Weibull model. Also one might consider truncating those striking velocities for which the 
residual velocities are equal to zero and then ordering the remaining striking velocities of the total sample. In 
fact, many Weibull data fits are made from available theory in this manner. One could use the methods 
outlined in Chapter 21 of Ref. 14 and fit a three-parameter Weibull model (by adjusting values of the location 
parameter to give minimum variance of residuals) and compare such results with the fit of Eq. 10-15. This 
would give another statistical prediction of the limit velocity. 

Having presented both the physical and statistical points of view for the limit velocity type of problem, we 
will now bring the results together and comment further on this type of effort. 
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10-3 DISCUSSION OF THE STATE OF THE ART OF PHYSICAL AND STATISTICAL 
ESTIMATION OF LIMIT VELOCITY 

Perhaps an appropriate summary of the current state of the art of the methods of estimation of critical or 
Umit velocities can best be described and compared by bringing the results together as briefly summarized in 
Table 10-1. We believe that our key points of discussion can be properly highlighted by displaying four 
methods of estimation of limit velocity. These are (1) the Grabarek linearization approach of Ref. 1 and Fig. 
10-2, (2) the approach of Lambert (Ref. 2) that uses Eq. 10-5, (3) the Weibullfit of Clark, Crow, and Sperrazza 
(Ref. 9), and finally (4) the linear regression of the residual energy on striking energy of Ref. 8. We use the data 
of Table 6-2 here. 

Before any detailed discussion of Table 10-1, which is very illuminating and revealing of the status of the 
limit velocity problem as of 1979, we should provide some orientation. Initially, we desire to develop a model 
or, in fact, the correct model that uses all of the key parameters to predict the Hmit velocity of any 
projectile-armor plate combination. This means we must use the diameter D of the penetrator, the mass M of 
the penetrator, the length L of the projectile, some measure of the metallurgical properties of the penetrator 
including its hardness, perhaps the shape of the nose of the projectile, the thickness Tof the armor plate, the 
angle 6 of striking obliquity, some constants or parameters describing the metallurgical properties of the plate 
and its hardness (very Hkely the density of the plate and that of the penetrator), and any constants that may 
appear in an "empirical" relationship between the numerous parameters—to mention some of the parameters 
we think will be "key" variables. If, in addition to the estimation of the limit velocity, we would like to 
determine the residual velocity, we would expect to be given the striking velocity also. Therefore, we could 
state that we may need to fit 10-12 parameters into our "model". However, if we use a lesser number of 
parameters, they should account for the others or at least leave very little "noise" or random, unaccounted for 
variation—i.e., variance of residuals. 

TABLE 10-1 

COMPARISON OF LIMIT VELOCITY ESTIMATION METHODS 

Method 
Limit Velocity 
Estimated, ft/s 

Confidence 
Bounds, 95% Comments 

Grabarek 
Ref. 1 
(Fig. 10-2) 

Lambert 
Ref. 2 
(Eq. 10-5) 

Weibull 
Ref. 9 
(Eq. 10-14) 

Residual versus Striking 
Energy 
(Eq. 10-11) 

2526 

2397 

2513 

2531 

Could be obtained* 

Very difficult to obtain 

Approximate bounds 
available 

2497-2565 ft/s 
Easily and naturally 
obtained 

Uses M, D, T, and 6 to 
determine VL 

Uses M, D, T, 6, and L to 
determine VL 

Uses only Vs and VR to 
determine VL 

Uses only Vs, VR, MS, and 
MR to determine VL 

♦Since the Grabarek method of Ref. 1 is a Hnearization, the determination of confidence bounds is really quite straightforward. 

Now let US turn to an examination of Table 10-1. Initially, we see immediately that none of the four models 
uses all of the desired parameters or variables. The Lambert model (Ref. 2) uses five parameters (more than 
any other model), and the Grabarek model uses four of the "thought-to-be" key parameters, whereas the two 
statistical fits may omit too many important or key variables of interest. For example, the Weibull fit does not 
use penetrator mass, penetrator diameter, target thickness, any metallurgical properties, hardness, or the 
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angle of obliquity. The residual versus striking energy linear regression does not use penetrator diameter, 
target thickness, any metallurgical properties, hardness, or angle of obliquity either although the concept of 
"punching energy" may clearly be in the right direction. (The angle of obliquity may be considered to be taken 
care of by an equivalent thickness of the target armor plate; however, the other parameters must be taken 
account of, obviously.) The two statistical fits, therefore, seem rather simplistic and are, therefore, only a start 
toward any completely acceptable solution to the limit velocity problem. This is not to say, however, that the 
statistical fits would not be useful for a given set of fixed conditions. 

The Lambert model appears to be of considerable interest, especially since it considers the five key 
variables. Nevertheless, the fractional exponent p does seem to deviate from any ccnpletely acceptable 
physical model, and Eq. 10-7 does not extrapolate to a residual velocity of zero, which inaicates that it maybe 
somewhat questionable. There is some evidence also that the Lambert model to determine VL may underesti- 
mate the limit velocity by about 120 ft/s (Table 10-1), it being this much lower than the others. While it is 
realized that this particular calculation is an isolated one, it does seem clear that the Lambert model needs 
some improvement. For example, it does not acknowledge the metallurgical properties of the penetrator and 
its hardness, nor does it account for the shape of the penetrator nose—if that is important. Note also that 
nonlinear least squares fits would have to be made for the model and that confidence bounds on the limit 
velocity are not easy to achieve. Otherwise, it does seem that most of the highly key parameters are accounted 
for in the Lambert model. 

The Grabarek model (Ref. 1 and Fig. 10-2) apparently does not account for penetrator length, sectional 
density, the Brinell hardness number (BHN) of either the penetrator or target, or the projectile shape (if 
important)—to mention some additional parameters. The effect of including these additional parameters in a 
model of the fitted line or curve, therefore, is not known. Nevertheless, Fig. 10-2 indeed indicates that the 
linear relationship is rather well-established over quite a range of parameters. In this connection, does it mean 
that the fitted law is correct? One should examine the residuals about the fitted line to see whether the larger 
ones could be physically considered and hence improve upon the selected model. In fact, some of the 
deviations about the fitted line appear rather large in magnitude, which indicates the need perhaps for further 
investigation. Perhaps the statistician could make a contribution by using the methods of Chapter 3 to detect 
the outlying residuals, or he could also perform some least squares adjustments to fit the best law or model, as 
in Fig. 10-2. 

For a more complete account of the dynamics of ballistic impact, the reader should study Ref. 15. This 
handbook gives wide coverage of many important topics in terminal ballistics, and Chapter 4, especially pars. 
4-2 and 4-3, discusses additional details of some of the subjects of this chapter from a different point of view. 

Two other references that might be of interest are Refs. 16 and 17. Ref. 16 discusses a regression approach 
that includes many parameters of interest from which to predict, and Ref. 17 is a handbook of equations and 
computer programs for kinetic penetrators, including fragments. 

Much additional work seems necessary insofar as the limit velocity problem is concerned, and perhaps it 
will take years to settle the remaining important issues. A straightforward, "textbook" statistical approach to 
the limit velocity problem may leave much to be desired because it would ignore too many important physical 
parameters, and the need to develop a good, entirely acceptable physical model will require some special 
nonstatistical expertise. Nevertheless, there does seem to be quite an important role for the statistician; he is 
very much needed in the team effort. In fact, we believe that a team effort involving both the terminal 
ballistician and the statistician will be necessary to make any further significant progress. 

10-4 SUMMARY 

To illustrate the role of the statistician as part of any team effort toward model building, we have selected a 
rather involved, continuing, and as yet unsolved problem in terminal ballistics—namely, the limit or critical 
velocity problem. We have oulined briefly the physical or terminal ballistic accomplishments to date, and we 
have given an account of some statistical attainments. In this connection, it becomes unmistakably clear that 
real progress toward a lasting solution will depend on a team effort involving both terminal ballisticians and 
statisticians. Such a team effort is required for many current endeavors in Army research, development, 
testing, and elsewhere as well, we believe. 
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CHAPTER 11 

INTRODUCTION TO SELECTED TOPICS IN MULTIVARIATE STATISTICAL ANALYSIS 

The analysis of random variables on which two or more characteristics are measured is introduced, and 
relevant topics are covered. The subject matter is approached by presenting Wilks' sample criteria and 
likelihood ratios for testing the equality of true means, the equality of true variances, and the equality of 
covariancesfor a multivariate normal population. An example illustrating the Wilks'theory is given for rapid 
firing from an M16 rifle. 

Hypothesis testing based upon the analysis of results from two samples randomly selected from normal 
multivariate populations leads to the question concerning whether both samples originate from the same 
normal multivariate distribution. Therefore, a discussion is given of Hotelling's Multivariate Studentized t 
statistics for comparing the corresponding characteristic true means when it is assumed or known that the two 
samples originate from multivariate normal populations with identical variance-covariance matrices. In 
addition, a theoretical sketch is presented of Hotelling's Generalized T^ statistics for comparing either the 
variance-covariance matrices of two normal multivariate populations or for making a simultaneous statistical 
judgment concerning the equality of means and the equality of variances. An example is given that compares 
standard artillery projectiles with an improved design. 

11-0    LIST OF SYMBOLS 

Aij = element in the /th row and /'th column of the inverse of the population variance- 
covariance matrix 

[/ly]"' — [pgOiOj] = multivariate normal variance-covariance matrix 
a^b,c = coefficients or constants used in Eq. 11-43 to approximate a probability level of 

Hotelling's T^ statistic for any particular n, but with m taking on any value between 
50 and 100 

d = ix\ — xz) = differences in sample means 
[dl = column vector of the differences in the two sample characteristic means as in 

Eq. 11-23 
F( , ) =  Snedecor's "F" statistic or ratio for the number of degrees of freedom indicated 

before and after the comma 
Hm = Wilks' hypothesis that states that the population means are all equal when it is 

assumed that the variances are equal and the covariances are equal 
//^^^ = Wilks' combined or overall test of the statistical hypothesis that the true means are all 

equal, the variances are equal, and the covariances are equal 
ff^^ = Wilks' hypothesis that states that the population variances are equal and the 

population covariances are equal 
I^(p,q) =  Karl Pearson's incomplete beta ratio function, with argument u and parameters/? and 

(7 (see Ref. 12) 

/ =  1, 2,..., k 
k = dimension of normal multivariate or /:-variate population 

Lm = likelihood ratio statistic for testing Wilks' hypothesis //„ (see Eq. 11-10) 
Lmvc = likelihood ratio statistic for testing Wilks' hypothesis Hm^c (see Eq. 11-12) 

Lvc = likelihood ratio statistic for testing Wilks' hypothesis Hvc (see Eq. 11-11) 
M = sample size for the "new" or second designated sample 
m — number of degrees of freedom in the second sample 
N = sample size for the "old" or first designated sample " "'' """ 

N = total sample size 
11-1 
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M = number of items in the first sample 
N2 = number of items in the second sample 

n = (AT — 1) = number of degrees of freedom in variance estimate 
«i = number of degrees of freedom in the first sample 
"2 = number of degrees of freedom in the second sample 
P =  \,2,...,N 

r = "average" sample correlation coefficient of all A;-characteristics as defined in Eq. 11-9 
S   = estimate of variance based on the sum of the sums of squares in both samples and the 

total degrees of freedom (see Eq. 11-16) 

[sij] = denotes the variance-covariance matrix of the sample values 

\sij\ = denotes the determinant of the variance-covariance matrix 
Sij = covariance of the Zy's as defined in Eq. 11-37, but also amounts to just the covariance 

of the Xij or new sample values 

Sil = sample covariance type quantity based on the z,p not subtracted from their respective 
sample mean values 

Sij = represents a sample covariance based on the whole sample size A'as in Eq. 11-7; not 
the degrees of freedom n. If/ = /, this quantity becomes a variance. 

s^ = average sample variance of the ^-characteristics in Eq. 11-8 
5/ = 5„ = sample variance based on the A^ sample items in Eq. 11-8 

T (1%) = upper 1% significance level of Hotelling's Generalized T^ statistic 

TD = Hotelling's Generalized T^ statistic for testing the equality of two variance-covariance 
matrices only 

TM = another form of Hotelling's Multivariate Studentized t statistic and is related to Ts by 
Eq. 11-33. Like TI TM is used to test the hypothesis that the true means of the corre- 
sponding characteristics are equal when it is assumed that the variance-covariance 
matrices are equal 

Ts = Hotelling's Muhivariate Studentized / statistic for testing equality of normal multi- 
variate population means, assuming the variance-covariance matrices are equal (see 
Eqs. 11-18 or 11-21 for example) 

Tm = value of Hotelling's Generalized T^ statistic for m degrees of freedom. The subscript 
can take on values/77 + 1, m + 2, etc. 

Tp = pth term value of Hotelling's Generalized T^ statistic as in Eq. 11-27 

To =  Hotelling's Generalized T^ statistic for jointly testing the equality of variance-covari- 
ance matrices and the equality of means based on two samples from multivariate 
normal populations        1 

t = usual or ordinary Student's t ratio as in Eq. 11-17 

tr = denotes the trace of a matrix, i.e., sum of elements of the principal diagonal of the 
matrix 

Vy = element in the /th row and/th column of [vy] 

[vy] = [5y7'= inverse matrix of the sample variance-covariance matrix for a normal 
multivariate population 

w - T^/{2m + T^) - convenient random variable of the ratio of Hotelling Generalized T^ 
statistic used in the probability distribution form of Eq. 11-41 

Xip = represents the pth observation of the /th characteristic of the normal multivariate 
sample value; sometimes shortened to X, 

xip = pth observation in the first sample 
xip = pth observation in the second sample 
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Xip = pth sample value for the ;th characteristic in the new sample 

X = overall sample mean of all ^-characteristics in Eq. 11-6 

Xi = sample mean for the /th characteristic as in Eq. 11-6 

xi =  mean of the first sample 

X2 = mean of the second sample 

Zip = {xip — Xi) = deviation of the pth new sample value for the /th characteristic from the 
sample mean of the old sample for the same or /'th characteristic 

z = sample mean of z's 

a = small probability level 

r(    ) = complete gamma function of the quantity in parentheses 
H = hypothesized common value of the ju, 
Mi =  population mean of the /th characteristic x, 
11} =  population mean of the/th characteristic Xj 

Mio = a common hypothesized mean value for the characteristics of a multivariate normal 
population 

Pi] = population correlation coefficient between x, and xj 
2 = sum to be taken over all sample observations 
o = hypothesized common value of the CT, 
2 Oi = population variance of the /th characteristic Xi 
2 

2r 

Oj = population variance of the/th characteristic A} 

Oij = p,,CT,a, = population covariance of the/th and/th characteristics 
X^[   ] = denotes the chi-square variate for the number of degrees of freedom within the 

brackets 

11-1    INTRODUCTION 

Although the topics covered in the preceding chapters of this handbook involve the analysis of data 
described by and primarily following some of the key univariate probability distributions, there are a very 
large number of Army statistical applications that require the analysis of bivariate and multivariate or joint 
variables. For example, in analyses concerned with the evaluation and overall effectiveness of Army weapons 
or weapon systems (Refs. 1 and 2), the prime requirement is to analyze two-dimensional data, such as range 
and deflection errors, and occasionally the analysis of three-dimensional variations is required, such as in air 
defense. When one encounters the analysis of two-dimensional, or bivariate, data, such as range and 
deflection variations of artillery projectile impacts or the vertical and horizontal locations of rifle bullet or 
antitank projectile strikes, a number of parameters describing the resulting patterns arise. Moreover, it 
becomes important to make some comparisons of the measures of dispersion and mean locations of the 
distributions in the two directions. A very practical description and analysis of the patterns of shots for rifles, 
antitank weapons, and many missiles may be found in Ref. 3, which also contains many examples. The 
measures of bullet pattern tightness and location described in Ref. 3 include, for example, variances and 
standard deviations in the two directions, the circular error probable (CEP), the extreme horizontal and 
extreme vertical dispersions, the mean horizontal and mean vertical deviations, the radial standard deviation, 
the mean radius, the extreme spread, the radius of the covering circle, and the diagonal of the shot patterns. 
Analyses concerning the center of impact (C of I) locations and deviations from aim points are also illustrated. 
Most of these analyses are concerned, however, with "circular" patterns, i.e., the case for which the standard 
deviations of the fall of shots in the two directions are equal. A need exists, therefore, for the Army statistician 
or analyst to have at hand an account of procedures for judging the "circularity" of shot patterns and some 
methods of analysis for the noncircular case, especially if some dependence between the two directions exists. 
In fact, it is often the covariance term or "correlation" between the range and deflection errors that gives some 
difficulty in analyses, and there is always the need to know whether or not the data can be considered a 
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homogeneous sample drawn from the hypothesized bivariate normal population of prime interest. As will be 
seen in the sequel, some special statistical tests of significance developed by Wilks (Ref. 4) may be used to 
answer such questions. These tests are referred to as sample criteria for testing the equality of means, the 
equality of variances, and the equality of covariances in a normal (bivariate) or multivariate population. 

The Wilks statistics (Ref. 4) are for either a single bivariate or multivariate normal sample. However, many 
important applications exist that require the analysis of data from two bivariate or mukivariate samples. For 
example, suppose that standard production artillery projectiles exhibit certain range and deflection disper- 
sion patterns, but it is desired to design a new artillery projectile that will give a much tighter pattern of 
dispersion in the two directions. It will be necessary to demonstrate that the new projectile will give an 
improved dispersion pattern, and one will be led to an experimental firing program, the aim of which will be to 
compare samples of the "old" projectile with those of the newly designed artillery projectile. Hence it becomes 
desirable to make inferences about range and deflection variations or to test some hypotheses concerning the 
relative sizes of the population variances and covariances of the "old" and the "new" projectiles. In addition, 
as is frequently the case, one would also like to determine whether newly designed artillery projectiles will give 
increased ranges—a very desirable goal indeed. Bivariate and multivariate statistical problems of this nature 
have considerable Army interest and have been thoroughly investigated by Hotelling (Refs. 5 through 7), 
Hunter (Ref. 8), Grubbs (Ref. 9), and Grubbs, Coon, Hunter, and Crowder (Ref. 10). The main stimulus for 
this work arose in connection with the analysis of bombing problems by Hotelling (Ref. 5) during World War 
II. 

Although our discussions and approaches are of a military nature, applications to other activities will be 
readily seen. 

11-2   TESTS FOR EQUALITY OF POPULATION MEANS, EQUALITY OF VARIANCES, 
AND EQUALITY OF COVARIANCES FOR MULTIVARIATE NORMAL 
DISTRIBUTIONS 

For the bivariate normal population, the need exists to know whether the standard deviations in the two 
directions are equal, whether the true means—which determine the centroid or C of I—are equidistant from 
the aim point, and whether there is nonzero correlation between the variates of the two-dimensional scatter 
diagram. We refer to the coordinate axes as the x- and>'-directions. Then if the standard deviation in x is equal 
to that in the j'-direction, the pattern is "circular". If the pattern of shots in the firing of weapons is indeed 
circular, then this simplifies the problem of analysis of the data and subsequent modeling efforts. Of course, a 
straightforward (Snedecor-Fisher) "F" test for the observed ratio of sample variances in the two directions 
would ordinarily give an answer to the question of circularity. However, one could be fooled by such a test of 
significance if some clustering of the shots exists along a line not coincident with either of the axes. In fact, 
there could be quite a difference in the sigmas along an inclined axis relative to x and y, so that dependence is 
evident and still the projection of points onto the x- and j'-axes may show equal sigmas. Thus it becomes 
necessary to test for dependence in the x- and j-scatter or to test for "correlation". In practical situations and 
for the bivariate case, this can be done usually well by a /-test of whether the population correlation coefficient 
is truly zero. When one also considers the problem of whether the coordinates of the C of I of the shots are 
located at equal distances in the two directions from the point of aim, a complete, joint test concerning the 
equality of means, equality of variances, and nondependence of the impact coordinates becomes very 
important. The Wilks tests and approach (Ref. 4) are designed to settle such questions for a A:-variate or 
multivariate normal sample. Our prime interest will be for k = l, i.e., the bivariate case. For the bivariate case 
note that the covariance of x and y is also the covariance oiy and x, so that there is only a single covariance. 
However, for the ^-variate population there could be several or many covariances, not all equal. Here we 
include results for the general /c-variate case where convenient, in line with the thought that some readers will 
need equations for the /r > 2 application. These tests are robust to hidden correlations. 

Suppose we sample a normal ^-variate population—for which x\, X2,. . .,Xk are the variates—such that yu, is 
the mean of x,, o] is the variance of x„ and pijOiOj is the covariance {py = population correlation coefficient) 
between x, and Xj. The normal /c-variate distribution law of the xi in the population is 
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Idid!lexp[-(l/2)2 /l,;(x,-M,)(-V;-My)] (H-l) 
(27r) t/2 i.j = i 

where the matrix of the Ay is symbolized as [AiJ], which is also symmetric, and it is the inverse of the 
variance-covariance matrix given by 

[Aij]''=[PijOiOj],(py=l). (11-2) 

The distribution law of Eq. 11-1 is for a "single" observation, for example, the impact point of an artillery 
projectile, which gives rise to both a range value and deflection position. Hence if we take thepth multivariate 
observation to be Xip, with / = 1, . . ., ^ to be the dimension of the muhivariate normal population, andp = 
1, . . ., A^to be any sample size*, then for the ^-dimension distribution law of the whole sample, one would 
simply raise the coefficient in Eq. 11-1 to the Mh power and sum the new exponent of Eq. 11-1 over p = 
1,. . .,N. 

The single, overall, and joint hypothesis we wish to test, in spite of any possible hidden correlations, is that 
the true means /u, are all equal, i.e., 

AW fx, = fx,i= I, .. .,k (11-3) 

all the /c-variances are equal, i.e.. 

All a^ = a^ (11-4) 

and all the covariances are equal, i.e.. 

All pyOiOj = po^ (11-5) 

where the common p may take on values between zero and unity. Wilks (Ref. 4) has separated this composite 
hypothesis into three very specific hypotheses of particular interest, namely: 

1. Hmvc = hypothesis that the means are equal, the variances are equal, and the covariances are equal 
2. Hvc    — hypothesis that the variances are equal and the covariances are equal, irrespective of the 

values of the means 
3. Hm    = hypothesis that the true means are equal when it is assumed that the variances and co- 

variances are equal. 

Wilks uses the Neyman-Pearson Hkelihood ratios method of testing these hypotheses, which is based on the 
sample statistics or values: 

_ ^ _ * _ 
Xi = {llN)Xxip,   x = {l/k)Xxi (11-6) 

where 
X, = sample mean for the /th characteristic 
x = overall sample mean of all A:-characteristics 

the sample covariances Sy are 

N _ _ 
Sij = {l/A')^S (x,p - x,){Xjp - xj) (11-7) 

*n — N — I is reserved for degrees of freedom (df). ; 
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the average sample variance s^ is 

~s' = {l/k)i~su = {\/k)i~s] 
1 = 1 / = 1 

(11-8) 

(11-9) 

and the average sample correlation type coefficient r is defined by 

r = {l/\_kik-mi   syls\ 

Finally, the sample criteria for testing //„, Hvc and //„v,—the three hypotheses of interest—on the basis of 
likelihood ratios Lm, Lvc, Lmvc are, respectively. 

tlm-      Lm 
s\\-r) 

~s\\-r)+ %(x,-xfl{k- 1) 
i = 1 

(11-10) 

Hv, Lvc 

{s'f{\-rt\\+{k-m 
and 

i-'VC\Lm    } rlmvc- l^mvc 

where \sij\ is the determinant of the sample variances and the sample covariances, i.e.. 

(11-11) 

(11-12) 

The L sample statistics in Eqs. 11-10, -11, and -12 will range from 0 to 1, approaching 0 when the null 
hypothesis of each is false and approaching unity when the null hypotheses are true. Thus if any of the 
hypotheses, Hmvc, H^c, or //„, is true, the average (accidental) value of the corresponding L will be near, but 
less than, unity; of course, this average value would be much nearer unity than it would for the case in which 
the null hypothesis is false. 

For the bivariate {k = 2) and trivariate (A: = 3) cases, Table 11-1 gives the 5% and 1% significance levels or 
critical values of Lmvc and Lvc. For the overall composite hypothesis Hm, Table 11-2 gives the 5% and 1% 
probability leyels for A: = 2, 3,4, and 5 dimensional cases. To reject the null hypothesis, the observed value of L 
must be less than the listed values. 

When the sample sizes are large (perhaps greater than about A'^= 30 or 35), the L's become approximately 
distributed as chi-square, i.e., 

-N\nLmvc^x\{kl2){k + 7>)-y\ 

-mnUc^x\{kl2){k+\)-l-\ 

(11-13) 

(11-14) 

and 

-N{k - \)Lm « x\k - 1] (11-15) 

where the quantities in the brackets of chi-square are the di. 

In actual application of the test statistics, it seems reasonable to test the hypothesis Hmvc first, thereby 
determining whether the data are consistent with the overall composite hypothesis of equal means, equal 
variances, and equal covariances. If not, then Hmvc would be rejected, and the experimenter would proceed to 
test the hypothesis H^c of equal variances and equal covariances. Then if the data are not consistent with Hvc, 
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TABLE 11-1 

5% AND 1% POINTS OF L„,,c AND Uc FOR k = 2 AND A: = 3 (Ref. 4) 

k-- = 2 k-- = 3 

L mvc L vc L mvc L vc 

N A^ 
5% Wo 5% 1% 5% 1% 5% 1% 

3 0.0025 0.0001 0.0062 0.0002 4 0.00029 0.00001 0.00064 0.00003 
4 0.0500 0.0100 0.0975 0.0199 5 0.0095 0.0018 0.0183 0.0035 
5 0.1357 0.0464 0.2285 0.0808 6 0.0358 0.0112 0.0618 0.0198 
6 0.2236 0.1000 0.3416 0.1588 7 0.0736 0.0300 0.1174 0.0493 
7 0.3017 0.1585 0.4307 0.2352 8 0.1165 0.0559 0.1749 0.0866 
8 0.3684 0.2154 0.5005 0.3039 9 0.1603 0.0860 0.2297 0.1272 
9 0.4249 0.2683 0.5559 0.3637 10 0.2028 0.1181 0.2802 0.1682 
10 0.4729 0.3162 0.6007 0.4154 11 0.2432 0.1508 0.3259 0.2079 
11 0.5139 0.3594 0.6375 0.4601 12 0.2808 0.1829 0.3670 0.2457 
12 0.5493 0.3981 0.6682 0.4989 13 0.3157 0.2141 0.4040 0.2811 
13 0.5800 0.4329 0.6943 0.5328 14 0.3480 0.2439 0.4373 0.3141 
14 0.6070 0.4642 0.7165 0.5626 15 0.3778 0.2722 0.4674 0.3448 
15 0.6307 0.4924 0.7358 0.5889 16 0.4052 0.2990 0.4946 0.3732 
16 0.6518 0.5180 0.7528 0.6124 17 0.4306 0.3243 0.5193 0.3996 
17 0.6707 0.5411 0.7675 0.6334 18 0.4540 0.3482 0.5418 0.4240 
18 0.6877 0.5623 0.7807 0.6522 23 0.5484 0.4482 0.6293 0.5230 
19 0.7030 0.5817 0.7925 0.6693 33 0.6660 0.5811 0.7326 0.6470 
20 0.7169 0.5995 0.8031 0.6848 63 0.8135 0.7591 0.8549 0.8029 
21 0.7294 0.6159 0.8126 0.6989 oo 1.0000 1.0000 1.0000 1.0000 
22 0.7411 0.6310 0.8213 0.7119 
23 0.7518 0.6450 0.8292 0.7237 
24 0.7616 0.6579 0.8365 0.7347 
25 0.7707 0.6700 0.8431 0.7448 
26 0.7791 0.6813 0.8493 0.7542 
27 0.7869 0.6918 0.8549 0.7629 
28 0.7942 0.7017 0.8602 0.7710 
29 0.8010 0.7110 0.8651 0.7786 
30 0.8074 0.7197 0.8697 0.7857 
31 0.8133 0.7279 0.8739 0.7924 
32 0.8190 0.7356 0.8779 0.7987 
42 0.8609 0.7943 0.9073 0.8454 f 

62 0.9050 0.8577 0.9375 0.8945 
122 0.9513 0.9261 0.9684 0.9460 
oo 1.0000 1.0000 1.0000 1.0000 

Reprinted with permission. Copyright ©by the Institute of Mathematical Statistics. 

one finally proceeds to test the hypothesis Hm to judge whether the true means can be considered to be equal, 
assuming equal variances and equal covariances. This order of procedure is merely a suggestion, and most 
often one would like to calculate and examine all of the L's closely. In applications the main interest is usually 
centered on true mean values as in Student's / test. 

The statistical tests of multivariate hypotheses described here will find the best applications in those cases for 
which the different directions or variates are in the same physical units. If, for example, the analystj^s 
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TABLE 11-2 

5% AND 1% POINTS OF L„ (Ref. 4) 

A; = 2 k = 3 k =4 k = 5 

N 5% 1% N 5% 1% N 5% 1% N 5% 1% 

2 0.0062 0.0002 2 0.0500 0.0100 2 0.0973 0.0328 2 0.1354 0.0589 
3 0.0975 0.0199 3 0.2236 0.1000 3 0.2960 0.1698 3 0.3426 0.2221 
4 0.2285 0.0808 4 0.3684 0.2154 4 0.4372 0.3002 4 0.4793 0.3566 
5 0.3416 0.1588 5 0.4729 0.3162 5 0.5340 0.4019 5 0.5709 0.4560 
6 0.4307 0.2352 6 0.5493 0.6033 6 0.6033 0.4800 6 0.6356 0.5302 
7 0.5005 0.3039 7 0.6070 0.4642 7 0.6550 0.5409 7 0.6837 0.5872 
8 0.5559 0.3637 8 0.6518 0.5180 8 0.6950 0.5895 8 0.7206 0.6321 
9 0.6007 0.4154 9 0.6877 0.5623 9 0.7267 0.6290 11 0.7933 0.7232 
10 0.6375 0.4601 10 0.7169 0.5995 10 0.7525 0.6617 16 0.8559 0.8043 
11 0.6682 0.4989 11 0.7411 0.6310 11 0.7739 0.6892 31 0.9246 0.8961 
12 0.6943 0.5328 12 0.7616 0.6579 21 0.8788 0.8290 oo 1.0000 1.0000 
13 0.7165 0.5626 13 0.7791 0.6813 41 0.9372 0.9101 
14 0.7358 0.5889 14 0.7942 0.7017 oo 1.0000 1.0000 
15 0.7527 0.6124 15 0.8074 0.7197 
16 0.7675 0.6334 16 0.8190 0.7356 
17 0.7807 0.6522 21 0.8609 0.7943 
18 0.7925 0.6693 31 0.9050 0.8577 
19 0.8031 0.6848 61 0.9513 0.9261 
20 0.8126 0.6989 oo 1.0000 1.0000 
21 0.8213 0.7119 
22 0.8292 0.7237 
23 0.8365 0.7347 
24 0.8431 0.7448 
25 0.8493 0.7542 
26 0.8549 0.7629 
27 0.8602 0.7710 
28 0.8651 0.7786 
29 0.8697 0.7857 
30 0.8739 0.7924 
31 0.8779 0.7987 
41 0.9073 0.8454 
61 0.9375 0.8945 
121 0.9684 0.9460 
oo 1.0000 1.0000 

Reprinted with permission. Copyright ©by the Institute of Mathematical Statistics. 

examining muzzle velocity (M V) and pressure data on rounds fired from the same gun, he may want to convert 
the pressure data into equivalent velocity data by using an appropriate physical law. For the impact positions 
of rounds on the ground or a vertical target, the data are already in like physical units, i.e., inches, feet, meters, 
etc. Wilks (Ref. 4) gives an excellent example in the field of educational psychology for which each of 100 
students are examined through the use of three different tests to determine whether the test procedures 
constitute "parallel forms", i.e., are equally "valid". Apparently, such experiments might develop the "best" 
test or a standard test form. Clearly, there could well be some dependence involved because the same student 
takes each of the three tests, and although the test design seems very proper, this dependence requires further 
consideration. 
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For an example here we might take the pattern of artillery projectile impacts or rocket strikes on the ground 
for demonstrating Wilks' useful theory, but a very different type of example would be illuminating. Let our 
interest center on the rapid firing mode of an M16 rifle. In this connection, suppose that groups of three 
rounds each in rapid fire are shot from the M16. Since the first round of each group of three is well aimed—but 
this is hardly the case at all for the second, or even the third, bullet—does the "jump" between the first and 
second rounds of a group have a significant effect on the pattern tightness or accuracy? For simplicity, we will 
deal with only the vertical jump. 

Example 11-1: 
Table 11-3 lists the vertical points of impact x\ and xi in centimeters for the first bullet and the second bullet, 

respectively, for 10 three-round rapid groups fired from the M16 rifle. Since the strike of the second round 
may be well correlated with the impact of the first aimed bullet, what can be said about possible changes in the 
average vertical impact and the variability characteristics of the first two bullets of a group? Also is there any 
evidence that the point of impact of the second round depends highly on that of the first bullet strike, or is the 
infantryman able to re-aim the M16 between rounds? 

TABLE 11-3 

VERTICAL DEVIATIONS FROM AIM POINT OF FIRST AND SECOND BULLETS FIRED IN 
RAPID-FIRE GROUPS OF THREE ROUNDS WITH M16 RIFLE* 

First Bullet Second Bullet 
Impact Impact 
•^1' cm X2, cm 

-1-59 ^2 
-0.17 3.96 
-1.84 3.77 
-0.98                                '■■    ■ 4.39 
-0.62 6.73 
-0.32 _0.06 
-0.98 1.66 
-1.30 -0.31 
-0.39 4.15 
-1.25 0.92 

For significance tests of the hypotheses—//^vc, H^c, and //„—the sample statistics of calculable interest are 

X, =-0.944 X2= 2.289 x = 0.6725 (by Eq. 11-6) 
^1-   0.2843 5^ = 6.8371 5'= 3.5607 (by Eqs. 11-7 and 11-8) 

5,2=   0.5239(by Eq. 11-7)     r = 0.I47I (by Eq. 11-9) |5,y| = 1.6693 (by Eq. 11-11) 

Then it is found that 

L«« = 0.176 Lv. = 0.479 L„ = 0.368. 

Observe the 5% upper probability levels of Table 11 -1 for A: = 2 for L„,, and L,c and also those in Table 11 -2 for 
Lrn with A' = 10. Note that all of the observed L's are less than the corresponding tabular values. In fact, 
significance is established even with respect to the 1% probability levels for L™ and Ln,vc. Thus this particular 
sample of bivariate data does not support any of the three hypotheses. Therefore, they are rejected with the 

*We are pleased to acknowledge the suggestion to use these data furnished by Mr. Weldon Willoughby and Mr. Robert Eissner of the 
US Army Materiel Systems Analysis Activity (AMSAA). 

11-9 



DARCOM-P 706 103 

conclusion that the mean points of impact of the first and second rounds are quite different, as are the 
variances. For the bivariate case there is only a single covariance; therefore, the overall test does not really 
check on any comparison. Nevertheless, the two parts of the bivariate normal population are not the same; the 
mean impact of the second bullet jumps 2.29 + 0.94 = 3.23 cm above that of the first bullet with an inclination 
to the upper right, and the ratio of sigmas is estimated to be (6.84/0.28)"^ = 4.94. 

Although we have analyzed only the data for the first two rounds and only the vertical direction in this 
example, the reader will note that since each group consisted of three rapidly fired bullets, there is a complete 
trivariate normal sample with three coordinate impacts. (The spatial trivariate case collapses to coplanar 
impacts on an xy- plane.) Hence an easy extension of our analysis to the three-bullet target firings could be 
carried out by using the Wilks theory (Ref. 4) covered in this paragraph. 

The Wilks theory of Ref. 4 is especially valuable for making statistical judgments concerning the "circular- 
ity" of bivariate distributions or the "sphericity" of multivariate distributions and for comparing the location 
parameters or true means of the component distributions. Again, however, we note that the hypotheses tested 
are for single multivariate samples. The next logical step, therefore, would involve the comparison of two 
multivariate samples—which it is somewhat natural to refer to as the "old" and the "new" samples—in order 
to detect any change or shift in the population parameters. For the two-sample cases we are led to consider the 
use of Hotelling's Multivariate Studentized /-type statistic (Ref. 6)* and Hotelling's Generalized T^ measures 
of multivariate dispersion. These tests are discussed in par. 11-3. 

11-3    SELECTED TOPICS AND APPLICATIONS OF HOTELLING'S MULTIVARIATE 
STUDENTIZED t RATIOS AND GENERALIZED T^ STATISTICS 

In our presentation it is desirable to cover the Hotelling Generalized Student's t ratios and the generalized 
T^ measures of multivariate dispersion in separate subparagraphs. 

11-3.1    HOTELLING'S GENERALIZATION OF THE STUDENT-FISHER t RATIOS 

In Chapter 4 we gave a suitably complete account of the Student's t tests for univariate samples from a 
normal population. One of the significance tests was based on a single normal sample, and we used the 
Student's / ratio of the difference between the observed sample mean and a hypothesized population mean 
divided by the estimated standard deviation of the difference to judge the true location of the assumed normal 
population. The other case involved two samples and tested the hypothesis that both samples were taken from 
the same normal population once it had been established that the variances were equal. This particular 
Studentized / ratio consisted of the difference of the two sample means divided by the estimated standard 
deviation of that difference. In case the two variances were judged to be different, one might still be interested 
in judging whether the two normal population means are coincident, which involves the Behrens-Fisher ratio 
test (see par. 4-7.3.2). 

A natural, instructive approach toward the uses of Hotelling's Generalized Student's / ratio, or multivariate 
T^ as it is called, is to start with the two-sample, univariate case and then to generalize that statistic to the 
A:-variate, or multivariate, case. This means that we amplify the Student's t statistic of Eq. 4-108. For the 
purposes of this chapter and the consistency of notation therein, we define the following: 

A'^i = number of observations in the first sample 
fH = (TV, — 1) = df in first sample (In par. 11-3.2, n will be used for the bivariate case.) 
A^2 = number of observations in the second sample 
„2 = (ATj — 1) = df in second sample (In par. 11-3.2, m will be used for the bivariate case.) 
xip = /7th observation in the 1st sample, jc = I Ni 
X2p = pth observation in the second sample,/? = 1,. . .,A^2 
3ci = mean of the first sample 
X2 = mean of the second sample 

♦There is also a special test of Hotelling's Multivariate Studentized t for a single multivariate sample as discussed in par. 11-3.1. 
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d      —      xi — 3c2 = difference in sample means 
S      =      sum over entire sample, i.e., 1 to N\ or 1 to A^2 
S      =      estimated sample variance based on both samples and total number of df 

X\_Xxp — Xif + X{X2p — Xlf 

-„   M + *.-2  <"-'*> 

wherep = 1 to TVi for the first summation, and p = 1 to JV2 for the second summation. The ordinary Student's t 
ratio for testing the equality of two normal population means then is given by 

/ = ^/[^(l/A',+ 1/A^2)'/^] (11-17) 

and this may be rewritten in the form of Hotelling's Multivariate Studentized ratio as         ^ "~" 

(11-18) 

d{SYd. 

By comparing Eqs. 11-17 and 11-18, we might say that Eq. 11-17 is in a "linear"form, whereas Eq. 11-18 is in a 
"square" form. That is to say, whereas Eq. 11-17 is distributed in probability as Student's / with (A^i + A^2 - 2) 
df, the square of /, or Eq. 11-18, follows the Snedecor F, or variance ratio, distribution with 2 and (M + A^2 — 
2) df. The quantity rjis known as Hotelling's Studentized t statistic for the bivariate case although we have 
applied it to two univariate samples rather than to the two different orthogonal directions for the bivariate 
sample case. Nevertheless, the form of Eq. 11-18 generalizes to the Hotelling Multivariate Studentized 
statistic, and we have used the subscript "5" to distinguish it from Hotelling's Generalized T^ that is used to 
compare the dispersion matrices (variance-covariance matrices) of two normal multivariate samples. An 
example seems in order. 

Example 11-2: 
With reference to the data of Example 11 -1, a large disparity was noticed in mean points of impact for the 

first and second bullets, and the variances of the two bullets were widely different. Despite the different 
standard errors of the two bullets (and the correlation between the impacts of the two bullets), can the 
Hotelling Studentized t statistic of Eq. 11 -18 detect the difference in mean impact points if one treats the data 
as two univariate samples? 

For this example we have M = JVJ = ift ^ = xi - X2 =-3.233 and from Eq. 11-16 

>S'= [9(0.2843) + 9(6.8371)]/18 = 3.561. 

Then from Eq. 11-18 we obtain 

ri=?'= 14.68 

but the upper 5% Fprobability level for 1 and 18 df is only 4.41, so there is indeed a great jump upward for the 
second bullet. Moreover, we are impressed by the robustness of the test.* 

♦Nevertheless, the Behrens-Fisher test of par. 4-7.3.2 would be more appropriate here, but it would still render high significance. 
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Having generalized the ordinary univariate Student's t statistic to its analogue form (Eq. 11-18) for 
Hotelling's Multivariate Student's Tj, we are in a position to discuss some other properties for either the 
bivariate or multivariate normal populations. Let us first consider the case of a single bivariate or multivariate 
sample. Here we take the quantities or observations x\p, xzp,. . ., Xkp to represent thepth sample item from a 
normally correlated multivariate population, withp= 1,. . ., A'^random sample elements. Thus the/Jth sample 
value has k mutually related characteristics—e.g., height, weight, and arm length—of humans. Suppose 
further that the true or hypothesized means of the /c-characteristics are fxi, H2,. . ., i^k, and we take [sij] to be the 
matrix of unbiased estimates of the true covariances oij (and variances a,, = ai), where for n = {N~ 1) df we 
have 

Sii 
p = 1 

^0 WP      ^j) • (11-19) 

Finally, let us define the inverse of the sample variance-covariance matrix to be 

— r„ 1-1 [Vij] = [S,j] (11-20) 

Then the quantity or quadratic form given by 

Tl = 
k k 

2Sv,7(x,- MO(^; - iij)N (11-21) 

is distributed in probability as Hotelling's Multivariate Student's T^ statistic, and the transformed statistic 

F{k,n-k+\) = {n-k+\) TJUkri) (11-22) 

is distributed as Snedecor's For variance ratio with k and (n — ^ + 1) df. Hence one could use Eq. 11-21 for a 
single multivariate normal sample to test the hypothesis that the true unknown component means of the 
mutual characteristics take on specified values jUio, either all equal values or different values. 

A very important and useful application of Hotelling's Multivariate Studentized t statistic is in connection 
with two normal samples for either the bivariate or the multivariate case. The object is to compare the 
corresponding true means of the different characteristics of the normally correlated samples when it is 
assumed that the two samples originate from two multivariate normal populations having identical variance- 
covariance matrices. This is easily done with a very straightforward extension of the first right-hand side 
(RHS) of Eq. 11-18. It is convenient in this chapter to call the first of the two samples the "old" sample, which 
consists of N items or observations (or « = (A'^ — 1) df). To distinguish the second sample, we could list the 
observations as x'ip, i.e., the same notation except that "primes" are used, and we call the second sample the 
"new" sample, which has M observations or m = {M — 1) df for the estimated variance. Moreover, since it is 
assumed that the two normally correlated samples originate from populations at least with identical variance- 
covariance matrices, then for the estimated variances and covariances based on sample values we may "pool" 
the sums of squares (SS)—or cross products—similar to those of Eq. 11-16 and divide by the correct number 
of df, or (« + m) = (A^ + A/ — 2). Finally, the column vector defining the difference d of Eq. 11-18 becomes 

[d] 
X2 

Xk - 

X\ 

—f 

X2 

x'k 

(11-23) 

Hotelling's Multivariate Studentized t or Tj then becomes 
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where the variance-covariance matrix [sij] has (n + m) df, and [v/,] is its inverse. In referring an observed value 
of Ts to a table of significance levels, one uses 

m«+«-*+i)=(^—^^-^jrl (,1-25) 

which is distributed in probability as Snedecor's Fwith A: and (w + « - A: + 1) df. We will illustrate the use of 
Hotelling's Multivariate r|in Example 11-3 for a two-sample bivariate case requiring also the application of 
Hotelling's Generalized T^ statistics. In fact, it is best to apply Hotelling's Multivariate TJ statistic for mean 
values after we have established that two samples drawn from normal multivariate populations have 
equivalent variances and covariances, respectively. 

11-3.2    HOTELLING'S GENERALIZED r'STATISTICS ^.. 

The main thrust of the analysis concerning Hotelling's Generalized T^ statistics is that of determining 
whether or not two normal multivariate samples originate from the same multivariate normal population, i.e., 
whether the corresponding true means are equal and their variances and covariances are the same, respec- 
tively. We will approach this problem primarily by illustrating the bivariate case although it will be quite clear 
that an extension to any number of dimensions k is very obvious. As an example, we will make a comparison of 
the range and deflection patterns of a standard "old" type of artillery projectile and a proposed, or "new", 
artillery projectile to replace the "old" one. 

Approaching the Hotelling Generalized T^ statistics from the bivariate form, we start with the old sample of 
TVitems, with means of the characteristics equal to x, and xi, and the sample variance-covariance matrix of the 
old sample [sij\, which is based on « = (TV- 1) df. We then label the Mnew sample values as x'lp, / = 1, 2 (or i 
running from 1 to k) andp = 1, 2,. . .,M. New deviations or z's are generated, which are determined'from 

^ID Xip-Xi (11-26) 

which, for the bivariate case (or / from 1 to k), give M residuals of the new sample values from the old sample 
means. The Hotelling Generalized T^ statistic for testing the conformance of thepth new sample value to the 
population of the old sample values is then 

.2 '^ 
Tp~ X^%VijZipZjp,     (^ = 2 here) (11-27) 

where we have that Vy are the elements of the inverse variance-covariance matrix of the old sample, [sij\~\ It is 
of mterest to note that the quantities z,p not only contain the individual residuals and average out to the 
difference m means of new and old sample values, but also actually contain relevant information on dispersion 
of the new sample since the old sample means amount to constants anyway (in calculating the variance of the 
Zip with respect top). Hence the total characterization of the conformance of the entire new sample to the old 
bivariate or multivariate normal sample will be given by 

n^Ti+n+--- + rp + --- + Ti (11-28) 

Whereas one notes in particular that Eq.  11-28 adds a generalized T' for each and every sample point 
Hotelling in Refs. 5 and 7 divides the total rjinto two more pertinent parts or quantities. These two parts are 
more useful in comparing the variance-covariance matrices of the two samples with one T^ statistic followed 
by a direct comparison of mean values with the other Hotelling statistic, which incidentally is a Hotelling 
Multivariate Studentized statistic. This division of To'into two parts is based on the identity 

M M 

P  ■ 
tzipZjp - ^^^Zip -Zi) {zjp - Zj) + MziZj. .     , (11-29) 

With the use of Eq. 11-29, it is found that the quantity T^ may be expressed as 
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Ti=TD+TM (11-30) 

with 

k=2k=2        M 
-2 _ T6=X   S Vy X (Zip - Zi){zjp -Zj) (11-31) 

1 = 1 ;■ = 1     p = 1 

and 

ri=MS   S vyz,!; (11-32) 
j = 1 ; = 1 

where for the bivariate case of our prime interest k = 2. 
Special attention should be given to the upper limits in Eqs. 11-31 and 11-32. We have terminated the 

summations atk = 2, or the bivariate case, since our main interest is the two-dimensional case and available 
exact distribution theory more or less ends for k = 2. 

Some particular emphasis should be placed on the fact that in Eq. 11-31 each of the {np — z,) may be replaced 
by (x'ip — 3c/), the residuals or deviations from the sample mean of the new sample observations. Hence the 
quantity 7D in Eq. 11-31 actually represents a comparison between the covariances of the new bivariate normal 
sample or x'values and the old sample values x since the v/, are the elements in the inverse matrix of the old 
sample variance-covariance matrix. This quantity 7D follows Hotelling's Generalized T^ probability distribu- 
tion for the bivariate case as is indicated in Eq. 11-41 that follows, and the upper 5% and 1% probability levels 
are given in Ref. 10 along with an approximation. The Toand TMSO computed can be added to give To, whereas 
a check in the computations may be obtained by using z,p and calculating To directly as in Eq. 11-28. The To 
and r^are not independent since they depend on the same old sample; however, their conditional distribu- 
tions are independent for a particular old sample as shown by Hotelling (Ref. 7). 

The quantity TM of Eq. 11-32, which must be used in terms of the z's only (as in Eq. 11-26), follows 
Hotelling's MuUivariate Student rldistribution as introduced in par. 11-3.1. In fact, for the bivariate case/c = 
2, the relation between Ts and TM is given by 

Tl=NTj^liN+M) (11-33) 

and we may use the Snedecor Fvariate 

Fi2,N-2) = N(N-2)T^/[2iN+M)iN-l)]* (11-34) 

which is distributed as F with 2 and (A'^— 2) df. Hence we have available a relatively simple significance test for 
the quantity TM. For the general /:-variate case, we have—using only the old sample observations in the 
Sij—that 

Fik,N-k) = N{n-k)T^I[kiN+M)iN-l)] (11-35) 

follows the Snedecor F distribution with k and (n — A: -|- 1) df. 
A further, pertinent remark concerns the large-sample or population values of the sij and, hence, vy. If the 

variance-covariance matrix of the old population sampled is accurately known, i.e., one has a very stable value 
of [ay], the r^'s of Eq. 11-30 become chi-squares, and in fact we have 

Xo(2M) - XD(2M - 2) + XM(2) (11-36) 

♦If both sample SS are used to obtain [vi/], use F{2,N + A/- 3) = N(N + M- T)TMI[2(N + M){N + M - 2)]. 
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where the chi-squares on the RHS are independent, and the total of 2Mdf is spUt into (IM — 2) and 2 df. This 
information is of value for the case where some extensive experience is available from previous testing. 

Finally, we record some of Hotelling's theory for the To and TD statistics since in applications we need to 
know their percenta,ge points. Hotelling shows that for the three new sample statistics defined from 

M- 1 

M 
XiZip - Zi){Zjp 

P = 1 
zj)J,J= 1,2 (11-37) 

i.e., two sample variances and one covariance of the new sample, these quantities have the joint Wishart (Ref. 
11) probability distribution with (Af- 1) df. For a new sample drawn independently from the same bivariate 
normal population as the old sample, the distribution of Ti has exactly the same form as that of To with the 
total new sample size M replaced by (TV/ — 1) df. Therefore, for the distribution of either the quantity TS or the 
total To, one is interested in the distribution of Hotelling's Generalized T^ statistic of the general form 

2       2 

T' = m X Svy4 '      (11-38) 
1=1 j=\ 

where m is a general number of df for the variance-covariance variates s'y, which have the Wishart distribution 
(Ref. 11). Recall that n is the number of df for the old sample. An important and major result of Hotelling is 
that the trace, i.e., the sum of the principal diagonal elements, of the product matrix given by 

[vij] [4] (11-39) 

is equal to 7^^^, or Hotelling's Generalized rMivided by m df. Hence with the use of Eq. 11-39, we are able to 
conduct a significance test or hypothesis test for TJ^that compares the relative sizes of the variance-covariance 
matrices of the old and new samples, and we can also carry out a significance test on To, the total dispersion 
matrix value, including comparisons of means. 

With regard to probability distribution theory and percentage points of the generalized T^ statistics, 
Hotelling (Ref. 7) uses the quantity 

w= T^/{2m+ T^) (11-40) 

and shows that the probability a of w being exceeded is 

a = 1 — Iwim — 1, «) + v^ 

m + n — I 

'(f)W,! 
An-l)/2 m H"^'"-^)   <"-> 

where 
/w(    ,    ) 

n ) 
Karl Pearson's incomplete beta function ratio (Ref. 12) 
complete gamma function of the quantity in parentheses. 

Extensive tables of the 1% and 5% probability levels of Hotelling's Generalized T^ were originally 
developed at the US Army Ballistic Research Laboratories (BRL) in 1954 (Ref. 9); however, it was discovered 
that for values of m much greater than n some computational errors occurred in the computations due to a 
somewhat inaccurate approximation to the incomplete beta function ratio. Upon discovering this computa- 
tional error, new 1% and 5% points were calculated for T^, and accurate values were given in Ref. 10. The 
percentage points calculated are for the bivariate case. A: = 2, only. Values of m and n, the df for the 
covariances of new and old samples, respectively, range over w,« = 1 (1) 100. It is not practical to include these 
very extensive tables in this handbook, particularly since suitable approximations can be given. In his original 
study of the Hotelling Generalized T^ statistics at BRL during the summer of 1952, Prof. J. Stuart Hunter 
(Ref. 8) noticed that for fixed n the 5% probability levels of T^ were practically linear with the parameter m. 
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Such an occurrence was hardly expected at all! However, Prof. Hunter also discovered that the linear relation 
was very well-established for the 1% probability levels. This fortuitous occurrence was later investigated by 
Helen J. Coon, formerly of the BRL, and is in a "Comment" in Ref. 10. Coon established the hnear 
relationship in the T^ by showing that for all m the following equation holds: 

TLX - T^ = T^^2 - T^.i = 2{n + T^)l{2m + n - 3). (11-42) 

Therefore, since the first differences are constant, the approximate 100a percentage points, or a probability 
levels, of Hotelling's Generalized T^ for a fixed n are linearly related. 

The complete set of tables in Ref. \0 for m, n = 1(1)100 consists of about 64 pages and is accurate to 
practically five significant figures, as discussed by H. K. Crowder in a computational Appendix (Ref. 10). 
Prof. Hunter also gives two nomographs, which may be used to read off either the 1% or 5% critical values of 
T^ in another Appendix of Ref. 10. For values of m greater than 50 and up to 100 (the extent of the 
computations), Hotelling's T^ percentage points can be determined very accurately for fixed n from a 
quadratic in m. As would be expected in view of the linearity relation, the coefficient of the square term in m is 
quite small. The quadratic equation is     _       '^ -<- • . 

T'^am' + bm + c,   50<m< 100 (11-43) 

so that the appropriate set of coefficients—a, b, and c—for each n from 2 to 100 can be used to obtain accurate 
1% and 5% probability levels for m greater than 50. This reduces the necessary size of the tables drastically, 
especially since only four pages are required for this region. 

Questions of the compactness of a table and the number of significant figures to list always arise. Also it is 
not known just what compromises should resuh from the many probable applications of Hotelling's T 
statistics. However, for Example 11-3 it would seem that three significant figures, and certainly four, should 
suffice. For our tabulation of the percentage points, we have decided to include 14 pages to cover the 1% and 
5% points to five significant figures for m and n ranging over 1 to 50, and four pages to list values of the 
coefficients needed for m and « from 51 to 100, but we also list coefficients for «less than 51. Thus Table 11 -4 
gives the T^ percentage points for m,n= 1(1)50; Table 11-5 contains the value of the coefficients a, b, and c 
recommended for values of m exceeding 50. These two tables should suffice. 

If one is interested in the significance of the quantity To, he may calculate it using Eq. 11-38 or the trace of 
Eq. 11-39 and enter Table 11-4 with n = (N - 1) and m = {M - 1) to determine whether the observed TD 

exceeds the tabular value. On the other hand, for the total T^ or To—which is a combined test of whether the 
variance-covariance matrices are equal andihe corresponding true means are also equal, i.e., whether the two 
bivariate samples are from the same normal bivariate population—we may calculate To from Eq. 11-30 and 
compare the resulting value with the tabular one using n = N — I but taking m = M, the new sample size. 
Alternatively for To, we could define the covariance-like quantity 5y" 

M ■ . . 

si' = {\IM) X z,pZjp (11-44) 

and calculate To from 

p = i 

To'=Mi   i Vijs'i = Mtr{[v^][5^']}. (11 -45) 
! = 1 y = 1 

It is seen, in view of this discussion, that Hotelling's theory is quite complete in dealing with bivariate and 
multivariate statistical problems of wide interest. Since there are many facets of the overall statistical analysis 
and a variety of hypothesis-testing procedures, we have selected an example that should be quite informative 
in illustrating the Hotelling Generalized T^ and MuUivariate Studentized t statistical theory. A primary 
purpose is to compare the range and deflection patterns for ground impacts of some standard and proposed 
artillery projectiles. 
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TABLE 11-4 

UPPER 1% AND 5% PROBABILITY OR SIGNIFICANCE LEVELS FOR HOTELLING'S 
GENERALIZED T^ STATISTICS (Bivariate Case) 

1% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

> 2 3 4 5 6 7 8 

2 0.49346 5 0.59697 3* 0.14855 3 0.76589 2 0.52237 2 0.40776 2 0.34304 2 
3 0.79998 5 0.89695 3 0.21308 3 0.10670 3 0.71382 2 0.54978 2 0.45803 2 
4 0.11103 6 0.11969 4 0.27698 3 0.13628 3 0.90069 2 0.68766 2 0.56917 2 
5 0.14222 6 0.14969 4 0.34058 3 0.16561 3 0.10853 3 0.82345 2 0.67834 2 

6 0.17349 6 0.17969 4 0.40402 3 0.19479 3 0.12686 3 0.95801 2 0.78633 2 
7 0.20480 6 0.20969 4 0.46737 3 0.22388 3 0.14511 3 0.10918 3 0.89357 2 
8 0.23614 6 0.23968 4 0.53066 3 0.25292 3 0.16330 3 0.12251 3 0.10003 3 
9 0.26749 6 0.26968 4 0.59390 3 0.28191 3 0.18146 3 0.13579 3 0.11066 3 

10 0.29886 6 0.29968 4 0.65712 3 0.31088 3 0.19958 3 0.14905 3 0.12127 3 

11 0.33024 6 0.32968 4 0.72031 3 0.33982 3 0.21769 3 0.16229 3 0.13185 3 
12 0.36162 6 0.35968 4 0.78348 3 0.36875 3 0.23578 3 0.17552 3 0.14242 3 
13 0.39301 6 0.38967 4 0.84664 3 0.39767 3 0.25386 3 0.18872 3 0.15297 3 
14 0.42440 6 0.41967 4 0.90979 3 0.42657 3 0.27192 3 0.20192 3 0.16352 3 
15 0.45580 6 0.44967 4 0.97293 3 0.45546 3 0.28998 3 0.21511 3 0.17405 3 

16 0.48720 6 0.47967 4 0.10361 4 0.48435 3 0.30803 3 0.22830 3 0.18458 3 
17 0.51860 6 0.50967 4 0.10992 3 0.51323 3 0.32607 3 0.24147 3 0.19510 3 
18 0.55000 6 0.53966 4 0.11623 4 0.54211 3 0.34411 3 0.25464 3 0.20561 3 
19 0.58140 6 0.56966 4 0.12254 4 0.57098 3 0.36215 3 0.26781 3 0.21612 3 
20 0.61281 6 0.59966 4 0.12885 4 0.59985 3 0.38018 3 0.28097 3 0.22663 3 

21 0.64422 6 0.62966 4 0.13517 4 0.62872 3 0.39820 3 0.29413 3 0.23713 3 
22 0.67562 6 0.65966 4 0.14148 4 0.65758 3 0.41623 3 0.30729 3 0.24763 3 
23 0.70703 6 0.68965 4 0.14779 4 0.68645 3 0.43425 3 0.32044 3 0.25813 3 
24 0.73844 6 0.71965 4 0.15410 4 0.71530 3 0.45227 3 0.33360 3 0.26862 3 
25 0.76985 6 0.74965 4 0.16041 4 0.74416 3 0.47029 3 0.34675 3 0.27911 3 

26 0.80126 6 0.77965 4 0.16672 4 0.77302 3 0.48831 3 0.35989 3 0.28961 3 
27 0.83267 6 0.80965 4 0.17303 4 0.80187 3 0.50632 3 0.37304 3 0.30009 3 
28 0.86408 6 0.83964 4 0.17934 4 0.83072 3 0.52434 3 0.38619 3 0.31058 3 
29 0.89549 6 0.86964 4 0.18565 4 0.85958 3 0.54235 3 0.39933 3 0.32107 3 
30 0.92690 6 0.89964 4 0.19196 4 0.88843 3 0.56036 3 0.41247 3 0.33155 3 

31 0.95831 6 0.92964 4 0.19827 4 0.91728 3 0.57837 3 0.42561 3 0.34204 3 
32 0.98972 6 0.95964 4 0.20458 4 0.94612 3 0.59638 3 0.43876 3 0.35252 3 
33 0.10211 7 0.98963 4 0.21089 4 0.97497 3 0.61439 3 0.45190 3 0.36300 3 
34 0.10525 7 0.10196 5 0.21720 4 0.10038 4 0.63240 3 0.46503 3 0.37348 3 
35 0.10840 7 0.10496 5 0.22350 4 0.10327 4 0.65041 3 0.47817 3 0.38396 3 

36 0.11154 7 0.10796 5 0.22981 4 0.10615 4 0.66841 3 0.49131 3 0.39444 3 
37 0.11468 7 0.11096 5 0.23612 4 0.10904 4 0.68642 3 0.50445 3 0.40492 3 
38 0.11782 7 0.11396 5 0.24243 4 0.11192 4 0.70443 3 0.51758 3 0.41540 3 
39 0.12096 7 0.11696 5 0.24874 4 0.11480 4 0.72243 3 0.53072 3 0.42588 3 
40 0.12410 7 0.11996 5 0.25505 4 0.11769 4 0.74044 3 0.54386 3 0.43635 3 

41 0.12724 7 0.12296 5 0.26136 4 0.12057 4 0.75844 3 0.55699 3 0.44683 3 
42 0.13039 7 0.12596 5 0.26767 4 0.12346 4 0.77644 3 0.57013 3 0.45731 3 
43 0.13353 7 0.12896 5 0.27398 4 0.12634 4 0.79445 3 0.58326 3 0.46778 3 
44 0.13667 7 0.13196 5 0.28029 4 0.12923 4 0.81245 3 0.59639 3 0.47826 3 
45 0.13981 7 0.13496 5 0.28659 4 0.13211 4 0.83045 3 0.60953 3 0.48873 3 

46 0.14295 7 0.13796 5 0.29290 4 0.13499 4 0.84846 3 0.62266 3 0.49921 3 
47 0.14609 7 0.14096 5 0.29921 4 0.13788 4 0.86646 3 0.63579 3 0.50968 3 
48 0.14923 7 0.14396 5 0.30552 4 0.14076 4 0.88446 3 0.64892 3 0.52015 3 
49 0.15238 7 0.14696 5 0.31183 4 0.14365 4 0.90246 3 0.66206 3 0.53063 3 
50 0.15552 7 0.14996 5 0.31814 4 

_ AT 

0.14653 4 
1 

0.92046 3 0.67519 3 0.54110 3 

*A tabulated value such as 0.59697 3 
means 0.59697 X lO' or 596.97. w = df for new sample 

(cont'd on next page) 
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S 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

TABLE 11-4 (cont'd) 

1% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

10 11 12 13 14 

0.30206 2 
0.40037 2 
0.49504 2 
0.58780 2 

0.67943 
0.77030 
0.86066 
0.95063 
0.10403 

0.11298 3 
0.12191 3 
0.13083 3 
0.13973 3 
0.14863 3 

0.15752 3 
0.16640 3 
0.17528 3 
0.18415 3 
0.19301 3 

0.20188 3 
0.21074 3 
0.21960 3 
0.22845 3 
0.23730 3 

0.24615 3 
0.25500 3 
0.26385 3 
0.27270 3 
0.28154 3 

0.29038 3 
0.29923 3 
O! 30807 3 
0.31691 3 
0.32575 3 

0.33458 3 
0.34342 3 
0.35226 3 
0.36110 3 
0.36993 3 

0.37877 3 
0.38760 3 
0.39644 3 
0.40527 3 
0.41410 3 

0.42294 3 
0.43177 3 
0.44060 3 
0.44943 3 
0.45827 3 

0.27401 2 
0.36114 2 
0.44478 2 
0.52657 2 

0.60723 
0.68715 
0.76655 
0.84558 
0.92431 

0.33307 
0.34080 
0.34853 
0.35627 
0.36400 

0.10028 3 
0.10812 3 
0.11593 3 
0.12374 3 
0.13154 3 

0.13933 3 
0.14711 3 
0.15489 3 
0.16266 3 
0.17043 3 

0.17819 3 
0.18595 3 
0.19371 3 
0.20147 3 
0.20922 3 

0.21697 3 
0.22472 3 
0.23247 3 
0.24021 3 
0.24795 3 

0.25570 3 
0.26344 3 
0.27118 3 
0.27892 3 
0.28666 3 

0.29439 3 
0.30213 3 
0.30986 3 
0.31760 3 
0.32533 3 

0.37173 3 
0.37946 3 
0.38719 3 
0.39492 3 
0.40265 3 

0.25372 2 
0.33289 2 
0.40869 2 
0.48267 2 

0.55555 
0.62768 
0.69930 
0.77052 
0.84146 

0.91217 
0.98270 
0.10531 
0.11233 
0.11935 

0.12636 
0.13336 
0.14035 
0.14734 
0.15433 

0.23097 
0.23792 
0.24488 
0.25183 
0.25879 

0.16131 3 
0.16828 3 
0.17526 3 
0.18223 3 
0.18920 3 

0.19616 3 
0.20313 3 
0.21009 3 
0.21705 3 
0.22401 3 

0.26574 3 
0.27269 3 
0.27964 3 
0.28659 3 
0.29354 3 

0.30049 
0.30744 
0.31438 
0.32133 
0.32828 

0.33522 
0.34217 
0.34911 
0.35606 
0.36300 

0.23840 2 
0.31165 2 
0.38162 2 
0.44981 2 

0.51689 
0.58323 
0.64905 
0.71448 
0.77962 

0.84452 
0.90923 
0.97380 
0.10382 
0.11026 

0.11668 
0.12310 
0.12951 
0.13592 
0.14232 

0.14871 
0.15511 
0.16150 
0.16788 
0.17427 

0.18065 
0.18703 
0.19341 
0.19978 
0.20615 

0.21253 
0.21890 
0.22527 
0.23164 
0.23800 

0.24437 
0.25074 
0.25710 
0.26347 
0.26983 

0.27619 
0.28255 
0.28892 
0.29528 
0.30164 

0.30800 
0.31436 
0.32072 
0.32707 
0.33343 

0.22645 2 
0.29515 2 
0.36063 2 
0.42435 2 

0.48697 
0.54885 
0.61021 
0.67117 
0.73183 

0.79226 2 
0.85249 2 
0.91257 2 
0.97253 2 
0.10324 3 

0.10921 3 
0.11518 3 
0.12114 3 
0.12710 3 
0.13305 3 

0.13899 3 
0.14493 3 
0.15087 3 
0.15681 3 
0.16274 3 

0.16867 3 
0.17460 3 
0.18052 3 
0.18645 3 
0.19237 3 

0.19829 
0.20421 
0.21012 
0.21604 
0.22196 

0.22787 
0.23378 
0.23970 
0.24561 
0.25152 

0.25743 3 
0.26334 3 
0.26925 3 
0.27515 3 
0.28106 3 

0.28697 
0.29287 
0.29878 
0.30469 
0.31059 

0.21689 2 
0.28197 2 
0.34390 2 
0.40408 2 

0.46318 
0.52153 
0.57935 
0.63677 
0.69389 

0.75076 
0.80744 
0.86397 
0.92036 
0.97664 

0.10328 
0.10889 
0.11450 
0.12009 
0.12569 

0.13127 
0.13686 
0.14244 
0.14801 
0.15359 

0.18698 
0.19254 
0.19810 
0.20366 
0.20921 

0.21477 
0.22032 
0.22587 
0.23143 
0.23698 

0.24253 
0.24808 
0.25362 
0.25917 
0.26472 

0.15916 3 
0.16473 3 
0.17029 3 
0.17586 3 
0.18142 3 

0.27027 3 
0.27581 3 
0.28136 3 
0.28690 3 
0.29245 3 

15 

0.20907 2 
0.27122 2 
0.33027 2 
0.38759 2 

0.44383 2 
0.49932 2 
0.55428 2 
0.60883 2 
0.66307 2 

0.71707 
0.77087 
0.82451 
0.87801 
0.93139 

0.98468 
0.10379 
0.10910 
0.11441 
0.11971 

0.12501 
0.13030 
0.13559 
0.14088 
0.14616 

0.15144 
0.15671 
0.16199 
0.16726 
0.17253 

0.17780 
0.18307 
0.18834 
0.19360 
0.19886 

0.20413 
0.20939 
0.21465 
0.21991 
0.22516 

0.23042 
0.23568 
0.24093 
0.24619 
0.25144 

0.25670 
0.26195 
0.26720 
0.27246 
0.27771 

(cont'd on next page) 
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TABLE 11-4 (cont'd) 

1% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

m 
16 17 18 19 20 21 22 

2 0.20255 2 0.19705 2 0.19235 2 0.18828 2 0.18472 2 0.18159 2 0.17881 2 
3 0.26230 2 0.25477 2 0.24834 2 0.24279 2 0.23795 2 0.23369 2 0.22992 2 
4 0.31897 2 0.30945 2 0.30133 2 0.29433 2 0.28823 2 0.28286 2 0.27811 2 
5 0.37393 2 0.36244 2 0.35264 2 0.34418 2 0.33682 2 0.33036 2 0.32464 2 
6 0.42781 2 0.41433 2 0.40285 2 0.39296 2 0.38434 2 0.37678 2 0.37008 2 
7 0.48094 2 0.46548 2 0.45232 2 0.44097 2 0.43110 2 0.42244 2 0.41477 2 
8 0.53353 2 0.51609 2 0.50124 2 0.48844 2 0.47731 2 0.46754 2 0.45889 2 
9 0.58571 2 0.56629 2 0.54974 2 0.53549 2 0.52310 2 0.51221 2 0.50259 2 
10 0.63758 2 0.61616 2 0.59793 2 0.58222 2 0.56855 2 0.55656 2 0.54595 2 
11 0.68920 2 0.66579 2 0.64585 2 0.62868 2 0.61374 2 0.60063 2 0.58904 2 
12 0.74062 2 0.71520 2 0.69356 2 0.67492 2 0.65871 2 0.64448 2 0.63190 2 
13 0.79187 2 0.76445 2 0.74110 2 0.72100 2 0.70351 2 0.68816 2 0.67458 2 
14 0.84298 2 0.81355 2 0.78850 2 0.76692 2 0.74815 2 0.73167 2 0.71711 2 
15 0.89397 2 0.86254 2 0.83577 2 0.81272 2 0.79266 2 0.77506 2 0.75950 2 
16 0.94487 2 0.91142 2 0.88294 2 0.85841 2 0.83707 2 0.81834 2 0.80177 2 
17 0.99568 2 0.96021 2 0.93001 2 0.90400 2 0.88137 2 0.86151 2 0.84395 2 
18 0.10464 2 0.10089 3 0.97701 2 0.94952 2 0.92560 2 0.90461 2 0.88604 2 
19 0.10971 3 0.10576 3 0.10239 2 0.99496 2 0.96975 2 0.94762 2 0.92805 2 
20 0.11477 3 0.11062 3 0.10708 3 0.10403 3 0.10138 3 0.99058 2 0.96999 2 
21 0.11983 3 0.11547 3 0.11176 3 0.10857 3 0.10579 3 0.10335 3 0.10119 3 
22 0.12488 3 0.12032 3 0.11644 3 0.11309 3 0.11019 3 0.10763 3 0.10537 3 
23 0.12993 3 0.12517 3 0.12111 3 0.11762 3 0.11458 3 0.11191 3 0.10955 3 
24 0.13497 3 0.13001 3 0.12578 3 0.12214 3 0.11897 3 0.11619 3 0.11372 3 
25 0.14001 3 0.13484 3 0.13044 3 0.12665 3 0.12335 3 0.12046 3 0.11789 3 
26 0.14505 3 0.13968 3 0.13511 3 0.13117 3 0.12774 3 0.12472 3 0.12206 3' 27 0.15008 3 0.14451 3 0.13977 3 0.13568 3 0.13212 3 0.12899 3 0.12622 3 
28 0.15512 3 0.14934 3 0.14442 3 0.14018 3 0.13649 3 0.13325 3 0.13038 3 29 0.16015 3 0.15417 3 0.14908 3 0.14469 3 0.14087 3 0.13751 3 0.13454 3 
30 0.16518 3 0.15900 3 0.15373 3 0.14919 3 0.14524 3 0.14177 3 0.13870 3 
31 0.17020 3 0.16382 3 0.15838 3 0.15369 3 0.14961 3 0.14602 3 0.14285 3 32 0.17523 3 0.16864 3 0.16303 3 0.15819 3 0.15397 3 0.15027 3 0.14700 3 
33 0.18025 3 0.17346 3 0.16767 3 0.16268 3 0.15834 3 0.15452 3 0.15115 3 34 0.18528 3 0.17828 3 0.17232 3 0.16718 3 0.16270 3 0.15877 3 0.15529 3 35 0.19030 3 0.18310 3 0.17696 3 0.17167 3 0.16707 3 0.16302 3 0.15944 3 
36 0.19532 3 0.18791 3 0.18160 3 0.17616 3 0.17143 3 0.16727 3 0.16358 3 37 0.20034 3 0.19273 3 0.18624 3 0.18065 3 0.17579 3 0.17151 3 0.16772 3 38 0.20535 3 0.19754 3 0.19088 3 0.18514 3 0.18014 3 0.17575 3 0.17186 3 39 0.21037 3 0.20235 3 0.19552 3 0.18963 2 0.18450 3 0.17999 3 0.17600 3 40 0.21539 3 0.20717 3 0.20016 3 0.19412 3 0.18886 3 0.18424 3 0.18014 3 
41 0.22040 3 0.21198 3 0.20480 3 0.19860 3 0.19321 3 0.18847 3 0.18428 3 42 0.22542 3 0.21679 3 0.20943 3 0.20309 3 0.19757 3 0.19271 3 0.18842 3 43 0.23043 3 0.22160 3 0.21407 3 0.20757 3 0.20192 3 0.19695 3 0.19255 3 44 0.23544 3 0.22640 3 0.21870 3 0.21206 3 0.20627 3 0.20119 3 0.19668 3 45 0.24045 3 0.23121 3 0.22333 3 0.21654 3 0.21062 3 0.20542 3 0.20082 3 
46 0.24547 3 0.23602 3 0.22797 3 0.22102 3 0.21497 3 0.20966 3 0.20495 3 47 0.25048 3 0.24083 3 0.23260 3 0.22550 3 0.21932 3 0.21389 3 0.20908 3 48 0.25549 3 0.24563 3 0.23723 3 0.22998 3 0.22367 3 0.21812 3 0.21321 3 49 0.26050 3 0.25044 3 0.24186 3 0.23446 3 0.22802 3 0.22236 3 0.21734 3 50 0.26551 3 0.25524 3 0.24649 3 0.23894 3 0.23237 3 0.22659 3 

(cont'd ( 
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TABLE 11-4 (cont'd) 

1% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

^ w 
23 24 25 26 27 28 29 

i 0.17633 2 0.17410 2 0.17209 2 0.17026 2 0.16859 2 0.16707 2 0.16567 2 
3 0.22655 2 0.22353 2 0.22080 2 0.21833 2 0.21608 2 0.21402 2 0.21212 2 
4 0.27388 2 0.27008 2 0.26665 2 0.26355 2 0.26072 2 0.25813 2 0.25576 2 
5 0.31954 2 0.31497 2 0.31085 2 0.30711 2 0.30371 2 0.30060 2 0.29775 2 
6 0.36412 2 0.35877 2 0.35396 2 0.34959 2 0.34562 2 0.34199 2 0.33866 2 
7 0.40794 2 0.40182 2 0.39630 2 0.39131 2 0.38676 2 0.38261 2 0.37880 2 
8 0.45120 2 0.44430 2 0.43808 2 0.43245 2 0.42733 2 0.42265 2 0.41836 2 
9 0.49402 2 0.48634 2 0.47942 2 0.47315 2 0.46745 2 0.46225 2 0.45747 2 
10 0.53650 2 0.52804 2 0.52042 2 0.51351 2 0.50723 2 0.50149 2 0.49623 2 
11 0.57871 2 0.56946 2 0.56113 2 0.55358 2 0.54672 2 0.54044 2 0.53469 2 
12 0.62070 2 0.61066 2 0.60161 2 0.59342 2 0.58597 2 0.57916 2 0.57292 2 
13 0.66249 2 0.65166 2 0.64190 2 0.63307 2 0.62503 2 0.61768 2 0.61094 2 
14 0.70413 2 0.69251 2 0.68203 2 0.67254 2 0.66391 2 0.65603 2 0.64880 2 
15 0.74563 2 0.73321 2 0.72202 2 0.71188 2 0.70266 2 0.69423 2 0.68650 2 
16 0.78702 2 0.77380 2 0.76188 2 0.75110 2 0.74128 2 0.73231 2 0.72408 2 
17 0.82830 2 0.81428 2 0.80165 2 0.79020 2 0.77979 2 0.77028 2 0.76155 2 
18 0.86950 2 0.85467 2 0.84132 2 0.82922 2 0.81821 2 0.80815 2 0.79892 2 
19 0.91061 2 0.89499 2 0.88090 2 0.86815 2 0.85654 2 0.84593 2 0.83620 2 
20 0.95166 2 0.93523 2 0.92042 2 0.90700 2 0.89480 2 0.88364 2 0.87340 2 
21 0.99265 2 0.97541 2 0.95987 2 0.94580 2 0.93299 2 0.92128 2 0.91054 2 
22 0.10336 3 0.10155 3 0.99926 2 0.98453 2 0.97112 2 0.95886 2 0.94761 2 
23 0.10745 3 0.10556 3 0.10386 3 0.10232 3 0.10092 3 0.99638 2 0.98463 2 
24 0.11153 3 0.10956 3 0.10779 3 0.10618 3 0.10472 3 0.10339 3 0.10216 3 
25 0.11561 3 0.11356 3 0.11172 3 0.11004 3 0.10852 3 0.10713 3 0.10585 3 
26 0.11969 3 0.11756 3 0.11564 3 0.11390 3 0.11231 3 0.11087 3 0.10954 3 
27 0.12376 3 0.12155 3 0.11955 3 0.11775 3 0.11610 3 0.11460 3 0.11322 3 
28 0.12783 3 0.12554 3 0.12347 3 0.12160 3 0.11989 3 0.11833 3 0.11690 3 
29 0.13189 3 0.12952 3 0.12738 3 0.12544 3 0.12368 3 0.12206 3 0.12058 3 
30 0.13596 3 0.13350 3 0.13129 3 0.12928 3 0.12746 3 0.12579 3 0.12425 3 
31 0.14002 3 0.13748 3 0.13520 3 0.13312 3 0.13124 3 0.12951 3 0.12793 3 
32 0.14408 3 0.14146 3 0.13910 3 0.13696 3 0.13501 3 0.13323 3 0.13159 3 
33 0.14814 3 0.14544 3 0.14300 3 0.14079 3 0.13878 3 0.13695 3 0.13526 3 
34 0.15219 3 0.14941 3 0.14690 3 0.14463 3 0.14256 3 0.14066 3 0.13892 3 
35 0.15625 3 0.15338 3 0.15080 3 0.14846 3 0.14633 3 0.14438 3 0.14259 3 
36 0.16030 3 0.15735 3 0.15470 3 0.15229 3 0.15009 3 0.14809 3 0.14625 3 
37 0.16435 3 0.16132 3 0.15859 3 0.15611 3 0.15386 3 0.15180 3 0.14990 3 
38 0.16840 3 0.16529 3 0.16248 3 0.15994 3 0.15762 3 0.15551 3 0.15356 3 
39 0.17245 3 0.16925 3 0.16638 3 0.16376 3 0.16139 3 0.15921 3 0.15721 3 
40 0.17649 3 0.17322 3 0.17027 3 0.16759 3 0.16515 3 0.16292 3 0.16087 2 
41 0.18054 3 0.17718 3 0.17415 3 0.17141 3 0.16891 3 0.16662 3 0.16452 3 
42 0.18458 3 0.18114 3 0.17804 3 0.17523 3 0.17267 3 0.17032 3 0.16817 3 
43 0.18863 3 0.18511 3 0.18193 3 0.17905 3 0.17642 3 0.17402 3 0.17182 3 
44 0.19267 2 0.18907 3 0.18582 3 0.18287 3 0.18018 3 0.17772 3 0.17547 3 
45 0.19671 3 0.19303 3 0.18970 3 0.18668 3 0.18394 3 0.18142 3 0.17912 3 
46 0.20075 3 0.19698 3 0.19358 3 0.19050 3 0.18769 3 0.18512 3 0.18276 3 
47 0.20479 3 0.20094 3 0.19747 3 0.19432 3 0.19144 3 0.18882 3 0.18641 3 
48 0.20883 3 0.20490 3 0.20135 3 0.19813 3 0.19520 3 0.19251 3 0.19005 3 
49 0.21287 3 0.20885 3 0.20523 3 0.20194 3 0.19895 3 0.19621 3 0.19369 3 
50 0.21691 3 0.21281 3 0.20911 3 0.20576 3 0.20270 3 0.19990 3 0.19734 3 

(cont'd on next page) 
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m 
30 

TABLE 11-4 (cont'd) 

1% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

31 32 33 34 35 36 

2 0.16438 2 0.16318 2 0.16207 2 0.16104 2 0.16008 2 0.15918 2 0.15834 2 
3 0.21038 2 0.20877 2 0.20728 2 0.20589 2 0.20460 2 0.20339 2 0.20226 2 
4 0.25358 2 0.25156 2 0.24969 2 0.24795 2 0.24633 2 0.24482 2 0.24340 2 
5 0.29513 2 0.29271 2 0.29046 2 0.28837 2 0.28643 2 0.28462 2 0.28292 2 

6 0.33560 2 0.33277 2 0.33015 2 0.32771 2 0.32544 2 0.32333 2 0.32135 2 
7 0.37529 2 0.37205 2 0.36906 2 0.36627 2 0.36368 2 0.36126 2 0.35899 2 
8 0.41441 2 0.41076 2 0.40738 2 0.40425 2 0.40133 2 0.39860 2 0.39605 2 
9 0.45307 2 0.44902 2 0.44526 2 0.44177 2 0.43852 2 0.43548 2 0.43265 2 
10 0.49138 2 0.48691 2 0.48277 2 0.47892 2 0.47534 2 0.47200 2 0.46887 2 

11 0.52940 2 0.52451 2 0.51999 2 0.51578 2 0.51187 2 0.50822 2 0.50480 2 
12 0.56717 2 0.56187 2 0.55696 2 0.55239 2 0.54815 2 0.54418 2 0.54047 2 
13 0.60474 2 0.59902 2 0.59372 2 0.58880 2 0.58421 2 0.57993 2 0.57593 2 
14 0.64214 2 0.63600 2 0.63031 2 0.62502 2 0.62010 2 0.61550 2 0.61121 2 
15 0.67939 2 0.67282 2 0.66674 2 0.66109 2 0.65583 2 0.65092 2 0.64633 2 

16 0.71651 2 0.70952 2 0.70304 2 0.69703 2 0.69143 2 0.68620 2 0.68131 2 
17 0.75352 2 0.74610 2 0.73923 2 0.73285 2 0.72691 2 0.72136 2 0.71617 2 
18 0.79042 2 0.78258 2 0.77531 2 0.76856 2 0.76228 2 0.75641 2 0.75092 2 
19 0.82724 2 0.81897 2 0.81131 2 0.80419 2 0.79756 2 0.79137 2 0.78558 2 
20 0.86398 2 0.85528 2 0.84722 2 0.83973 2 0.83276 2 0.82624 2 0.82015 2 

21 0.90065 2 0.89152 2 0.88306 2 0.87520 2 0.86788 2 0.86104 2 0.85465 2 
22 0.93726 2 0.92769 2 0.91883 2 0.91060 2 0.90293 2 0.89577 2 0.88907 2 
23 0.97381 2 0.96381 2 0.95455 2 0.94594 2 0.93793 2 0.93044 2 0.92344 2 
24 0.10103 3 0.99987 2 0.99021 2 0.98123 2 0.97287 2 0.96506 2 0.95775 2 
25 0.10468 3 0.10359 3 0.10258 3 0.10165 3 0.10078 3 0.99962 2 0.99200 2 

26 0.10832 3 0.10719 3 0.10614 3 0.10517 3 0.10426 3 0.10341 3 0.10262 3 
27 0.11195 3 0.11078 3 0.10969 3 0.10868 3 0.10774 3 0.10686 3 0.10604 3 
28 0.11559 3 0.11437 3 0.11324 3 0.11219 3 0.11122 3 0.11030 3 0.10945 3 
29 0.11922 3 0.11795 3 0.11679 3 0.11570 3 0.11469 3 0.11374 3 0.11286 3 
30 0.12284 3 0.12154 3 0.12033 3 0.11920 3 0.11816 3 0.11718 3 0.11626 3 

31 0.12647 3 0.12512 3 0.12387 3 0.12271 3 0.12162 3 0.12061 3 0.11967 3 
32 0.13009 3 0.12869 3 0.12740 3 0.12620 3 0.12509 3 0.12404 3 0.12307 3 
33 0.13371 3 0.13227 3 0.13094 3 0.12970 3 0.12855 3 0.12747 3 0.12646 3 
34 0.13732 3 0.13584 3 0.13447 3 0.13319 3 0.13201 3 0.13089 3 0.12986 3 
35 0.14094 3 0.13941 3 0.13800 3 0.13669 3 0.13546 3 0.13432 3 0.13325 3 

36 0.14455 3 0.14298 3 0.14153 3 0.14017 3 0.13891 3 0.13774 3 0.13664 3 
37 0.14816 3 0.14655 3 0.14505 3 0.14366 3 0.14237 3 0.14116 3 0.14002 3 
38 0.15177 3 0.15011 3 0.14858 3 0.14715 3 0.14582 3 0.14457 3 0.14341 3 
39 0.15537 3 0.15367 3 0.15210 3 0.15063 3 0.14926 3 0.14799 3 0.14679 3 
40 0.15898 3 0.15724 3 0.15562 3 0.15411 3 0.15271 3 0.15140 3 0.15017 2 

41 0.16258 3 0.16079 3 0.15914 3 0.15759 3 0.15615 3 0.15481 3 0.15355 3 
42 0.16619 3 0.16435 3 0.16265 3 0.16107 3 0.15960 3 0.15822 3 0.15693 3 
43 0.16979 3 0.16791 3 0.16617 3 0.16455 3 0.16304 3 0.16163 3 0.16031 3 
44 0.17339 3 0.17147 3 0.16968 3 0.16803 3 0.16648 3 0.16503 3 0.16368 3 
45 0.17699 3 0.17502 3 0.17320 3 0.17150 3 0.16992 3 0.16844 3 0.16706 3 

46 0.18059 3 0.17857 3 0.17671 3 0.17497 3 0.17336 3 0.17184 3 0.17043 3 
47 0.18418 3 0.18213 3 0.18022 3 0.17845 3 0.17679 3 0.17525 3 0.17380 3 
48 0.18778 3 0.18568 3 0.18373 3 0.18192 3 0.18023 3 0.17865 3 0.17717 3 
49 0.19137 3 0.18923 3 0.18724 3 0.18539 3 0.18366 3 0.18205 3 0.18054 3 
50 0.19497 3 0.19278 3 0.19075 3 0.18886 3 0.18710 3 0.18545 3 

(cont'd 

0.18391 3 
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m 

2 
3 
4 
5 

6 
7 
8 
9 

10 

II 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

37 

0.67672 
0.71130 
0.74577 
0.78015 
0.81444 

0.10188 
0.10527 
0.10865 
0.11203 
0.11541 

0.15237 
0.15572 
0.15907 
0.16241 
0.16576 

TABLE 11-4 (cont'd) 

1% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

38 39 40 41 42 

0.15756 2 
0.20120 2 
0.24208 2 
0.28133 2 

0.31949 
0.35687 
0.39366 
0.42999 
0.46594 

0.50160 2 
0.53699 2 
0.57218 2 
0.60718 2 
0.64202 2 

0.84865 2 
0.88279 2 
0.91687 2 
0.95089 2 
0.98486 2 

0.11878 3 
0.12215 3 
0.12552 3 
0.12888 3 
0.13224 3 

0.13560 3 
0.13896 3 
0.14231 3 
0.14567 3 
0.14902 3 

0.16910 3 
0.17244 3 
0.17578 3 
0.17912 3 
0.18246 3 

0.15681 2 
0.20020 2 
0.24083 2 
0.27983 2 

0.31775 2 
0.35488 2 
0.39141 2 
0.42749 2 
0.46319 2 

0.49859 2 
0.53373 2 
0.56865 2 
0.60339 2 
0.63797 2 

0.67241 2 
0.70673 2 
0.74094 3 
0.77505 2 
0.80907 2 

0.84301 2 
0.87689 2 
0.91070 2 
0.94445 2 
0.97815 2 

0.10118 3 
0.10454 3 
0.10790 3 
0.11125 3 
0.11460 3 

0.11794 3 
0.12129 3 
0.12463 3 
0.12796 3 
0.13130 3 

0.13463 3 
0.13796 3 
0.14129 3 
0.14461 3 
0.14794 3 

0.15126 3 
0.15458 3 
0.15790 3 
0.16122 3 
0.16453 3 

0.16785 3 
0.17116 3 
0.17448 3 
0.17779 3 
0.18110 3 

0.15611 2 
0.19926 2 
0.23966 2 
0.27843 2 

0.31610 
0.35300 
0.38930 
0.42514 
0.46060 

0.49576 2 
0.53065 2 
0.56534 2 
0.59983 2 
0.63416 2 

0.66836 2 
0.70242 2 
0.73638 2 
0.77024 2 
0.80401 2 

0.83771 
0.87133 
0.90489 
0.93838 
0.97183 

0.10052 3 
0.10386 3 
0.10719 3 
0.11051 3 
0.11384 3 

0.11716 3 
0.12047 3 
0.12379 3 
0.12710 3 
0.13041 3 

0.13371 3 
0.13702 3 
0.14032 3 
0.14362 3 
0.14692 3 

0.15021 3 
0.15351 3 
0.15680 3 
0.16009 3 
0.16338 3 

0.16667 3 
0.16996 3 
0.17324 3 
0.17653 3 
0.17981 3 

0.15545 2 
0.19838 2 
0.23855 2 
0.27710 2 

0.31456 
0.35123 
0.38731 
0.42292 
0.45816 

0.16882 
0.17208 
0.17534 
0.17860 

0.49309 2 
0.52776 2 
0.56221 2 
0.59647 2 
0.63057 2 

0.66453 2 
0.69837 2 
0.73209 2 
0.76571 2 
0.79925 2 

0.83270 2 
0.86609 2 
0.89940 2 
0.93266 2 
0.96586 2 

0.99902 2 
0.10321 3 
0.10652 3 
0.10982 3 
0.11312 3 

0.11642 3 
0.11971 3 
0.12300 3 
0.12628 3 
0.12957 3 

0.13285 3 
0.13613 3 
0.13940 3 
0.14268 2 
0.14595 3 

0.14922 3 
0.15249 3 
0.15576 3 
0.15903 3 
0.16229 3 

0.16556 3 

0.15483 2 
0.19754 2 
0.23750 2 
0.27584 2 

0.31309 2 
0.34956 2 
0.38543 2 
0.42083 2 
0.45585 2 

0.49057 2 
0.52502 2 
0.55926 2 
0.59330 2 
0.62718 2 

0.66092 2 
0.69453 2 
0.72804 2 
0.76144 2 
0.79475 2 

0.82798 2 
0.86113 2 
0.89423 2 
0.92726 2 
0.96023 2 

0.99316 3 
0.10260 3 
0.10589 3 
0.10917 3 
0.11244 3 

0.11571 3 
0.11898 3 
0.12225 3 
0.12551 3 
0.12877 3 

0.13203 3 
0.13529 3 
0.13854 3 
0.14179 3 
0.14504 3 

0.14829 3 
0.15154 3 
0.15478 3 
0.15803 3 
0.16127 3 

0.16451 3 
0.16775 3 
0.17098 3 
0.17422 3 
0.17746 3 

0.15424 2 
0.19675 2 
0.23652 2 
0.27466 2 

0.31171 2 
0.34798 2 
0.38365 2 
0.41885 2 
0.45367 2 

0.48818 
0.52243 
0.55646 
0.59030 
0.62398 

0.65751 
0.69091 
0.72420 
0.75739 
0.79049 

0.82351 
0.85645 
0.88933 
0.92214 
0.95490 

0.13126 
0.13449 
0.13772 
0.14095 
0.14418 

0.98761 3 
0.10203 3 
0.10529 3 
0.10855 3 
0.11180 3 

0.11505 3 
0.11830 3 
0.12154 3 
0.12478 3 
0.12802 3 

0.14741 3 
0.15063 3 
0.15385 3 
0.15707 3 
0.16029 3 

0.16351 
0.16673 
0.16994 
0.17316 
0.17637 

43 

0.15368 2 
0.19600 2 
0.23558 2 
0.27353 2 

0.31040 2 
0.34648 2 
0.38196 2 
0.41697 2 
0.45160 2 

0.48592 2 
0.51998 2 
0.55382 2 
0.58746 2 
0.62094 2 

0.65427 2 
0.68747 2 
0.72057 2 
0.75355 2 
0.78645 2 

0.81927 2 
0.85201 2 
0.88468 2 
0.91729 2 
0.94985 2 

0.98235 
0.10148 
0.10472 
0.10796 
0.11119 

0.13052 
0.13374 
0.13695 
0.14016 
0.14336 

0.16257 
0.16576 
0.16896 

0.11442 3 
0.11765 3 
0.12087 3 
0.12409 3 
0.12731 3 

0.14657 3 
0.14977 3 
0.15297 3 
0.15617 3 
0.15937 3 

0.17215 3 
0.17534 3 

(cont'd on next page) 
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2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

TABLE 11-4 (cont'd) 

1% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

44 45 46 47 48 49 

0.15315 2 
0.19528 2 
0.23469 2 
0.27247 2 

0.30916 
0.34506 
0.38036 
0.41519 
0.44964 

0.48378 2 
0.51765 2 
0.55130 2 
0.58476 2 
0.61805 2 

0.65120 2 
0.68422 2 
0.71712 2 
0.74992 2 
0.78262 2 

0.81525 2 
0.84780 2 
0.88028 2 
0.91270 2 
0.94506 2 

0.97736 2 
0.10096 3 
0.10418 3 
0.10740 3 
0.11061 3 

0.11382 3 
0.11703 3 
0.12024 3 
0.12344 3 
0.12663 3 

0.12983 3 
0.13302 3 
0.13621 3 
0.13940 3 
0.14259 3 

0.14577 
0.14895 
0.15214 
0.15532 
0.15849 

0.16167 3 
0.16485 3 
0.16802 3 
0.17119 3 
0.17436 3 

0.15265 2 
0.19461 2 
0.23384 2 
0.27146 2 

0.30798 2 
0.34371 2 
0.37884 2 
0.41350 2 
0.44778 2 

0.48175 2 
0.51544 2 
0.54892 2 
0.58220 2 
0.61532 2 

0.64828 2 
0.68112 2 
0.71384 2 
0.74646 2 
0.77899 2 

0.81143 2 
0.84379 2 
0.87609 2 
0.90832 2 
0.94050 2 

0.97262 
0.10047 
0.10367 
0.10687 
0.11007 

0.11326 
0.11645 
0.11963 
0.12281 
0.12599 

0.12917 3 
0.13234 3 
0.13551 3 
0.13868 3 
0.14185 3 

0.14502 
0.14818 
0.15134 
0.15450 
0.15766 

0.16082 
0.16397 
0.16713 
0.17028 
0.17343 

0.15217 2 
0.19396 2 
0.23304 2 
0.27049 2 

0.30686 
0.34243 
0.37740 
0.41190 
0.44601 

0.47981 
0.51334 
0.54665 
0.57977 
0.61271 

0.64551 
0.67818 
0.71073 
0.74317 
0.77552 

0.80779 
0.83998 
0.87211 
0.90417 
0.93617 

0.96811 2 
0.10000 3 
0.10319 3 
0.10637 3 
0.10954 3 

0.11272 
0.11589 
0.11905 
0.12222 
0.12538 

0.12854 
0.13169 
0.13485 
0.13800 
0.14115 

0.14429 3 
0.14744 3 
0.15058 3 
0.15373 3 
0.15687 3 

0.16001 3 
0.16314 3 
0.16628 3 
0.16941 3 
0.17255 3 

0.15171 2 
0.19335 2 
0.23227 2 
0.26958 2 

0.30579 2 
0.34121 2 
0.37602 2 
0.41037 2 
0.44432 2 

0.47797 
0.51134 
0.54449 
0.57745 
0.61023 

0.64287 
0.67537 
0.70776 
0.74004 
0.77223 

0.80433 2 
0.83636 2 
0.86831 2 
0.90021 2 
0.93204 2 

0.96382 2 
0.99555 2 
0.10272 3 
0.10589 3 
0.10905 3 

0.11220 
0.11536 
0.11851 
0.12165 
0.12480 

0.12794 
0.13108 
0.13421 
0.13735 
0.14048 

0.14361 
0.14674 
0.14986 
0.15299 
0.15611 

0.15923 3 
0.16235 3 
0.16547 3 
0.16859 3 
0.17170 3 

0.15127 2 
0.19276 2 
0.23154 2 
0.26870 2 

0.30477 
0.34004 
0.37471 
0.40891 
0.44272 

0.47621 
0.50944 
0.54243 
0.57524 
0.60787 

0.64035 
0.67270 
0.70493 
0.73705 
0.76909 

0.80103 
0.83290 
0.86470 
0.89643 
0.92810 

0.95972 
0.99129 
0.10228 
0.10543 
0.10857 

0.11171 
0.11485 
0.11798 
0.12111 
0.12424 

0.12736 
0.13049 
0.13361 
0.13672 
0.13984 

0.14295 
0.14606 
0.14917 
0.15228 
0.15539 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
3 
3 
3 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 

0.15849 3 
0.16160 3 
0.16470 3 
0.16780 3 
0.17090 3 

0.15085 2 
0.19221 2 
0.23085 2 
0.26787 2 

0.30379 
0.33893 
0.37346 
0.40751 
0.44118 

0.47453 
0.50761 
0.54047 
0.57312 
0.60561 

0.63794 2 
0.67015 2 
0.70223 2 
0.73420 2 
0.76608 2 

0.79788 2 
0.82960 2 
0.86124 2 
0.89282 2 
0.92434 2 

0.95580 2 
0.98722 2 
0.10186 3 
0.10499 3 
0.10812 3 

0.11124 
0.11436 
0.11748 
0.12060 
0.12371 

0.12682 
0.12992 
0.13303 
0.13613 
0.13923 

0.14233 3 
0.14542 3 
0.14852 3 
0.15161 3 
0.15470 3 

0.15779 
0.16087 
0.16396 
0.16704 
0.17013 

50 

0.15046 2 
0.19167 2 
0.23018 2 
0.26707 2 

0.30286 
0.33787 
0.37226 
0.40618 
0.43972 

0.47293 
0.50588 
0.53859 
0.57111 
0.60345 

0.63565 
0.66771 
0.69965 
0.73148 
0.76322 

0.79487 
0.82644 
0.85794 
0.88937 
0.92075 

0.95206 
0.98333 
0.10145 
0.10457 
0.10769 

0.11080 
0.11390 
0.11700 
0.12010 
0.12320 

0.12629 3 
0.12939 3 
0.13247 3 
0.13556 3 
0.13864 3 

0.14173 
0.14481 
0.14789 
0.15096 
0.15404 

0.15711 
0.16018 
0.16325 
0.16632 
0.16939 

(cont'd on next page) 
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16 
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21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

TABLE 11-4 (cont'd) 

5% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

2 3 4 5 6 7 

0.19718 4 
0.31978 4 
0.44390 2 
0.56865 4 

0.69371 
0.81895 
0.94429 
0.10697 
0.11952 

0.19485 
0.20741 
0.21997 
0.23253 
0.24509 

0.25765 
0.27021 
0.28277 
0.29534 
0.30790 

0.32046 
0.33303 
0.34559 
0.35815 
0.37072 

0.44610 
0.45866 
0.47123 
0.48379 
0.49636 

0.50892 
0.52149 
0.53405 
0.54662 
0.55918 

0.57175 
0.58431 
0.59688 
0.60944 
0.62201 

0.13207 5 
0.14462 5 
0.15717 5 
0.16973 5 
0.18229 5 

0.38328 5 
0.39584 5 
0.40841 5 
0.42097 5 
0.43354 5 

0.11686 3 
0.17675 3 
0.23664 3 
0.29654 3 

0.35664 
0.41635 
0.47625 
0.53615 
0.59606 

0.65596 3 
0.71586 3 
0.77577 3 
0.83567 3 
0.89557 3 

0.95548 3 
0.10154 4 
0.10753 4 
0.11352 4 
0.11951 4 

0.12550 4 
0.13149 4 
0.13748 4 
0.14347 4 
0.14946 4 

0.15545 4 
0.16144 4 
0.16743 4 
0.17342 4 
0.17941 4 

0.18540 4 
0.19139 4 
0.19739 4 
0.20338 4 
0.20937 4 

0.21536 4 
0.22135 4 
0.22734 4 
0.23333 4 
0.23932 4 

0.24531 4 
0.25130 4 
0.25729 4 
0.26328 4 
0.26927 4 

0.27526 4 
0.28125 4 
0.28724 4 
0.29323 4 
0.29922 4 

0.47998 2 
0.69937 2 
0.91673 2 
0.11331 3 

0.13490 
0.15646 
0.17800 
0.19952 
0.22104 

0.24254 
0.26404 
0.28554 
0.30703 
0.32852 

0.77956 
0.80104 
0.82251 
0.84399 
0.86546 

0.88693 
0.90841 
0.92988 
0.95135 
0.97282 

0.35001 3 
0.37149 3 
0.39298 3 
0.41446 3 
0.43594 3 

0.45742 3 
0.47890 3 
0.50038 3 
0.52186 3 
0.54334 3 

0.56481 3 
0.58629 3 
0.60777 3 
0.62924 3 
0.65072 3 

0.67219 3 
0.69367 3 
0.71514 3 
0.73662 3 
0.75809 3 

0.99430 3 
0.10158 4 
0.10372 4 
0.10587 4 
0.10802 4 

0.31278 2 
0.44593 2 
0.57687 2 
0.70674 2 

0.83602 2 
0.96492 2 
0.10936 3 
0.12221 3 
0.13504 3 

0.14787 
0.16069 
0.17351 
0.18632 
0.19912 

0.21193 
0.22473 
0.23753 
0.25033 
0.26312 

0.27592 
0.28871 
0.30150 
0.31429 
0.32708 

0.33987 
0.35266 
0.36545 
0.37824 
0.39103 

0.40382 
0.41660 
0.42939 
0.44218 
0.45496 

0.46775 
0.48053 
0.49332 
0.50611 
0.51889 

0.53168 
0.54446 
0.55724 
0.57003 
0.58281' 

0.59560 
0.60838 
0.62117 
0.63395 
0.64673 

0.24350 2 
0.34234 2 
0.43899 2 
0.53454 2 

0.62947 2 
0.72400 2 
0.81826 2 
0.91234 2 
0.10063 3 

0.11001 
0.11939 
0.12876 
0.13812 
0.14748 

0.29698 
0.30632 
0.31566 
0.32499 
0.33433 

0.39034 
0.39967 

0.41834 
0.42767 

0.15684 3 
0.16619 3 
0.17554 3 
0.18489 3 
0.19424 3 

0.20358 
0.21293 
0.22227 
0.23161 
0.24095 

0.25029 3 
0.25963 3 
0.26897 3 
0.27831 3 
0.28765 3 

0.34366 3 
0.35300 3 
0.36233 3 
0.37167 3 
0.38100 3 

0.40900 3 

0.43700 3 
0.44634 3 
0.45567 3 
0.46500 3 
0.47434 3 

0.20668 2 
0.28781 2 
0.36677 2 
0.44463 2 

0.52185 2 
0.59865 2 
0.67517 2 
0.75148 2 
0.82765 2 

0.90371 2 
0.97967 2 
0.10556 3 
0.11314 3 
0.12072 3 

0.12830 3 
0.13587 3 
0.14344 3 
0.15100 3 
0.15857 3 

0.16613 3 
0.17369 3 
0.18125 3 
0.18881 3 
0.19637 3 

0.20393 3 
0.21149 3 
0.21904 3 
0.22660 3 
0.23415 3 

0.24170 3 
0.24926 3 
0.25681 3 
0.26436 3 
0.27191 3 

0.27947 3 
0.28702 3 
0.29457 3 
0.30212 3 
0.30967 3 

0.31722 3 
0.32477 3 
0.33232 3 
0.33987 3 
0.34742 3 

0.35497 
0.36251 
0.37006 
0.37761 
0.38516 

0.18414 2 
0.25464 2 
0.32301 2 
0.39027 2 

0.45687 
0.52304 
0.58891 
0.65458 
0.72008 

0.78547 
0.85075 
0.91597 
0.98112 
0.10462 

0.11113 
0.11763 
0.12413 
0.13063 
0.13712 

0.14361 
0.15010 
0.15659 
0.16308 
0.16957 

0.27325 
0.27973 
0.28621 
0.29268 
0.29916 

0.17605 3 
0.18254 3 
0.18902 3 
0.19550 3 
0.20198 3 

0.20846 3 
0.21495 3 
0.22143 3 
0.22791 3 
0.23439 3 

0.24086 3 
0.24734 3 
0.25382 3 
0.26030 3 
0.26678 3 

0.30564 3 
0.31211 3 
0.31859 3 
0.32506 3 
0.33154 3 
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3 
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6 
7 
S 
9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
H 
45 

46 
47 
48 
49 
50 

TABLE 11-4 (cont'd) 

5% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

10 11 12 13 14 

0.16901 2 
0.23250 2 
0.29388 2 
0.35414 2 

0.41373 
0.47289 
0.53173 
0.59036 
0.64882 

0.70714 
0.76537 
0.82352 
0.88160 
0.93962 

0.99760 
0.10555 
0.11134 
0.11713 
0.12292 

0.12870 
0.13448 
0.14026 
0.14604 
0.15182 

0.15759 
0.16337 
0.16914 
0.17491 
0.18068 

0.18645 3 
0.19222 3 
0.19799 3 
0.20376 3 
0.20953 3 

0.21530 
0.22107 
0.22684 
0.23260 
0.23837 

0.24414 3 
0.24990 3 
0.25567 3 
0.26143 2 
0.26720 3 

0.27296 
0.27873 
0.28449 
0.29026 
0.29602 

0.15819 2 
0.21673 2 
0.27318 2 
0.32851 2 

0.38316 
0.43736 
0.49124 
0.54489 
0.59837 

0.24982 
0.25509 
0.26035 
0.26561 
0.27087 

0.65171 2 
0.70494 2 
0.75809 2 
0.81117 2 
0.86418 2 

0.91715 
0.97008 
0.10230 
0.10758 
0.11287 

0.11815 3 
0.12343 3 
0.12870 3 
0.13398 3 
0.13925 3 

0.14452 3 
0.14980 3 
0.15507 3 
0.16033 3 
0.16560 3 

0.17087 
0.17614 
0.18140 
0.18667 
0.19194 

0.19720 
0.20246 
0.20773 
0.21299 
0.21825 

0.22352 3 
0.22878 3 
0.23404 3 
0.23930 3 
0.24456 3 

0.15009 2 
0.20496 2 
0.25776 2 
0.30943 2 

0.36042 
0.41095 
0.46115 
0.51111 
0.56089 

0.23262 
0.23750 
0.24239 
0.24727 
0.25216 

0.61053 2 
0.66005 2 
0.70949 2 
0.75885 2 
0.80814 2 

0.85739 2 
0.90659 2 
0.95575 2 
0.10049 3 
0.10540 3 

0.11030 
0.11521 
0.12011 
0.12501 
0.12991 

0.13481 
0.13971 
0.14461 
0.14950 
0.15439 

0.15929 
0.16418 
0.16907 
0.17396 
0.17885 

0.18374 3 
0.18863 3 
0.19352 3 
0.19841 3 
0.20330 3 

0.20818 3 
0.21307 3 
0.21796 3 
0.22284 3 
0.22773 3 

0.14380 2 
0.19585 2 
0.24584 2 
0.29471 2 

0.34288 
0.39058 
0.43795 
0.48507 
0.53200 

0.57879 
0.62546 
0.67203 
0.71852 
0.76495 

0.81132 
0.85764 
0.90393 
0.95018 
0.99639 

0.10426 
0.10887 
0.11349 
0.11810 
0.12271 

0.21933 
0.22393 
0.22852 
0.23312 
0.23771 

0.12732 3 
0.13193 3 
0.13654 3 
0.14114 3 
0.14575 3 

0.15035 
0.15495 
0.15956 
0.16416 
0.16876 

0.17336 3 
0.17796 3 
0.18256 3 
0.18715 3 
0.19175 3 

0.19635 3 
0.20095 3 
0.20554 3 
0.21014 3 
0.21474 3 

0.13879 2 
0.18861 2 
0.23637 2 
0.28302 2 

0.32896 
0.37442 
0.41954 
0.46441 
0.50909 

0.55361 
0.59801 
0.64231 
0.68653 
0.73068 

0.12137 
0.12575 
0.13013 
0.13450 
0.13888 

0.14325 
0.14763 
0.15200 
0.15637 
0.16074 

0.16511 
0.16948 
0.17384 
0.17821 
0.18258 

0.77477 2 
0.81881 2 
0.86280 2 
0.90676 2 
0.95069 2 

0.99459 2 
0.10385 3 
0.10823 3 
0.11261 3 
0.11699 3 

0.18695 3 
0.19131 3 
0.19568 3 
0.20004 3 
0.20441 3 

0.20877 3 
0.21314 3 
0.21750 3 
0.22187 3 
0.22623 3 

0.13470 2 
0.18270 2 
0.22867 2 
0.27351 2 

0.31765 
0.36129 
0.40460 
0.44764 
0.49048 

0.53316 2 
0.57572 2 
0.61818 2 
0.66054 2 
0.70284 2 

0.74508 2 
0.78726 2 
0.82940 2 
0.87149 2 
0.91356 2 

0.95559 2 
0.99759 2 
0.10396 3 
0.10815 3 
0.11235 3 

0.11654 3 
0.12073 3 
0.12492 3 
0.12911 3 
0.13330 3 

0.13748 3 
0.14167 3 
0.14585 3 
0.15003 3 
0.15422 3 

0.15840 3 
0.16258 3 
0.16676 3 
0.17094 3 
0.17512 3 

0.17930 3 
0.18348 3 
0.18765 3 
0.19183 3 
0.19601 3 

0.20018 3 
0.20436 3 
0.20854 3 
0.21271 3 
0.21689 3 

15 

0.13130 2 
0.17781 2 
0.22229 2 
0.26564 2 

0.30828 
0.35043 
0.39222 
0.43375 
0.47508 

0.51624 
0.55727 
0.59820 
0.63904 
0.67980 

0.72050 2 
0.76114 2 
0.80173 2 
0.84229 2 
0.88280 2 

0.92329 
0.96375 
0.10042 
0.10446 
0.10850 

0.11254 3 
0.11657 3 
0.12060 3 
0.12464 3 
0.12867 3 

0.13270 
0.13673 
0.14076 
0.14478 
0.14881 

0.15284 
0.15686 
0.16088 
0.16491 
0.16893 

0.17295 
0.17698 
0.18100 
0.18502 
0.18904 

0.19306 
0.19708 
0.20110 
0.20512 
0.20914 

(cont'd on next page) 
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10 

11 
12 
13 
14 
15 

16 
17 
IS 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
137 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

TABLE 11-4 (cont'd) 

5% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

16 17 18 19 20 21 

0.12843 2 
0.17369 2 
0.21692 2 
0.25902 2 

0.30040 
0.34129 
0.38182 
0.42208 
0.46213 

0.50201 
0.54176 
0.58140 
0.62095 
0.66042 

0.69982 
0.73916 
0.77846 
0.81771 
0.85693 

0.12867 
0.13257 
0.13647 
0.14036 
0.14426 

0.14815 
0.15204 
0.15594 
0.15983 
0.16372 

0.16761 
0.17150 
0.17539 
0.17928 
0.18317 

0.18706 
0.19094 
0.19483 
0.19872 
0.20261 

0.89611 2 
0.93526 2 
0.97439 2 
0.10135 3 
0.10526 3 

0.10916 3 
0.11307 3 
0.11697 3 
0.12087 3 
0.12477 3 

0.12598 2 
0.17016 2 
0.21233 2 
0.25337 2 

0.29369 2 
0.33350 2 
0.37295 2 
0.41213 2 
0.45109 2 

0.48988 
0.52854 
0.56708 
0.60552 
0.64389 

0.68219 2 
0.72042 2 
0.75861 3 
0.79675 2 
0.83486 2 

0.87292 2 
0.91096 2 
0.94897 2 
0.98696 2 
0.10249 3 

0.10629 3 
0.11008 3 
0.11387 3 
0.11766 3 
0.12145 3 

0.12523 
0.12902 
0.13280 
0.13659 
0.14037 

0.14415 
0.14793 
0.15171 
0.15549 
0.15927 

0.16305 3 
0.16682 3 
0.17060 3 
0.17438 3 
0.17815 3 

0.18193 
0.18570 
0.18948 
0.19325 
0.19703 

0.12386 2 
0.16712 2 
0.20838 2 
0.24850 2 

0.28789 
0.32678 
0.36530 
0.40355 
0.44157 

0.14069 
0.14438 
0.14806 
0.15174 
0.15542 

0.47942 2 
0.51713 2 
0.55473 2 
0.59222 2 
0.62964 2 

0.66698 2 
0.70426 2 
0.74149 2 
0.77867 2 
0.81581 2 

0.85292 2 
0.88999 2 
0.92703 2 
0.96405 2 
0.10010 3 

0.10380 3 
0.10750 3 
0.11119 3 
0.11488 3 
0.11857 3 

0.12226 3 
0.12595 3 
0.12964 3 
0.13332 3 
0.13701 3 

0.17750 
0.18117 
0.18485 
0.18853 
0.19220 

0.15910 3 
0.16278 3 
0.16646 3 
0.17014 3 
0.17382 3 

0.12201 2 
0.16447 2 
0.20493 2 
0.24425 2 

0.28285 2 
0.32093 2 
0.35864 2 
0.39607 2 
0.43328 2 

0.47031 2 
0.50720 2 
0.54397 2 
0.58063 2 
0.61722 2 

0.65373 2 
0.69017 2 
0.72657 2 
0.76291 2 
0.79921 2 

0.83548 2 
0.87171 2 
0.90791 2 
0.94408 2 
0.98023 2 

0.10164 3 
0.10525 3 
0.10886 3 
0.11246 3 
0.11607 3 

0.11967 3 
0.12328 3 
0.12688 3 
0.13048 3 
0.13408 3 

0.13768 
0.14128 
0.14487 
0.14847 
0.15207 

0.15566 3 
0.15925 3 
0.16285 3 
0.16644 3 
0.17003 3 

0.17363 3 
0.17722 3 
0.18081 3 
0.18440 3 
0.18799 3 

0.12038 2 
0.16214 2 
0.20190 2 
0.24052 2 

0.27841 
0.31579 
0.35279 
0.38951 
0.42600 

0.46231 2 
0.49847 2 
0.53451 2 
0.57045 2 
0.60630 2 

0.64208 
0.67779 
0.71345 
0.74905 
0.78462 

0.82014 
0.85563 
0.89109 
0.92652 
0.96192 

0.15263 
0.15615 
0.15967 
0.16319 
0.16670 

0.99731 2 
0.10327 3 
0.10680 3 
0.11033 3 
0.11386 3 

0.11739 3 
0.12092 3 
0.12445 3 
0.12798 3 
0.13150 3 

0.13502 3 
0.13855 3 
0.14207 3 
0.14559 3 
0.14911 3 

0.17022 3 
0.17374 3 
0.17725 3 
0.18077 3 
0.18428 3 

0.11894 2 
0.16007 2 
0.19921 2 
0.23722 2 

0.27449 
0.31124 
0.34761 
0.38369 
0.41955 

0.45522 
0.49074 
0.52614 
0.56143 
0.59663 

0.63176 
0.66682 
0.70182 
0.73678 
0.77168 

0.80655 2 
0.84138 2 
0.87618 2 
0.91095 2 
0.94570 2 

0.98042 
0.10151 
0.10498 
0.10845 
0.11191 

0.11537 
0.11884 
0.12230 
0.12575 
0.12921 

0.13267 
0.13613 
0.13958 
0.14303 
0.14649 

0.14994 
0.15339 
0.15684 
0.16030 
0.16375 

0.16720 
0.17064 
0.17409 
0.17754 
0.18099 

22 

0.11765 2 
0.15822 2 
0.19682 2 
0.23427 2 

0.27099 2 
0.30718 2 
0.34299 2 
0.37851 2 
0.41380 2 

0.44890 2 
0.48385 2 
0.51867 2 
0.55339 2 
0.58801 2 

0.62256 2 
0.65704 2 
0.69146 2 
0.72582 2 
0.76014 2 

0.79442 
0.82867 
0.86288 
0.89706 
0.93121 

0.11357 
0.11697 
0.12037 
0.12377 
0.12717 

0.13057 
0.13396 
0.13736 
0.14075 
0.14415 

0.14754 
0.15093 
0.15432 
0.15771 
0.16110 

0.16449 
0.16788 
0.17127 
0.17466 
0.17805 

0.96534 2 
0.99945 2 
0.10335 3 
0.10676 3 
0.11017 3 
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23 
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26 
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28 
29 
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31 
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33 
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TABLE 11-4 (cont'd) 

5% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

23 24 25 26 27 28 

0.11649 2 
0.15657 2 
0.19467 2 
0.23163 2 

0.26784 2 
0.30354 2 
0.33885 2 
0.37386 2 
0.40864 2 

0.44323 2 
0.47766 2 
0.51197 2 
0.54617 2 
0.58027 2 

0.61430 2 
0.64826 2 
0.68215 2 
0.71599 2 
0.74979 2 

0.78354 2 
0.81725 2 
0.85093 2 
0.88458 2 
0.91820 2 

0.95180 
0.98538 
0.10189 
0.10525 
0.10860 

0.11195 
0.11530 
0.11864 
0.12199 
0.12533 

0.12868 
0.13202 
0.13536 
0.13870 
0.14204 

0.14538 
0.14872 
0.15206 
0.15539 
0.15873 

0.16206 
0.16540 
0.16873 
0.17207 
0.17540 

0.11544 2 
0.15507 2 
0.19273 2 
0.22924 2 

0.26501 
0.30025 
0.33511 
0.36967 
0.40399 

0.77371 
0.80695 
0.84015 
0.87332 
0.90646 

0.11048 
0.11378 
0.11708 
0.12038 
0.12367 

0.14343 
0.14672 
0.15001 
0.15329 
0.15658 

0.43811 2 
0.47209 2 
0.50593 2 
0.53966 2 
0.57329 2 

0.60685 2 
0.64033 2 
0.67375 3 
0.70712 2 
0.74044 2 

0.93957 2 
0.97267 2 
0.10057 3 
0.10388 3 
0.10718 3 

0.12697 3 
0.13026 3 
0.13356 3 
0.13685 3 
0.14014 3 

0.15987 3 
0.16315 3 
0.16644 3 
0.16972 3 
0.17301 3 

0.11449 2 
0.15371 2 
0.19097 2 
0.22708 2 

0.26244 
0.29728 
0.33172 
0.36586 
0.39977 

0.43348 
0.46703 
0.50045 
0.53375 
0.56696 

0.60009 
0.63314 
0.66613 
0.69907 
0.73195 

0.92848 
0.96113 
0.99376 
0.10264 
0.10590 

0.76480 2 
0.79760 2 
0.83036 2 
0.86310 2 
0.89580 2 

0.10915 3 
0.11241 3 
0.11566 3 
0.11892 3 
0.12217 3 

0.12542 3 
0.12867 3 
0.13192 3 
0.13516 3 
0.13841 3 

0.14166 3 
0.14490 3 
0.14814 3 
0.15139 3 
0.15463 3 

0.15787 3 
0.16111 3 
0.16435 3 
0.16759 3 
0.17083 3 

0.11362 2 
0.15248 2 
0.18936 2 
0.22511 2 

0.26010 
0.29457 
0.32864 
0.36240 
0.39593 

0.42925 
0.46242 
0.49546 
0.52837 
0.56120 

0.59393 
0.62660 
0.65919 
0.69174 
0.72423 

0.91836 
0.95062 
0.98285 
0.10151 
0.10472 

0.12400 
0.12721 
0.13042 
0.13363 
0.13683 

0.14004 
0.14324 
0.14645 
0.14965 
0.15285 

0.75667 2 
0.78908 2 
0.82144 2 
0.85378 2 
0.88608 2 

0.10794 3 
0.11116 3 
0.11437 3 
0.11758 3 
0.12079 3 

0.15605 3 
0.15925 3 
0.16245 3 
0.16565 3 
0.16885 3 

0.11283 2 
0.15134 2 
0.18790 2 
0.22330 2 

0.25796 
0.29209 
0.32581 
0.35923 
0.39241 

0.42539 2 
0.45821 2 
0.49089 2 
0.52346 2 
0.55592 2 

0.58830 2 
0.62061 2 
0.65284 2 
0.68502 2 
0.71715 2 

0.74924 
0.78128 
0.81328 
0.84525 
0.87719 

0.90910 2 
0.94099 2 
0.97285 2 
0.10047 3 
0.10365 3 

0.10683 3 
0.11001 3 
0.11319 3 
0.11636 3 
0.11954 3 

0.12271 3 
0.12588 3 
0.12905 3 
0.13222 3 
0.13539 3 

0.13856 
0.14172 
0.14489 
0.14806 
0.15122 

0.15438 
0.15755 
0.16071 
0.16387 
0.16703 

0.11210 2 
0.15030 2 
0.18655 2 
0.22165 2 

0.25600 2 
0.28981 2 
0.32322 2 
0.35633 2 
0.38919 2 

0.42185 2 
0.45434 2 
0.48670 2 
0.51894 2 
0.55108 2 

0.58313 2 
0.61510 2 
0.64701 2 
0.67886 2 
0.71066 2 

0.74241 2 
0.77411 2 
0.80578 2 
0.83742 2 
0.86902 2 

0.90059 2 
0.93214 2 
0.96367 2 
0.99517 2 
0.10266 3 

0.10581 
0.10896 
0.11210 
0.11524 
0.11838 

0.12152 3 
0.12466 3 
0.12779 3 
0.13093 3 
0.13406 3 

0.13719 3 
0.14033 3 
0.14346 3 
0.14659 3 
0.14972 3 

0.15285 3 
0.15598 3 
0.15911 3 
0.16223 3 
0.16536 3 

29 

0.11142 2 
0.14935 2 
0.18531 2 
0.22013 2 

0.25419 2 
0.28771 2 
0.32084 2 
0.35365 2 
0.38622 2 

0.41858 
0.45078 
0.48284 
0.51478 
0.54661 

0.12042 
0.12353 
0.12663 
0.12973 
0.13284 

0.15143 
0.15453 
0.15763 
0.16072 
0.16382 

0.57836 2 
0.61004 2 
0.64164 2 
0.67318 2 
0.70467 2 

0.73611 
0.76751 
0.79887 
0.83019 
0.86149 

0.89275 
0.92398 
0.95520 
0.98638 
0.10176 

0.10487 3 
0.10798 3 
0.11109 3 
0.11420 3 
0.11731 3 

0.13594 3 
0.13904 3 
0.14214 3 
0.14524 3 
0.14834 3 

(cont'd on next page) 

11-27 



DARCOM-P 706-103 

m 

2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

11-28 

TABLE 11-4 (cont'd) 

5% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

30 31 32 33 34 35 

0.11080 2 
0.14846 2 
0.18416 2 
0.21872 2 

0.25252 
0.28578 
0.31863 
0.35118 
0.38347 

0.41556 
0.44749 
0.47927 
0.51093 
0.54249 

0.57396 
0.60535 
0.63667 
0.66793 
0.69913 

0.73029 
0.76140 
0.79248 
0.82351 
0.85452 

0.88549 
0.91644 
0.94736 
0.97826 
0.10091 

0.10400 
0.10708 
0.11017 
0.11325 
0.11633 

0.11940 
0.12248 
0.12555 
0.12863 
0.13170 

0.13477 
0.13785 
0.14092 
0.14398 
0.14705 

0.15012 
0.15319 
0.15625 
0.15932 
0.16239 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
3 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 

3 
3 
3 
2 
3 

3 
3 
3 
3 
3 

0.11022 2 
0.14764 2 
0.18310 2 
0.21741 2 

0.25097 
0.28398 
0.31659 
0.34888 
0.38093 

0.41277 2 
0.44443 2 
0.47596 2 
0.50737 2 
0.53867 2 

0.56987 2 
0.60100 2 
0.63206 2 
0.66306 2 
0.69400 2 

0.72489 2 
0.75574 2 
0.78655 2 
0.81732 2 
0.84805 2 

0.87876 2 
0.90944 2 
0.94009 2 
0.97072 2 
0.10013 3 

0.10319 
0.10625 
0.10930 
0.11236 
0.11541 

0.11846 
0.12151 
0.12456 
0.12760 
0.13065 

0.13369 3 
0.13674 3 
0.13978 3 
0.14282 3 
0.14586 3 

0.14890 3 
0.15194 3 
0.15498 3 
0.15802 3 
0.16106 3 

0.10969 2 
0.14687 2 
0.18211 2 
0.21620 2 

0.24953 
0.28231 
0.31469 
0.34675 
0.37856 

0.41017 
0.44160 
0.47289 
0.50405 
0.53511 

0.56608 
0.59696 
0.62778 
0.65853 
0.68923 

0.71987 
0.75047 
0.78103 
0.81155 
0.84204 

0.87250 
0.90293 
0.93333 
0.96371 
0.99406 

0.10244 3 
0.10547 3 
0.10850 3 
0.11153 3 
0.11456 3 

0.11758 3 
0.12060 3 
0.12363 3 
0.12665 3 
0.12967 3 

0.13269 
0.13571 
0.13872 
0.14174 
0.14476 

0.14777 3 
0.15078 3 
0.15380 3 
0.15681 3 
0.15982 3 

0.10919 2 
0.14616 2 
6.18119 2 
0.21507 2 

0.24818 
0.28076 
0.31292 
0.34477 
0.37636 

0.40774 
0.43895 
0.47002 
0.50096 
0.53180 

0.56254 
0.59320 
0.62379 
0.65431 
0.68478 

0.71519 
0.74556 
0.77589 
0.80618 
0.83643 

0.86666 
0.89685 
0.92702 
0.95716 
0.98728 

0.10174 
0.10475 
0.10775 
0.11076 
0.11376 

0.11676 3 
0.11976 3 
0.12276 3 
0.12576 3 
0.12875 3 

0.13175 
0.13474 
0.13774 
0.14073 
0.14372 

0.14671 3 
0.14970 3 
0.15269 3 
0.15568 3 
0.15867 3 

0.10872 2 
0.14550 2 
0.18033 2 
0.21401 2 

0.24693 
0.27930 
0.31127 
0.34291 
0.37430 

0.40548 2 
0.43649 2 
0.46734 2 
0.49808 2 
0.52870 2 

0.55923 2 
0.58968 2 
0.62006 2 
0.65037 2 
0.68062 2 

0.71082 2 
0.74097 2 
0.77108 2 
0.80116 2 
0.83119 2 

0.86120 2 
0.89117 2 
0.92112 2 
0.95105 2 
0.98095 2 

0.10108 
0.10407 
0.10705 
0.11003 
0.11302 

0.11599 3 
0.11897 3 
0.12195 3 
0.12492 3 
0.12790 3 

0.13087 3 
0.13384 3 
0.13681 3 
0.13978 3 
0.14275 3 

0.14572 3 
0.14869 3 
0.15166 3 
0.15462 3 
0.15759 3 

0.10828 2 
0.14487 2 
0.17952 2 
0.21302 2 

0.24576 
0.27794 
0.30972 
0.34118 
0.37237 

0.40336 2 
0.43417 2 
0.46484 2 
0.49537 2 
0.52580 2 

0.55614 2 
0.58639 2 
0.61656 2 
0.64667 2 
0.67672 2 

0.70672 2 
0.73667 2 
0.76658 2 
0.79645 2 
0.82628 2 

0.85608 2 
0.88585 2 
0.91560 2 
0.94531 2 
0.97501 2 

0.10047 
0.10343 
0.10640 
0.10936 
0.11232 

0.11528 3 
0.11823 3 
0.12119 3 
0.12414 3 
0.12710 3 

0.13005 3 
0.13300 3 
0.13595 3 
0.13890 3 
0.14185 3 

0.14479 3 
0.14774 3 
0.15068 3 
0.15363 3 
0.15657 3 

36 

0.10787 2 
0.14429 2 
0.17876 2 
0.21209 2 

0.24465 
0.27667 
0.30827 
0.33955 
0.37057 

0.40137 
0.43200 
0.46249 
0.49284 
0.52308 

0.55323 
0.58329 
0.61328 
0.64320 
0.67307 

0.70288 2 
0.73264 2 
0.76235 2 
0.79203 2 
0.82167 2 

0.85128 2 
0.88086 2 
0.91041 2 
0.93993 2 
0.96943 2 

0.99891 
0.10284 
0.10578 
0.10872 
0.11166 

0.11460 3 
0.11754 3 
0.12047 3 
0.12341 3 
0.12634 2 

0.12927 3 
0.13221 3 
0.13514 3 
0.13806 3 
0.14099 3 

0.14392 
0.14685 
0.14977 
0.15270 
0.15562 

(cont'd on next page) 
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m 

TABLE 11-4 (cont'd) 

5% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

?7 38 39 40 41 42 43 

2 0.10748 2 0.10712 2 0.10677 2 0.10645 2 0.10614 2 0.10585 2 0.10557 2 
3 0.14374 2 0.14322 2 0.14273 2 0.14227 2 0.14183 2 0.14142 2 0.14103 2 
4 0.17805 2 0.17738 2 0.17675 2 0.17615 2 0.17559 2 0.17505 2 0.17455 2 
5 0.21122 2 0.21040 2 0.20962 2 0.20889 2 0.20820 2 0.20754 2 0.20692 2 

6 0.24362 2 0.24264 2 0.24172 2 0.24086 2 0.24003 2 0.23925 2 0.23852 2 
7 0.27547 2 0.27434 2 0.27328 2 0.27227 2 0.27132 2 0.27041 2 0.26956 2 
8 0.30690 2 0.30562 2 0.30441 2 0.30326 2 0.30218 2 0.30115 2 0.30018 2 
9 0.33802 2 0.33657 2 0.33521 2 0.33393 2 0.33271 2 0.33156 2 0.33047 2 
10 0.36887 2 0.36727 2 0.36576 2 0.36433 2 0.36298 2 0.36170 2 0.36049 2 

11 0.39951 2 0.39775 2 0.39609 2 0.39452 2 0.39303 2 0.39163 2 0.39029 2 
12 0.42997 2 0.42805 2 0.42623 2 0.42452 2 0.42290 2 0.42137 2 0.41991 2 
13 0.46028 2 0.45819 2 0.45623 2 0.45437 2 0.45262 2 0.45095 2 0.44937 2 
14 0.49046 2 0.48821 2 0.48609 2 0.48409 2 0.48220 2 0.48040 2 0.47870 2 
15 0.52053 2 0.51812 2 0.51585 2 0.51370 2 0.51167 2 0.50974 2 0.50791 2 

16 0.55050 2 0.54793 2 0.54550 2 0.54320 2 0.54103 2 0.53897 2 0.53702 2 
17 0.58039 2 0.57765 2 0.57506 2 0.57262 2 0.57031 2 0.56812 2 0.56604 2 
18 0.61020 2 0.60729 2 0.60455 2 0.60196 2 0.59951 2 0.59719 2 0.59498 2 
19 0.63994 2 0.63687 2 0.63397 2 0.63123 2 0.62864 2 0.62618 2 0.62385 2 
20 0.66963 2 0.66639 2 0.66333 2 0.66044 2 0.65771 2 0.65511 2 0.65265 2 
21 0.69926 2 0.69585 2 0.69264 2 0.68960 2 0.68672 2 0.68399 2 0.68140 2 
22 0.72884 2 0.72526 2 0.72189 2 0.71870 2 0.71568 2 0.71281 2 0.71009 2 
23 0.75838 2 0.75463 2 0.75110 2 0.74776 2 0.74459 2 0.74159 2 0.73874 2 
24 0.78788 2 0.78396 2 0.78026 2 0.77677 2 0.77346 2 0.77032 2 0.76734 2 
25 0.81734 2 0.81325 2 0.80939 2 0.80575 2 0.80229 2 0.79902 2 0.79591 2 
26 0.84676 2 0.84251 2 0.83849 2 0.83469 2 0.83109 2 0.82768 2 0.82443 2 
27 0.87616 2 0.87173 2 0.86755 2 0.86360 2 0.85985 2 0.85630 2 0.85293 2 
28 0.90553 2 0.90093 2 0.89658 2 0.89248 2 0.88859 2 0.88490 2 0.88139 2 
29 0.93487 2 0.93009 2 0.92559 2 0.92133 2 0.91729 2 0.91346 2 0.90983 2 
30 0.96418 2 0.95924 2 0.95457 2 0.95015 2 0.94597 2 0.94200 2 0.93823 2 
31 0.99348 2 0.98836 2 0.98353 2 0.97896 2 0.97463 2 0.97052 2 0.96662 2 
32 0.10228 3 0.10175 3 0.10125 3 0.10077 3 0.10033 3 0.99901 2 0.99498 2 
33 0.10520 3 0.10465 3 0.10414 3 0.10365 3 0.10319 3 0.10275 3 0.10233 3 
34 0.10812 3 0.10756 3 0.10703 3 0.10652 3 0.10605 3 0.10559 3 0.10516 3 
35 0.11105 3 0.11046 3 0.10992 3 0.10940 3 0.10890 3 0.10844 3 0.10799 3 
36 0.11397 3 0.11337 3 0.11280 3 0.11227 3 0.11176 3 0.11128 3 0.11082 3 
37 0.11688 3 0.11627 3 0.11569 3 0.11514 3 0.11461 3 0.11412 3 0.11365 3 
38 0.11980 3 0.11917 3 0.11857 3 0.11800 3 0.11747 3 0.11696 3 0.11647 3 
39 0.12272 3 0.12207 3 0.12145 3 0.12087 3 0.12032 3 0.11979 3 0.11930 3 
40 0.12563 3 0.12496 3 0.12433 3 0.12373 3 0.12317 3 0.12263 3 0.12212 3 
41 0.12855 3 0.12786 3 0.12721 3 0.12660 3 0.12602 3 0.12546 3 0.12494 3 
42 0.13146 3 0.13075 3 0.13009 3 0.12946 3 0.12886 3 0.12830 3 0.12776 3 
43 0.13437 3 0.13365 3 0.13297 3 0.13232 3 0.13171 3 0.13113 3 0.13058 3 
44 0.13728 2 0.13654 3 0.13584 3 0.13518 3 0.13455 3 0.13396 3 0.13340 3 
45 0.14019 3 0.13943 3 0.13872 3 0.13804 3 0.13740 3 0.13679 3 0.13621 3 
46 0.14310 3 0.14232 3 0.14159 3 0.14090 3 0.14024 3 0.13962 3 0.13903 3 
47 0.14601 3 0.14521 3 0.14446 3 0.14376 3 0.14308 3 0.14245 3 0.14184 3 
48 0.14891 3 0.14810 3 0.14734 3 0.14661 3 0.14593 3 0.14527 3 0.14465 3 
49 0.15182 3 0.15099 3 0.15021 3 0.14947 3 0.14877 3 0.14810 3 0.14747 3 
50 0.15472 3 0.15388 3 0.15308 3 0.15232 3 0.15161 3 0.15093 3 0.15028 3 

(cont'd on next page) 
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TABLE 11-4 (cont'd) 

5% POINTS FOR HOTELLING'S GENERALIZED T-SQUARE 

nr 
44 45 46 47 48 49 SO 

2 0.10531 2 0.10506 2 0.10482 2 0.10459 2 0.10437 2 0.10416 2 0.10396 2 3 0.14065 2 0.14030 2 0.13996 2 0.13963 2 0.13932 2 0.13903 2 0.13875 2 4 0.17406 2 0.17360 2 0.17316 2 0.17275 2 0.17235 2 0.17197 2 0.17160 2 5 0.20632 2 0.20576 2 0.20522 2 0.20471 2 0.20422 2 0.20375 2 0.20331 2 
6 0.23781 2 0.23714 2 0.23651 2 0.23590 2 0.23532 2 0.23476 2 0.23423 2 7 0.26874 2 0.26797 2 0.26723 2 0.26653 2 0.26586 2 0.26521 2 0.26460 2 8 0.29925 2 0.29837 2 0.29753 2 0.29673 2 0.29597 2 0.29524 2 0.29454 2 9 0.32943 2 0.32844 2 0.32750 2 0.32660 2 0.32574 2 0.32492 2 0.32414 2 10 - 0.35934 2 0.35824 2 0.35719 2 0.35620 2 0.35524 2 0.35433 2 0.35346 2 

11 0.38902 2 0.38782 2 0.38667 2 0.38557 2 0.38452 2 0.38352 2 0.38256 2 12 0.41853 2 0.41721 2 0.41595 2 0.41475 2 0.41361 2 0.41252 2 0.41147 2 13 0.44787 2 0.44644 2 0.44508 2 0.44378 2 0.44254 2 0.44135 2 0.44022 2 14 0.47708 2 0.47554 2 0.47407 2 0.47267 2 0.47133 2 0.47005 2 0.46883 2 15 0.50617 2 0.50452 2 0.50294 2 0.50144 2 0.50000 2 0.49863 2 0.49732 2 
16 0.53516 2 0.53339 2 0.53171 2 0.53010 2 0.52857 2 0.52710 2 0.52570 2 17 0.56406 2 0.56218 2 0.56039 2 0.55868 2 0.55704 2 0.55548 2 0.55398 2 18 0.59288 2 0.59088 2 0.58898 2 0.58717 2 0.58543 2 0.58377 2 0.58219 2 19 0.62163 2 0.61952 2 0.61750 2 0.61558 2 0.61375 2 0.61199 2 0.61032 2 20 0.65031 2 0.64808 2 0.64596 2 0.64393 2 0.64200 2 0.64015 2 0.63838 2 
21 0.67893 2 0.67659 2 0.67435 2 0.67222 2 0.67019 2 0.66824 2 0.66637 2 22 0.70751 2 0.70504 2 0.70270 2 0.70046 2 0.69832 2 0.69627 2 0.69432 2 23 0.73603 2 0.73345 2 0.73099 2 0.72865 2 0.72641 2 0.72426 2 0.72221 2 24 0.76451 2 0.76181 2 0.75924 2 0.75679 2 0.75444 2 0.75220 2 0.75006 2 25 0.79295 2 0.79013 2 0.78745 2 0.78489 2 0.78244 2 0.78010 2 0.77786 2 
26 0.82135 2 0.81842 2 0.81562 2 0.81295 2 0.81040 2 0.80796 2 0.80563 2 27 0.84972 2 0.84667 2 0.84376 2 0.84098 2 0.83833 2 0.83579 2 0.83336 2 28 0.87806 2 0.87489 2 0.87186 2 0.86897 2 0.86622 2 0.86358 2 0.86105 2 29 0.90637 2 0.90308 2 0.89994 2 0.89694 2 0.89408 2 0.89134 2 0.88872 2 30 0.93465 2 0.93124 2 0.92798 2 0.92488 2 0.92191 2 0.91907 2 0.91635 2 
31 0.96291 2 0.95937 2 0.95601 2 0.95279 2 0.94972 2 0.94678 2 0.94396 2 32 0.99114 2 0.98749 2 0.98400 2 0.98068 2 0.97750 2 0.97446 2 0.97155 2 33 0.10194 3 0.10156 3 0.10120 3 0.10085 3 0.10053 3 0.10021 3 0.99911 2 34 0.10475 3 0.10436 3 0.10399 3 0.10364 3 0.10330 3 0.10298 3 0.10266 3 35 0.10757 3 0.10717 3 0.10679 3 0.10642 3 0.10607 3 0.10574 3 0.10542 3 
36 0.11039 3 0.10997 3 0.10958 3 0.10920 3 0.10884 3 0.10850 3 0.10817 3 
37 0.11320 3 0.11277 3 0.11237 3 0.11198 3 0.11161 3 0.11125 3 0.11091 3 38 0.11601 3 0.11557 3 0.11516 3 0.11476 3 0.11438 3 0.11401 3 0.11366 3 39 0.11882 3 0.11837 3 0.11794 3 0.11753 3 0.11714 3 0.11677 3 0.11641 3 
40 0.12163 3 0.12117 3 0.12073 3 0.12031 3 0.11990 3 0.11952 3 0.11915 3 
41 0.12444 3 0.12397 3 0.12351 3 0.12308 3 0.12267 3 0.12227 3 0.12189 3 
42 0.12725 3 0.12676 3 0.12630 3 0.12585 3 0.12543 3 0.12502 3 0.12463 3 
43 0.13005 3 0.12955 3 0.12908 3 0.12862 3 0.12819 3 0.12777 3 0.12737 3 
44 0.13286 2 0.13235 3 0.13186 3 0.13139 3 0.13094 3 0.13052 3 0.13011 3 
45 0.13566 3 0.13514 3 0.13464 3 0.13416 '3 0.13370 3 0.13326 3 0.13285 3 
46 0.13846 3 0.13793 3 0.13741 3 0.13692 3 0.13646 3 0.13601 3 0.13558 3 
47 0.14126 3 0.14072. 3 0.14019 3 0.13969 3 0.13921 3 0.13875 3 0.13832 3 
48 0.14406 3 0.14350'3 0.14297 3 0.14246 3 0.14197 3 0.14150 3 0.14105 3 
49 0.14686 3 0.14629 3 0.14574 3 0.14522 3 0.14472 3 0.14424 3 0.14378 3 
50 0.14966 3 0.14908 3 0.14852 3 0.14798 3 0.14747 3 0.14698 3 0.14651 3 
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TABLE 11-5 
TABLE OF COEFFICIENTS FOR APPROXIMATING 1% AND 5% UPPER PROBABILITY 

LEVELS FOR HOTELLING'S GENERALIZED T^ STATISTICS 
(Bivariate Case With m > 50) 

COEFFICIENTS FOR QUADRATIC FORMULA—1% LEVEL 

T^ ^ am^ + bm + c 
51<m < 101 

n a fc c n a 6 
2 .1128A72 -1 .3141341 5 -.1553434 5 51 -,2625868 -3 .3073561 ,1566868 2 
3 .0000000 0 .2999800 3 -.2989990 1 52 -,2668403 -3 .3059768 .1569320 2 
4 -.3385461 -4 .6308968 2 .2698526 2 53 -,2710937 -3 .3046537 .1571723 2 
5 -.3645817 -4 .2884334 2 .2323330 2 54 -,2753472 -3 ,3033840 .1574036 2 

55 -,2794271 -3 ,3021616 .1576377 2 
6 -.3802073 -4 .1800412 2 .2035420 2 
7 -.4123275 -4 ,1313480 2 ,.1855297 2 56 -,2834201 -3 ,3009853 .1578699 2 
8 -.4644112 -4 .1047653 2 .1739104 2 57 -,2875001 -3 ,2998550 .1580894 2 
9 -.4999992 -4 .8835404 1 .1662274 2 58 -,2914930 -3 .2987653 .1583086 2 

10 -.5468768 -4 .7733995 1 .1609091 2 59 -,2953993 -3 .2977141 .1585264 2 
60 -,2993056 -3 .2967008 .1587377 2 

11 -.5972230 -4 .6948779 1 .1571550 2 
12 -.6467011 -4 .6362953 1 .1544823 2 61 -,3032986 -3 .2957249 .1589368 2 
13 -.6987837 -4 .5910259 1 .1525495 2 62 -.3070313 -3 .2947790 .1591439 2 
14 -.7517356 -4 .5550468 1 .1511607 2 63 -.3106771 -3 .2938641 .1593497 2 
15 -.8072911 -4 .5257943 1 .1501600 2 64 -.3143229 -3 .2929801 .1595493 2 

65 -.3179688 -3 .2921252 .1597441 2 
16 -.8611112 -4 .5015521 1 .1494671 2 
17 -.9157979 -4 .4811431 1 .1490013 2 66 -.3215277 -3 .2912971 .1599358 2 
18 -.9704868 -4 .4637270 1 .1467106 2 67 -.3251736 -3 .2904968 .1601182 2 
19 -.1025173 -3 .4486913 1. .1485548 2 68 -.3288195 -3 .2897219 ,1602950 2 
20 -.1083334 -3 .4355842 1 .1484875 2 69 -.3323785 -3 .2889701 ,1604699 2 

70 -.3359375 -3 .2882411 .1606419 2 
21 -.1137153 -3 ,4240466 1 .1485263 2 
22 -.1192708 -3 ,4138186 1 .1486211 2 71 -,3394098 -3 ,2875332 .1608116 2 
23 -.1248265 -3 .4046870 1 .1487661 2 72 -,3427083 -3 ,2868440 .1609857 -2 
24 -.1302951 -3 .3964821 1 .1489561 2 73 -,3460937 -3 .2861762 ,1611503 2 
26 -.1357639 -3 ,3890702 1 .1491762 2 74 -.3493924 -3 ,2855269 ,1613124 2 

75 -.3527778 -3 ,2848975 ,1614655 2 
26 -.1412326 -3 .3823408 1 .1494215 2 
27 -.1466146 -3 ,3762023 1 .1496865 2 76 -.3559896 -3 ,2842830 ,1616261 2 
28 -.1519097 -3 ,3705791 1 .1499710 2 77 -.3593750 -3 ,2836885 .1617708 2 
29 -.1572049 -3 .3654095 1 .1502653 2 78 -.3625000 -3 ,2831067 ,1619256 2 
30 -.1624132 -3 ,3606393 1 .1505708 2 79 -.3657119 -3 ,2825421 ,1620693 2 

80 -,3687500 -3 ,2819900 .1622202 2 
31 -.1677083 -3 .3562260 1 ,1508743 2 
32 -.1730035 -3 .3521298 1 .1511796 2 81 -,3718750 -3 ,2814540 .1623613 2 
33 -.1780382 -3 .3483137 1 .1514979 2 82 -,3749132 -3 ,2809310 .1625014 2 
34 -.1832466 -3 .3447552 1 .1518079 2 83 -.3779514 -3 ,2804214 .1626386 2 
35 -.1882812 -3 .3414244 1 .1521236 2 84 -,3809028 -3 ,2799235 .1627772 2 

85 -,3839410 -3 .2794397 .1629066 2 
36 -.1934028 -3 .3383040 1 .1524292 2 
37 -.1982639 -3 .3353690 1 .1527462 2 86 -.3868924 -3 ,2789669 .1630367 2 
38 -.2031250 -3 .3326069 1 .1530562 2 87 -,3897569 -3 .2785047 ,1631657 2 
39 -.2079861 -3 .3300027 1 .1533619 2 88 -,3926216 -3 ,2760537 ,1632922 2 
40 -.2128472 -3 .3275435 1 .1536601 2 89 -.3954861 -3 ,2776135 ,1634165 2 

90 -.3983507 -3 .2771842 .1635356 2 
41 -.2175347 -3 .3252147 1 .1539622 2 
42 -.2223958 -3 .3230109 1 .1542487 2 91 -.4012153 -3 ,2767649 .1636526 2 
43 -.2271702 -3 .3209194 1 .1545306 2 92 -.4039930 -3 ,2763545 ,1637690 2 
44 -.2315972 -3 .3189273 1 .1548247 2 93 -.4066840 -3 ,2759521 .1638880 2 
45 -.2361979 -3 ,3170348 1 .1551023 2 94 -.4096354 -3 ,2755639 .1639827 2 

95 -.4124132 -3 ,2751814 .1640887 2 
46 -.2406250 -3 .3152298 1 .1553847 2 
47 -.2452257 -3 .3135115 1 .1556486 2 96 -.4149306 -3 ,2748031 .1642084 2 
48 -.2496528 -3 .3118690 1 .1559138 2 97 -.4175347 -3 .2744351 ,1643170 2 
49 -.2539931 -3 .3102982 1 .1561764 2 98 -.4199653 -3 ,2740724 ,1644361 2 
50 -.2583334 -3 .3087958 1 .1564325 2 99 -.4224826 -3 ,2737191 .1645443 2 

100 -.4250868 -3 ,2733748 ,1646448 2 

(cont'd on next page) 

11-31 



DARCOM-P 706 103 

TABLE 11-5 (cont'd) 

COEFFICIENTS FOR QUADRATIC FORMULA—5% LEVEL 

T '==' am  + bm + c 
51 <m< 101 

2 .3472169 -3 .1256467 4 -.6237031 3 51 -.1839410 -3 ,2736431 1 ,9705463 1 
3 .1735985 -5 .5990428 2 -.2988857 1 52 -.1870660 -3 ,2727470 1 ,9730073 1 
4 -.1128473 -4 .2147326 2 .6552336 1 53 -.1899305 -3 .2718827 1 .9755228 1 
5 -.1527762 -4 .1278487 2 .7528524 1 54 -.1929687 -3 .2710547 1 .9778595 1 

55 -.19'58333 -3 ,2702558 1 .9802088 1 
6 -.1892375 -4 .9334072 .7680655 1 
7 -.2239593 -4 .7550043 .7714972 1 56 -.1987847 --3 ,2694880 1 .9824548 1 
8 -.2595493 -4 .6477283 .7740685 1 57 -.2017361 -3 ,2.687485 1 .9846259 1 
9 -.2968756 -4 .5766432 .7775570 1 58 -,2045139 -3 ,2680335 1 .9868034 1 

10 -.3350692 -4 .5262601 .7821199 1 59 -.2072049 -3 ,2673424 1 ,9889691 1 
60 -.2100695 -3 ,2666781 1 .9909847 1 

11 -.3741314 -4 .4887514 .7874495 1 
12 -.4123265 -4 .4597616 .7934323 1 61 -.2128472 -3 .2660356 1 .9929647 1 
13 -.4513893 -4 .4366925 .7997431 1 62 -.2155382 -3 .2654137 1 ,9949229 1 
14 -.4913192 -4 .4178982 .8062396 1 63 -.2181423 -3 .2648111 1 ,9968731 1 
15 -.5303825 -4 .4022866 .8128778 1 64 -.2208333 -3 .2642296 1 .9987200 1 

65 -.2235243 -3 .2636668 1 .1000521 2 
16 -.5711812 -4 .3891126 .8194236 1 
17 -.6119793 -4 .3778415 .8259405 1 66 -,2261284 -3 .2631209 1 ,1002301 2 
18 -.6519103 -4 .3680847 .8324144 1 67 -.2285591 -3 .2625894 1 .1004117 2 
19 -.6935761 -4 .3595572 .8386907 1 68 -.2311632 -3 .2620768 1 ,1005808 2 
20 -.7326389 -4 .3520331 ,8449366 1 69 -.2335938 -3 .2615774 1 .1007518 2 

70 -.2361111 -3 .2610942 1 .1009160 2 
21 -.7725688 -4 .3453468 .8510192 1 
22 -.8133685 -4 .3393653 .8568674 1 71 -.2387153 -3 .2606270 1 .1010664 2 
23 -.8532995 -4 .3339789 ,8626001 1 72 -.2411459 -3 .2601705 1 .1012245 2 
24 -.8914930 -4 .3291008 .8682479 1 73 -.2435764 -3 .2597274 1 .1013777 2 
25 -.9314235 -4 .3246657 .8736368 1 74 -.2459201 -3 .2592957 1 .1015304 2 

75 -.2482639 -3 .2588760 1 ,1016785 2 
26 -.9704862 -4 .3206120 .8789114 1 
27 -.1009549 -3 .3168933 .8840010 1 76 -.2505208 -3 .2584670 1 ,1018265 2 
28 -.1047743 -3 .3134681 .8889501 1 77 -.2526910 -3 .2580677 1 ,1019754 2 
29 -.1085938 -3 .3103029 .8937791 1 78 -.2551215 -3 .2576833 1 ,1021050 2 
30 -.1124132 -3 .3073697 .8984219 1 79 -.2573785 -3 .2573063 1 ,1022423 2 

80 -.2596354 -3 .2569393 1 ,1023756 2 
31 -.1162326 -3 .3046433 .9029148 1 
32 -.1198784 -3 .3021001 .9073377 1 81 -.2618924 -3 .2565823 1 ,1025019 2 
33 -.1235243 -3 .2997239 .9116095 1 82 -.2640625 -3 .2562330 1 ,1026319 2 
34 -.1273438 -3 .2975012 .9156710 1 83 -.2659723 -3 .2558888 1 ,1027713 2 
35 -.1309028 -3 .2954119 .9197122 1 84 -.2682292 -3 .2555584 1 ,1028876 2 

85 -.2703125 -3 .2552339 1 ,1030102 2 
36 -.1343750 -3 .2934460 .9236528 1 
37 -.1381077 -3 .2915977 ,9273513 1 86 -.2723090 -3 .2549161 1 ,1031337 2 
38 -.1414063 -3 ,2898471 ,9311359 1 87 -.2743924 -3 ,2546073 1 ,1032485 2 
39 -.1449653 -3 .2881961 ,9346621 1 88 -.2764757 -3 .2543061 1 ,1033611 2 
40 -.1483507 -3 .2866305 .9381621 1 89 -.2786459 -3 .2540134 1 ,1034650 2 

90 -.2806424 -3 .2537248 1 ,1035778 2 
41 -.1519097 -3 .2851486 .9414508 1 
42 -.1551215 -3 .2837366 .9448098 1 91 -.2825521 -3 .2534418 1 .1036899 2 
43 -.1585070 -3 .2823968 .9479624 1 92 -.2845486 -3 ,2531666 1 .1037956 2 
44 -.1618056 -3 .2811200 .9510656 1 93 -.2864584 -3 .2528965 1 .1039018 2 
45 -.1651910 -3 .2799047 ,9540045 1 94 -.2882813 -3 .2526311 1 .1040116 2 

95 -.2905382 -3 .2523787 1 .1040905 2 
46 -.1684028 -3 .2787427 ,9569434 1 
47 -.1715278 -3 .2776313 ,9598506 1 96 -.2924479 -3 .2521261 1 .1041915 2 
48 -.1747396 -3 .2765701 .9626071 1 97 -,2944445 -3 .2518808 1 .1042812 2 
49 -.1777778 -3 .2755521 .9653538 1 98 -,2961806 -3 ,2516369 1 ,1043866 2 
50 -.1809028 -3 .2745781 .9679684 1 99 -,2979166 -3 ,2513983 1 ,1044863 2 

100 -,3000000 -3 ,2511700 1 ,1045660 2 
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Example 11-3: 
A new artillery projectile was designed to replace the old standard one. The new projectile was made longer 

so that it would have more explosive, the surface finish was much smoother, and it was to be fired from guns 
with a higher twist of rifling to give improved stability. Unfortunately, only a few projectiles of each of the old 
and new types were available for test in this particular part of the overall program. Thus 10 of the old, or 
standard, projectiles were fired to find range and deflection deviations along with only eight projectiles of the 
proposed artillery rounds. The results of the firing program are given in Table 11-6. It was expected that the 
newly designed artillery projectiles should give a smaller dispersion in range and deflection and that they 
should also give increased ranges due to their improved stability and surface finish. Does there exist, 
therefore, any substantial evidence to support these hypotheses? 

The various questions arising here may be answered easily by carrying out an analysis using the Hotelling 
Generalized T^ statistic and the Hotelling Multivariate Studentized t or TM for mean values. 

TABLE 11-6 

RANGE AND DEFLECTION IMPACT POSITIONS FOR NEW AND OLD ARTILLERY 
PROJECTILES 

Standard Projectile ("Old") Proposed Projectile ("New") 

Range 
X\p, m 

Deflection 
xip, m 

Range 
xip, m 

6351 
6331 
6355 
6319 
6242 
6323 
6246 
6294 
6354 
6283 

2 
7 
6 
0 
0 
6 
10 
-5 
11 
5 

6457 
6494 
6482 
6447 
6382 
6430 
6381 
6348 

Deflection 
x'lp, m 

20 
12 
14 
22 

7 
IS 
12 
11 

The pertinent calculations based on Table 11-6 are 

Old Sample New Sample 

N= 10 

xi = 6309.800 X2 = 4.200 xi' = 6427.625 

M=8 

xi= 14.125. 

We next estimate the variance-covariance matrix of the old population, i.e., [ay], by using the old bivariate 
sample to obtain 

[SiJ] = 
1781.95556 

41.60000 

41.60000 

24.40000 

The inverse of this matrix gives the Vy matrix, which is 

[Vij] = [5y]-' = 
0.00058444 -0.00099643 

-0.00099643  0.04268243 
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The variance-covariance matrix for the new artillery projectile, or new sample, is from Eq. 11-37 

2743.12500       121.76786 

121.76786        23.83929 

which is used to calculate To, whereas we calculate the overall TQ by using Eq. 11-44 to obtain the 
variance-covariance matrix of the z,p, z,p, which is 

'    [^] 
16282.965 1275.960 

1275.960 119.365 

We are now ready to calculate To from Eq. 11-45, and it is easily seen that eight times the trace of the product 
of [vy] and [5^'] is simply 

;-;•=■    :\^-^y.   7? =8[(0.00058444) (16282.965)+ (-0.00099643) (1275.96) 

(-0.00099643) (1275.960) + (0.04268243) (119.365)] 

= 8(8.2444 + 3.8234) = 96.547. 

This is a test of whether the new projectiles and the old, or standard ones, are equivalent in all respects, i.e., 
have the same variances and covariance, and their population mean ranges are equal and the deflection shifts 
are equal. We refer the observed value 96.547 to Table 11-4—the percentage points of Hotelling's Generalized 
T^ with m = 8 for the total new sample size, and « = 9 for the df for the old sample variances—and obtain a 
value of ro(5%) = 53.173 for the 5% level. Moreover, the 1% level is only To{\%) = 86.066. We therefore 
decide to reject the null, or tested, hypothesis and make the judgment that the standard and proposed 
projectiles are not equivalent in either their mean values of their variances and covariance, or perhaps even 
both. Therefore, we must analyze the data further. 

As a matter of some interest at this point, we might use the quadratic computation of Eq. 11-43 and Table 
11-5 to see just how far off our predicted percentage point is for these very small sample sizes. We have in this 
connection that at the 1% level ,.    , .•....,•■.■,;«■. ;   . -      ■ ,       <   -, , 

ro'(l%)«'(-0.00005)(64) + (8.835)(8)+16.623 = 87.3, •> 

which is only 1.4 higher than the exact value! Better accuracy could be expected for higher values of m and n. 
Our problem now is to determine whether the dispersion parameters of the proposed and standard 

projectiles are different or whether their mean range and mean deflection values are unequal, or perhaps both 
of these, or finally whether we may have a small, chance variation or accidental occurrence. Before a test of 
mean values we should establish whether or not the old and new sample covariance matrices are equivalent. 
This is done by calculating the value of TD from 

rj = (M - 1) 2  S VijS'^ - mtr{[vy][4]} 
;=1   ./=1 

(11-46) 

which is equivalent to Eq. 11-31 or Eq. 11-38. Thus the calculation of the observed TL^is found to be 

«: 7^=7tr 
0.00058444    -0.0009643 

-0.00099643       0.0426824 

2743.1250    121.7679 

121.7679      23.8393 

7(1.486 + 0.896)= 16.67. 
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Referring to Table 11-4, we find for w = 7 and « = 9 that the 1 % probability level of Hotelling's To is 77.030, 
and the 5% level is 47.289, so that we conclude that the two samples originate from normal bivariate 
populations with identical dispersion, or variance-covariarice, matrices. Hence the new artillery rounds do not 
give smaller dispersion in either range or deflection. Having established this, we then proceed to examine 
whether there is a difference in the average ranges or average deflections of the standard and proposed 
projectiles. As a matter of fact, it is noted that the new round gives a somewhat longer range (6428 — 6310 = 
118 m), and the proposed projectiles may deflect farther to the right. To test for equal C of I's, we use 
Hotelling's Studentized ^^ or TJ, and initially, for illustration, the variance-covariance matrix of the old 
sample based on« = A'-l=9df. Since, however, the cent roid for the new sample is a single point, the A/ for 
the new sample is taken appropriately as unity, i.e.. A/ = 1. Then, from Eq. 11-24, we have 

Tl 2_       NM     r—nTr       t    IJ\1 r-1 [z]    [V,y(0ld)] [Z] 
N^ M 

- (10) (1) 
10+ 1 

= 9.148. 

[117.825    9.925] 

[- 00058444 
.0009643 

-0.0009643 
0.0426824 

(11-47) 

117.825 
9.925 

\ 

Hence, from Eq. 11-22 

Now the 5% point for F(2,8) is 

F(2,8) =      ^ 
(2) (9) 

(9.148) = 4.066. 

upper Fo,o5(2,8) = 4.46 

so that with the use of only the old sample to estimate the variance-covariance matrix, we are not able to detect 
any difference between the means in range and means in deflection. However, since we established that the 
old, or standard, and the proposed projectiles have equivalent covariance and variances in range and in 
deflection, then we should pool (add) the SS of the two samples in order to base the variance-covariance 
matrix on the entire number of df available, i.e., 

A^- 1 +Af- 1 = 16 df. 

The new [.jy] is 

[^i/] = 
2202.4672  76.6734 

76.6734  24.1547 

and 

rl=.-^^^^-[z]^[v,(new)][z] 
N^ M 

■    10(8) 
18 

[117.825       9.925] 
0.0005104 

-0.0016203 
-0.0016203*] fl 17.825 

0.0465430j [   9.925 ] 
80 

(7.880 = 35.026. 
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Finally, transforming ri to an equivalent Snedecor F, we obtain 

F(2,15) = (7V+Af-3)r|/[2(A^+M-2)] = 15(35.029)/32 = 16.42 

but the upper 1% probability level of F is 

Fo.oi(2,15) = 6.36 

so we must conclude that the proposed artillery projectiles have significantly longer ranges (by 118 m) and 
deflect more to the right (by about 14 m). In this connection, it would be well to check both of these 
conclusions by using separate Student's t tests for the ranges and deflections, ignoring any correlation. If this 
were done, it would be found that the average range of the proposed projectiles is significantly greater than 
that of the old projectiles and also that the deflections differ as indicated. 

As a final point of interest, we found, when using the Hotelling To test, that the variance-covariance 
matrices of the old and new samples are equivalent in all respects. However, suppose we had found that the 
dispersion matrices were significantly different. Then, somewhat of a problem would arise, and we would have 
to decide whether to use the old sample alone or the new sample results alone to conduct our Zw significance 
test. That is to say for this example that we would not have been able to detect any differences in either range or 
deflection—unless correlation could have been ignored and we used Student's t tests separately. Nevertheless, 
it is conjectured that had we used the 7^ test anyway, ignoring significantly different covariances based on the 
TL^test, the resulting procedure would have been very robust and, hence, rather dependable. 

11-4    SUMMARY 

In this chapter we have described Wilks' statistics for testing the equality of population means, the equality 
of variances, and the equality of covariances for single muhivariate normal distributions. These tests are 
needed to judge the dispersion values and levels of the characteristics of a bivariate or multivariate normal 
sample, especially for the case of suspected correlation or dependence between the characteristics. An 
example has been given to analyze the jump of the first and second bullets in rapid fire from an M16 rifle. 

There are many applications of Army interest for which it becomes necessary to make an overall 
comparison of two different multivariate normal samples. For the comparison of true means of 
corresponding characteristics of bivariate or muhivariate normal samples, Hotelling's Muhivariate 
Studentized statistic (Ti) is used under the assumption that the variance-covariance matrices of the two 
samples are equivalent, or nearly so. Hotelling's Ti is especially required when there is some correlation 
between two or more of the characteristics, and yet it can be transformed to the Snedecor F-type statistic or 
test. 

For a comparison of the two dispersion matrices or the variance-covariance matrices of the two sampled 
populations, another statistic, known as Hotelling's Generalized TD, is required. Then, for an overall or 
combined test for both the equality of variance-covariance matrices and the equality of corresponding true 
means of the individual characteristics, the proper significance test involves a quantity we have defined as 
Hotelling's Generalized To (total) statistic. In fact, we have that Ti= TD+ 7^,where T^lJ is a statistic for testing 
the equality of the corresponding characteristic means and is directly relatable to Hotelling's Ti sample 
statistic. New tables of percentage points are necessary for the T^and To Hotelling statistics, which depend on 
Karl Pearson's incomplete beta function ratio. In spite of this complication and the fact that To^and Ti^depend 
on the number of df n in the old sample and m for the new sample, it has been found that for fixed n the 
percentage points are very nearly linear as a function of the F^'s for different m! Consequently, the size of the 
tables of probability levels for m, n greater than 50 can be reduced considerably by providing a short table of 
coefficients. A very extensive and highly informative example is given that covers the analysis of dispersion 
patterns and ranges to ground impact of some standard and some newly proposed artillery projectiles. 

In Army statistical work there should be many diverse types of applications of the muhivariate statistical 
theory presented in this chapter. 

11-36 



DARCOM-P 706-103 

REFERENCES 

1. DARCOM-P 706-101, Engineering Design Handbook, Army Weapon Systems Anaylsis, Part One, 
November 1977. 

2. DARCOM-P 706-102, Engineering Design Handbook, Army Weapon Systems Analysis. Part Two, 
October 1979. 

3. Frank E. Grubbs, Statistical Measures of Accuracy for Riflemen and Missile Engineers, Edwards 
Brothers, Ann Arbor, MI, November 1964. 

4. Samuel S. Wilks, "Sample Criteria for Testing Equality of Means, Equality of Variances, and Equality of 
Covariances in a Normal Multivariate Distribution", The Annals of Mathematical Statistics 17, 257-81 
(September 1946). 

5. Harold Hotelling, "Multivariate Quality Control, Illustrated by the Air Testing of Sample Bombsights", 
Chapter 3 of Selected Techniques of Statistical Analysis, Editors: C. Eisenhart, M. W. Hastay, and W. A. 
Wallis, McGraw-Hill Book Company, Inc., New York, NY, 1947. 

6. Harold Hotelling, "The Generalization of Student's Ratio", The Annals of Mathematical Statistics 2, 
360-78(1931). 

7. Harold Hotelling, "A Generalized T^ Test and Measure of Multivariate Dispersion", Proceedings of the 
Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 
Berkeley, CA, 1951, 23-41. 

8. J. Stuart Hunter, Hotelling's T^ Statistics, Unpublished Manuscript, US Army Ballistic Research Labora- 
tories, Aberdeen Proving Ground, MD, 1952. 

9. Frank E. Grubbs, Tables of 1% and 5% Probability Levels for Hotelling's Generalized T^ Statistic 
(Bi- Variate Case), BRL Technical Note No. 926, US Army Ballistic Research Laboratories, Aberdeen 
Proving Ground, MD, July 1954. 

10. Frank E. Grubbs, Helen J. Coon, J. Stuart Hunter, and H. K. Crowder, Tables ofl%and5% Probability 
Levels for Hotelling's Generalized T^ Statistic {Bivariate Case), Unpublished Manuscript, US Army 
Ballistic Research Laboratories, Aberdeen, MD, 1968. 

11. John Wishart, "The Generalized Product Moment Distribution in Samples from a Normal Multivariate 
Population", Biometrika 20A, 32-52 (1928). 

12. Karl Pearson, Editor, Tables of the Incomplete Beta Function, Cambridge University Press, Cambridge, 
England, 1934. 

11-37 



■I riAU 

■■o«,> 

\' 

i 

'';;-' il-JjJ'-tvc., 



DARCOM-P 706-103 

INDEX 

Accuracy of measurement, 2-5 
Accuracy test, 2-25 
Analysis of variance (ANOVA) example, 4-54 
Approximate chi-square distribution, 4-25 
Bartlett-Kendall test for variances, 4-36 
Bartlett's test, 4-33 
Behrens-Fisher problem, 4-45 
Berkson's controlled independent variable, 6-15 
Best linear unbiased estimates (BLUE), 7-9 

Table of coefficients, 7-15 
Bias changes, instrumental, 6A-6 
Biases 

of estimators, 4-12 
of measurements, 2-6, 6A-2 

Biases, varying, 6A-5 
Binomial distribution, 4-17 
Binomial population comparisons, 5-12 
Bivariate and multivariate random variables, 11-3 
Bounds, mathematical 

for range to standard deviation, 3'5 
for residuals, 3-6 

Bradley-Brindley  analysis,  three-instrument   impreci- 
sions, 2-50 

Britt-Luecke algorithm for generalized least squares, 
6-53 

Cadwell's test, 4-34 
Calibration hierarchy, 2-46 
Calibration of instruments, 2-46 
Chi-square distribution, 4-15 
Chi-square percentage points, 4-18, 4-19 
Cochran's test of variances, 4-34 
Combining independent tests, 4-56 
Comparison of binomial populations, 5-12 
Comparison of measuring instruments, 2-5, 2-32 
Comparison of normal populations, 4-5 
Complete rundown test, 9-7 
Confidence bounds 

on imprecision and inaccuracy parameters, 2-34 
on normal population means, 4-41 
on normal population variances, 4-18 
on reliability, 8-14 

Contingency tables, 5-3, 5-9 
Controlled independent variable, 6-15 
Criteria for outliers, 3-11 
Description of handbook chapters, 1-1 
Design and analysis of experiments, 4-49 
Determination of sample size, 8-3 

Basic principles, 8-6 
Binomial and Poisson populations, 8-8 
Variance estimation for normal populations, 8-18 
Analysis of variance tests, 8-36 

Exponential populations, 8-41 
Distribution of largest sample value, 7-5 
Distribution of range, 7-6 
Distribution of rth order statistic, 7-6 
Distribution of smallest sample value, 7-5 
Dixon's outlier criteria, 3-16, 3-17 
Duncan's multiple range test, 7-10 
Double dichotomy, 5-31 
Efficiency of estimators, 4-12 • •"■ -'.if''^ 
Equal spacing of independent variables, 6-13, ."., ■ 
Error in both independent and dependent variables^. 6- , 
14,6-23 
Errors of measurement, 2-5, 2-6 
Estimation, 4-5 
F distribution (Snedecor-Fisher), 4-26 
F percentage points, 4-29 
F test (Snedecor), 6-9 
Fisher exact test, contingency tables, 5-10 
Fitting a line, 6-5 
Fitting a parabola, 6-29 
Fitting a plane, 6-25, 6-32 
Functional relations, 6-4, 6-14, 10-1 
General linear model, regression, 6-45 
General two-way contingency tables, 5-38 
Generalized least squares, 6-50 
Grubbs'outlier tests, 3-12 
Gumbel's extreme value distribution, 7-23 
Hartley's test of variances, 4-34 
Hawkins' tests, 3-28 
Higher order contingency tables, 5-43 
Homoscedasticity, 4-38 
Hotelling's generalized T^ percentage points, 11-17 
Hotelling's generalized T^ statistics, (To, T^ TM), 11-13 

Linear relationship, 11-15, 11-16 
Quadratic approximation, 11-16 

Hotelling's multivariate studentized /statistics (TI), 11-10 
Imprecision, 2-1 
Imprecision test, 2-27, 2-30 
Inaccuracy, 2-1 
Independence and interaction, contingency tables, 5-33 
Independent standard deviation, 3-40 
Interlaboratory testing (round-robin testing), 2-43 
Introduction to handbook, 1-1 
Karni-Weissman analysis, 6-24 
Kullback's minimum discrimination information statis- 
tics, 5-34, 5-40 

Kurtosis, 3-37 
Langlie one-shot test strategy, 9-8 
Largest observation, distribution of, 7-5 
Largest observation, test of, 3-12, 3-17 
Least squares, 6-1 
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INDEX (cont'd) 

Least squares, both variables subject to error, 6-21 
Least squares applied to precision and accuracy of ozone 
measurements, 6A-1 

Least squares vs physical modeling, 10-1 
Lieblein's ratio, 3-9 
Limit velocity analysis, 10-1 
Line fitting, 6-5 
Linear estimation, 7-9 
Logistic distribution, 9-18 
Loglinear analysis, 5-43 
Many outliers test, 3-26 
Maximum likelihood estimation, (examples), 9-14 

Normal distribution, 9-15 
Logistic distribution, 9-18 
Weibull distribution, 9-22 

McDonald, Davis, and Milliken tables, 5-21 
Mean deviation, 4-8 
Mean square error, 4-13 
Model building, 10-1 
Moment properties, 4-14 
Moments of exponential, gamma, and Weibull popula- 
tions, 7-11 , 

Multi-instrument case, 2-40 
Multiple regression, 6-45 

General linear model, 6-45 
Multiple significance tests, 4-57 
Multivariate statistical analyses, 11-1 
Negative variance estimators, 2-15 , . 
Nonlinear regression, 6-50, 6-53 
Operating characteristic curves (power curves), 8-22, 

8-23, 8-26, 8-30, 8-32, 8-39 
Order statistics, 7-3 
Order statistics and reliability, 7-34 
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Outlying observations, 3-1 
Ozone distribution analysis, 6A-2 
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Parabola (quadratic) fitting, 6-29 
Plane fitting, 6-25 
Poisson confidence bounds, 5-8 
Poisson-chi-square relationship, 4-17 
Power curves See: Operating characteristics 
Power of 2 X 2 contingency tables, 5-37 
Precision of measurements, 2-5 
Probability plots, 3-54 
Product variability, 2-11 
Quantal response data analysis  See also: Sensitivity 
analysis, 9-3 

Computer programs, 9A-1 
Quasi-range, 7-7 
Radial order statistics, 7-35 
Range, maximum dispersion, 4-10, 7-4, 7-7 

Range test, 3-18 
Regression, 6-4, 6-5 
Robbins-Monro stochastic technique, 9-9 
Role of the statistician, 10-1 
Rosner's tests (outliers), 3-28 
Sample size, 8-3 
Scientific model building, role of statistician, 10-1 
Scott and Smith's t approximation, 4-40, 4-43 
Sensitivity analysis, 9-3 
Separation of product variability and imprecision, 2-11 
Several or many outliers, 3-26 
Shukla's three-instrument imprecision bounds, 2-39 
Significance levels for multiple tests, 4-57 
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Single-instrument measurements, 2-8 
Skewness test, 3-37 
Smallest observation, distribution of, 7-5 
Smallest observation, test of, 3-18 
Snedecor Ftest, 4-26 
Standard deviation, 4-6 
Statistical model building, 10-7 
Statistical vs physical modeling, 10-1 

Comparison of, 10-11 '      ■ 
Statistician's role, 10-1 
Statistics of extremes, 7-21     , 
Student's t, 4-43 

distribution, 4-40 
percentiles, 4-42 
test (normal approximation—Scott and Smith), 4-41 

t test. Student's, 4-40, 6-9 
Test for equality of multivariate normal population 
parameters, 11-4 

Tests for highest or lowest observations, 3-12 
Thomas-Gart tables, 5-16 
Three-instrument case, 2-20, 6A-1 
Three-instrument significance tests, 2-29 
Tietjen-Moore outlier tests, 3-26 
Tolerance intervals, 7-25 

Tolerance factors for normal distribution, 7-33 
Transformation of data, least squares, 6-12 
True value, 2-6 
Truncated Poisson samples, 7-49 
Truncated samples, 7-43 ■ 
Two closest of three observations, 3-9 
Two highest or two lowest observation tests, 3-21 
2X2 contingency tables, 5-9 
Unbiased estimation of standard deviation, 4-7 
Up and down test strategy, 9-7 
Variance, 4-6 
Wilk-Shapiro (test of nonnormality), 3-54 
Wilks' tests for equality of means, equality of variances, 
and equality of covariances, 11-4 
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